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We study the matter stability in modified teleparallel gravity or f(T) theories. We show that there is
no Dolgov-Kawasaki instability in these types of modified teleparallel gravity theories. This gives for the
f(T) theories a great advantage over their f(R) counterparts because from the stability point of view
there isn’t any limit on the form of functions that can be chosen.

© 2012 Elsevier B.V. Open access under CC BY license.

1. Introduction

It was Einstein who soon after formulating his theory of general
relativity, first introduced the idea of teleparallel gravity [1]. In this
new theory, a set of four tetrad (or vierbein) fields forms the or-
thogonal bases for the tangent space at each point of spacetime
and torsion instead of curvature describes gravitational interac-
tions. Tetrads are the dynamical variables and play a similar role
to the metric tensor field in general relativity. Teleparallel grav-
ity also uses the curvature-free Weitzenbock connection instead
of Levi-Civita connection of general relativity to define covariant
derivatives [2].

After its first introduction, further important developments
were made by several pioneering works in teleparallel gravity and
it has been shown that teleparallel Lagrangian density only differs
with Ricci scalar by a total divergence [3,4]. This shows that gen-
eral relativity and teleparallel gravity are dynamically equivalent
theories where the difference arises only in boundary terms. How-
ever there are some fundamental conceptual differences between
teleparallel theory and general relativity. According to general rel-
ativity, gravity curves the spacetime and shapes the geometry. In
teleparallel theory however torsion does not shape the geometry
but instead acts as a force. This means that there are no geodesic
equations in teleparallel gravity but there are force equations much
like the Lorentz force in electrodynamics.

Recently with the discovery of accelerated cosmic expan-
sion [5], modifying gravity beyond general relativity has generated
much interest. One way to modify gravity is to replace the GR
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Lagrangian density, R, with a general function of Ricci scalar. This
approach leads to the so-called f(R) theories of gravity [6]. Sim-
ilarly one can try to modify gravity in the context of teleparallel
formalism and replace the teleparallel Lagrangian density, T with
a general function of T which leads to the generalized teleparal-
lel gravity or f(T) theories [7]. The resulting field equations in
f(T) theories are second order equations and are much simpler
than the fourth order equations that appear in metric formalism
of f(R) gravities.

It has been shown that f(T) theories can explain the present
time cosmic acceleration without resorting to some exotic dark en-
ergy [8-10]. However one should remain cautious when selecting
the form of function f(T). It is a well-established fact in our every
day experience that weak-field gravitational bodies like the Sun or
the Earth do not experience violent instabilities resulting in dra-
matic changes in their gravitational fields. So any theory which
results in such instabilities should be clearly ruled out. It has been
shown that some prototypes of f(R) theory suffer from these in-
stabilities [11] and a general condition for the stability of such
theories has been derived [12]. Similarly one should consider sta-
bility of the theory in the weak-field limit of f(T) gravity. In this
Letter we show that matter is generally stable in the context of
modified teleparallel gravity.

2. Field equations

In teleparallel gravity we need to define four orthogonal vector
fields named tetrad which form the basis of spacetime. The mani-
fold and the Minkowski metrics are related as

el ol
Euv =Mijé e (1)
where the Greek indices run from 0 to 3 in coordinate basis of
the manifold, the Latin indices run the same in tangent space of
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the manifold and 7;; = diag(+1, -1, —1, —1). The connection in
teleparallel theory, the Weitzenbock connection, is defined as

ey, =eldel, 2)

which gives the spacetime a nonzero torsion, but a zero curvature
in contrast to the general relativity. By this definition the torsion
tensor and its permutations are [3]

TP =e (3ue, — dye),). (3)
1
K"y = _i(Twp =TV, —TpH"), (4)
1
SV = 5(1<ﬂ“,3 + 8T — 8hT ), (5)

where S,V is called the superpotential. In correspondence with
Ricci scalar we define a torsion scalar as

T=S,""T"» (6)

so the gravitational action is

d*x|e|T (7)

| =
167G

where |e| is the determinant of the vierbein efL which is equal to

/—g. Variation of the above action with respect to the vierbeins
will give the teleparallel field equations

_ 1
e 19, (eel’s, 1) —e?T/’MSp"“—i-Ze,-”T=4nGef(~)"j. (8)

Now similar to modifying the action of general relativity which R
is replaced by a general function f(R), one can replace the telepar-
allel action T by a function f(T). Doing this, the resulting modified
field equations are

e 10, (eSi*Y) f/(T) — e} TP 115 S M f/(T)
1
+ Si*V3,(T) f"(T) + Zei”f(T) =471Gel ©) (9)

where (~)/‘,j is the energy-momentum tensor of matter. In what fol-
lows we set 47 G =1.

3. Matter stability

The main motivation for modifying gravity in both teleparallel
and general relativity is the explanation of present time acceler-
ated expansion of the universe. If one considers a flat, homoge-
neous Friedmann-Robertson-Walker universe, then the tetrads are

el, = diag(1,a(), a(t), a(t)) (10)
and the torsion scalar will be

('12

T=-6— =—6H". (11)
a

From the field equation (9) one can derive the modified Friedmann

equation as [8]

12H% f/(T) + f(T) =4p. (12)

To achieve the present time acceleration, any added term to the
torsion scalar should be dominant at late times but negligible at
early times. In Ref. [8] the form f(T) =T —€/(—T)" has been pro-
posed. This gives the correct cosmological dynamics at late times
without resorting to dark energy.

Now we turn to the problem of matter stability. Following the
above discussion we promote the torsion scalar, T to a general
function in the form

f(M) =T +ep(T) (13)

where the parameter € should be small to agree with recent ob-
servational constraints. To study the matter stability of a model of
modified teleparallel gravity in the form (13), we begin by taking
the trace of field equation (9)

e 19, (eSVM”) f1(T) + SV ap(ef) f/(Thel,
+ Tf(T) + SuM3,(T) f(T) + f(T) = O. (14)
Substituting (13), gives
e 19, (eSVM")(1+€9) + S (e ) (1+€¢)el,
+T(1+€9)
+ S0 (Tep” 4+ (T + €p(T)) = O. (15)

Note that Egs. (14) and (15) correspond to the trace of the equa-
tion of motion since the only kind of perturbations we take into
account are the ones of conformal factor i.e. scalar modes. Now we
apply this equation to the gravitational field of a weak-field object
like the Sun or the Earth. For such gravitational bodies, the torsion
scalar in linear perturbation can be approximated by [11]

-T=0+4+2V,T,"" +T4 (16)

where T is the linear perturbation and V,, is the covariant deriva-
tive with the Levi-Civita connection. This equation followed from
the fact that the torsion scalar T and the Ricci scalar R only dif-
fer by a total divergence, R = —T — 2V, T,*”. The minus sign in
(16) comes from the fact that the torsion scalar is negative for a
homogeneous and isotropic weak field gravitational body.

The metric can also approximately be taken as the Minkowski
metric plus some small perturbations

guv =Npv +hyy (17)

where we assume perturbations to be homogeneous and isotropic.
Eq. (17) means that the vierbeins can also locally be written in the
form

el =5+ (18)

where &| is a small perturbation in relation to the trivial tetrad.
We can describe the deviation from the flat spacetime by [4]

where « is a dimensionless parameter which labels the order of
perturbations. Inserting this expansion in (17), the corresponding
expansion of the metric is

v =Ny + @y + ) + -+ (20)

and we have &(;,, =6/ €(;), and &ayuv = Np€(}), -

Here we consider only the first order or linear perturbations so
from now on we drop the subscript (1) from the equations.

By perturbing the torsion in the form of Eq. (16) we’ll have the
following equation in linear perturbation theory for the nearly flat
region inside a weak field celestial body (see Appendix A for proof)

9 p“—A<@+T1 _ T160
m=e 2760 406

®
+/0336 + —826") 21
t*v 2\/5t v ( )
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where A = 23% is a positive constant. Inserting (16), (18) and (21)

in (15) and keeping only the terms linear in perturbations, we get

A Aeg’ } .
+ + Ae'VO|T
[zx/@ 2/ Y !
®

+ | —Ae(¢ — ”( )+e ’+2]T
[ (¢'=¢") 4060 ¢ !

=—A(1+¢€¢) (&) —A(1+e¢)[a@) +VOB3E)]

+AQ2+€¢) [L aféx]

2/6
~UN i A .
- A(1+ e@’)\/éat(el‘/)éf, + E\/gego”@
1 1
- E@eq)’ - €% (22)

where A = 23% and a dot denotes differentiation with respect to

time. Note that the perturbation equation in modified teleparallel
gravity, Eq. (22) is a first order differential equation in contrast
to the second order equations that appear in f(R) theories [12].
The right hand side of (22) is a source term involving the matter
content and also deviation from the flat background as in (17) and
(18). Eq. (22) can be rewritten in a concise form as

mT14+nTy =1 (23)
where we have defined

A Aeg’
m=——+ —— + Aep”' VO,
PAVACRWAVAC ¢

€

/ 4 ;) /
=—Ae(p' — ¢ )(4@@>+e¢ +2,

) —A(1+e@)[3:() + VB8]

®
40/6

+AQ2+e€9) [mafeg] - A(1+€9)VOu(E))s,

A .1 1
x Eﬁew” +6 - E@ap’ - 49 (24)

n=-A1 +e<p’)<

Let us make a comparison between values of the terms in m. For
a typical gravitational body the energy-momentum scalar, @, is
proportional to the mass density of the body and is positive [11]

e ~ (10° sec)_2< Pm ) (25)

gcm—3

where pp, is the mass density of the body. For example we have
om = 5.52 g/cm3 for the Earth and pny = 1.41 g/cm? for the Sun.
The value of € is fixed in such a way that it gives the correct cos-
mological dynamics at late times, so it should be extremely small.
For example, a common class of functions that are popular in f(T)
literature is

2(n+1)
("

where n is some real number and the p parameter will be fixed
to a value that the model can reproduce the late time accelerated
expansion of the universe [8,10]. For this model we have

fmy=1-£

(26)

w1~ 10" sec. (27)

From this it is obvious that the first term in m is much larger
than the other two terms and we can safely neglect the second
and third terms. Doing this, Eq. (22) becomes

Pt el - ') (55 ) + 20/0 +@]T1
:<2f>”' (28)

Let’s consider the time evolution of perturbations. From the
form of differential equation (28) it is obvious that first order per-
turbations, T, will grow with time if the coefficient of Ty in (28)
is negative and decreases with time if the coefficient is positive.
Growing of perturbations with time will mean that the torsion
will rise very quickly and leads to strong instability while a de-
creasing perturbations will mean that the gravitational field will
bounce back to its equilibrium state and so the body is stable. The
coefficient of Ty in (28) is dominated by the last term 47@ due
to extremely small value of €. Note that A and ® are positive so
from this discussion it is obvious that the coefficient of T1 will al-
ways remain positive and as a result the matter in these types of
theories is always stable.

Now we turn our attention to the case of a radiation fluid. For
this type of matter the trace of the energy-momentum tensor, ®
is vanishing. From (16) we have —T =V, T,V + T = T{. Inserting
this in the trace of field equation (9) yields

) 4+ pT* —qT}* =0 (29)

where by definition
[ 4+2¢0p
P=\Aa+ep) )

[ 29
q:<1+e<p’>' (30)

Solving Eq. (29) for the time evolution of T gives

1 C 2
Ti(t) = %tanh(itm+ ?/ﬁ) (31)

which of course is always stable because the perturbations will
become constant after some time. Here C is an integration con-
stant. The limiting value is given by q/p = Aep/(2 4+ €@) which is
extremely small because of the value of €. Fig. 1 shows the quali-
tative behavior of T; as given by Eq. (31).

4. Conclusion

From a geometric point of view, modifying gravity seems a
necessary task in order to explain recent positively accelerated ex-
pansion of the universe. Any such modified theory, whether it is in
the context of general relativity or in teleparallel gravity, may be
expected to show some strong deviation from the standard gravity
at very high energies and in strong-field regimes. This is because
we still do not have a proper theory of quantum gravity to de-
scribe the behavior of gravitational interactions at those energies.
On the other hand any strong deviation from the standard grav-
ity at low energies and weak-field regimes immediately disqualify
the theory because it will contradict well-established weak-field
experiments. One of these experiments is the stability of weak-
field celestial bodies or any other weak gravity objects. In this
Letter we've investigated the stability of such objects in the con-
text of modified teleparallel gravity. The analysis shows that there
is no Dolgov-Kawasaki matter instability in these type of theories.
In contrast, in the corresponding f(R) theories a certain stability
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Fig. 1. Qualitative behavior of the first order torsion scalar perturbation versus time
for radiation matter with vanishing energy-momentum scalar. T} will reach a con-
stant value given by q/p and so the matter in this scenario is always stable.

condition should be met. This gives a great advantage to f(T) the-
ories over their f(R) counterparts because from matter stability
viewpoint, there is no limit on the form of functions that can be
chosen to replace the torsion scalar in the action of f(T) theories.
We note that we have extended our analysis to the second order of
perturbations and we have observed that the matter is still stable
in this scenario.
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Appendix A

Here we present the proof of Eq. (23) for an almost flat region
inside a weak field gravitational body. For such an object the tetrad
and metric are given by Egs. (18) and (20) respectively. Consider-
ing only the first order perturbations and dropping the subscript
we have the following equations for the torsion and superpotential
tensors

TPy = 380" — 8,8, (A1)
and
SyPH = 03re,l — gre P — 8l (9P — 3,87P)

+ 80 (9487 — 39,67H) (A2)

the tensor €,/ is not necessarily symmetric but it has been shown
that the anti-symmetric part of it has no physical significance in
the field equations so we assume it to be symmetric here [4]. Fur-
thermore for an almost flat region inside a star, we can safely
assume that both the background and the first order correction
are homogeneous and isotropic. In that case the torsion and its
perturbation does not depend on spatial coordinates and we have
du — 0. Also for a homogeneous and isotropic perturbation the
first order correction of the tetrad has the form

éy* =diag(1,b,b,b) (A.3)
and b only depends on time. Substituting this in (A.1) and (A.2),
we can find the torsion scalar as

T =SPHT,,, = —6b2. (A4)

Up to the first order in perturbations, the second term in the right
hand side of Eq. (16) will be V, T,* = 3b. On the other hand the
only nonzero components of the superpotential tensor are all the
same (up to a sign) and proportional to /T, in particular we have

3.
3, St = Eb (A.5)
so we will have the relation
3
3,80 = ——08(~/—T A6
v 2@ t( ) ( )

substituting from (16), Eq. (23) is obtained.
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