
doi: 10.1016/j.procs.2016.05.499 

High-productivity Framework for Large-scale GPU/CPU

Stencil Applications

Takashi Shimokawabe1, Takayuki Aoki1, and Naoyuki Onodera2

1 Tokyo Institute of Technology, Meguro, Tokyo, Japan
shimokawabe@sim.gsic.titech.ac.jp

2 National Maritime Research Institute, Mitaka, Tokyo, Japan

Abstract
A high-productivity framework for multi-GPU and multi-CPU computation of stencil appli-
cations is proposed. Our framework is implemented in C++ and CUDA languages. It auto-
matically translates user-written stencil functions that update a grid point and generates both
GPU and CPU codes. The programmers write user code just in the C++ language, and can
execute the translated user code on either multiple multicore CPUs or multiple GPUs with
optimization. The user code can be executed on multiple GPUs with the auto-tuning mecha-
nism and the overlapping method to hide communication cost by computation. It can be also
executed on multiple CPUs with OpenMP. The compressible flow code on GPU exploiting the
optimizations provided by the framework has achieved 2.7 times faster than the non-optimized
version.

Keywords: Stencil applications, Framework, GPU

1 Introduction

Grid-based physical simulations using stencil simulations such as weather prediction code and
compressible flow are one of the important applications running on supercomputers. Thanks to
high memory bandwidth of GPU, GPU computing has successfully accelerated various stencil
applications [7, 6, 9, 3]. However, it forces the programmer to learn multiple distinctive program-
ming models such as CUDA and introduce various complicated optimizations for multi-GPU
computation especially to achieve high performance as expected. To improve programmer pro-
ductivity and achieve high performance with low development cost, various types of high-level
programming models were proposed [5, 10, 1, 2, 4]. STELLA was proposed as a domain-specific
tool for stencil computations on structured grids in weather and climate models [4].

We are currently developing a high-productivity framework for multi-GPU and multi-CPU
computation of stencil applications. The framework has been originally developed for the
weather prediction code ASUCA running on multiple GPUs [8]. The framework is implemented
in the C++ and CUDA languages and automatically translates user-written functions that

Procedia Computer Science

Volume 80, 2016, Pages 1646–1657

ICCS 2016. The International Conference on Computational
Science

1646 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81136065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.499&domain=pdf


update a grid point and generates both GPU and CPU code. The programmer writes user’s
code just in C++ and can develop program code optimized for GPU supercomputers without
introducing complicated optimizations for GPU computation and GPU-GPU communication.

In this paper, further optimizations for multi-GPU computation introduced into our frame-
work are presented. The performance of the GPU computation of stencil applications is highly
dependent on the run-time parameters such as the number of threads used in a calculation.
A mechanism for automatically selecting the optimum parameters at run time is introduced
into this framework. The framework provides overlapping technique with auto-tuning to hide
communication overhead by computation. In order to improve productivity, the framework
introduces the array-based data structure that supports element-wise computations. The user
codes capable of GPU execution can be also accelerated on multiple CPUs with OpenMP by
using the presented framework in this paper, resulting in reduced maintenance cost of appli-
cations. We show the performance results of diffusion computation and 3D compressible flow
written by the proposed framework. TSUBAME2.5 at Tokyo Institute of Technology is used
for these measurements.

2 Overview and Basic Design of Framework

This section reviews the basic design of the proposed framework. The original version of
this framework was presented in our previous paper [8], which was developed for the weather
prediction code ASUCA running on multiple GPUs.

The proposed framework is designed for stencil applications with explicit time integration
running on regular structured grids. The framework is written in the C++ language and
CUDA and can be used in the user code developed in C++, which improves portability of both
framework and user code and facilitates cooperation with the existing codes. The framework is
intended to execute a single user program on either multiple NVIDIA’s GPUs or multiple x86
CPUs. To perform stencil computations on grids, the programmer only defines C++ functors
that update a grid point, which are applied to entire grids by the framework. A user code is
parallelized by MPI with OpenMP for CPU and by MPI with CUDA for GPU. The framework
provides optimizations suitable for large-scale GPU computing such as overlapping methods
and auto-tuning mechanism. The programmer can develop the program code optimized for
both multi-CPU and multi-GPU computing without introducing complicated optimizations
explicitly.

3 Programming Model and Implementation

This section describes the programming model and implementation of the proposed framework.

3.1 Data structure for grid data

The framework originally exploits arrays of C/C++ languages as array data types. To fur-
ther improve productivity, an unique data type ETArray and Range type, which represents a
1D/2D/3D rectangular ranges, are introduced into the framework. An object of ETArray holds
an array data with one object of Range that represents its size and location. By using these
types, the array data are allocated as follows:

unsigned int length[] = {nx+2*mgnx, ny+2*mgny, nz+2*mgnz};

int begin [] = {-mgnx, -mgny, -mgnz};

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1647



Range3D whole(length, begin);

ETArray<float, Range3D> f_h(whole, MemoryType::HOST_MEMORY);

ETArray<float, Range3D> f_d(whole, MemoryType::DEVICE_MEMORY);

ETArray is initialized with parameters that specify a Range that represents the range of itself
and a location of memory to allocate. Currently regular pageable host memory, page-locked
host memory and device memory (i.e., GPU) are supported as the memory location.

3.2 Writing and executing stencil functions

In this framework, a stencil calculation must be defined as a C ++ functor called a stencil func-
tion with ArrayIndex provided by the framework. The stencil function for three-dimensional
diffusion equation is defined as follows:

struct Diffusion3d {

__host__ __device__ float operator()(const float *f, const ArrayIndex &idx,

float ce, float cw, float cn, float cs, float ct, float cb, float cc) {

const float fn = cc*f[idx.ix()] + ce*f[idx.ix(1,0,0)] + cw*f[idx.ix(-1,0,0)]

+ cn*f[idx.ix(0,1,0)] + cs*f[idx.ix(0,-1,0)]

+ ct*f[idx.ix(0,0,1)] + cb*f[idx.ix(0,0,-1)];

return fn;

}};

ArrayIndex holds the size of given grid (nx, ny, nz) and represents a certain grid point (i, j, k),
which is the coordinate of the point where this function is applied. ArrayIndex with (nx, ny, nz)
is intended to be used for the ETArray having the same sizes. It provides a function for
accessing to the (i, j, k) point and its neighboring points for the stencil access; idx.ix() and
idx.ix(-1, -2, 0), for example, returns the indexes representing (i, j, k) and (i− 1, j − 2, k)
points, respectively. Stencil functions can be defined as both host and device (i.e., GPU)
functions by using the qualifiers host and device provided by CUDA.

To update ETArray by the user-written stencil functions, the framework provides the view

function, which is used to invoke the diffusion equation on the three-dimensional grid as follows:

Range3D inside; // 3D rectangular range where stencil functions are applied.

ETProperty *prop = new DeviceProperty; // Select GPU execution

view(fn, inside, prop)

= funcf<float>(Diffusion3d(), ptr(f), idx(f), ce, cw, cn, cs, ct, cb, cc);

f and fn are ETArray data. The funcf function is defined as a C++ template function that
takes an arbitrary number of different types of arguments. By using the C++ type inference,
funcf calls an appropriate functor Diffusion3d and provides the given all the arguments to it.
The ptr function provides the pointer pointing to (i, j, k) of the given ETArray to the stencil
function. Texture cache is exploited to access these input pointers in the stencil functions on
GPU. The view function executes a stencil function on the right-hand side of the assignment
expression and applies the stencil function to the grid points of the given ETArray fn in the
inside region. In typical stencil computations, the inside region is a region excluding the halo
region from the whole computational domain. ETProperty, which is given to the view function,
is also provided by the framework and is used to specify how to run the stencil function. Table 1
shows the family of ETProperty provided by the framework. The programmer can execute
stencil functions on CPU with OpenMP and GPU with some optimizations such as auto-tuned
kernel execution and an overlapping method by just specifying an appropriate property at view.
Note that the programmer must call stencil functions by one of the host-execution ETProperty

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1648



Table 1: ETProperty family
ETProperty Execution
HostProperty Host (single thread) execution
OmpProperty OpenMP execution on host
DeviceProperty Device (GPU) execution
DeviceATProperty Device execution with auto-tuning
DeviceOverlapProperty Device execution with overlapping method
DeviceOverlapATProperty Device execution with overlapping method and auto-tuning

with ETArray objects allocated on host, or by one of the device-execution ETProperty with
those on device in order to perform them correctly. The details of overlapping technique and
auto-tuning mechanism are described later.

3.3 Element-wise computation for arrays

Stencil applications often use element-wise computations as well as stencil computations. By
using the C++ technique called expression templates, each expression related to ETArray gener-
ates GPU and CPU kernel codes corresponding to the expression itself, which allows us to write
kernel codes as inline codes and achieve a well simple description. Examples of element-wise
computations with ETArray are shown as follows:

// The following expressions are written in inline host codes

// instead of stencil functions.

f = 1.0 + 2 * 4.0; // ‘‘f’’ is ETArray. All elements of ‘‘f’’ are filled with 9.0.

g = 2.0 * sqrt(f); // ‘‘g’’ is ETArray. All elements of ‘‘g’’ are filled with 6.0.

h = sqrt((pos(axis0)-3)*(pos(axis0)-3) + (pos(axis1)-5) * (pos(axis1)-5));

f, g and h are ETArray. The framework provides element-wise mathematical functions. An
element-wise square root computation for f is used above. The framework also provides the
function pos for acquiring coordinates such as i, j and k, and objects axis0 and axis1 to
specify x and y axes, which allows us to write and generate inline kernels using coordinates.
For example, h will have the distance from the point (3, 5) in two dimensions.

Using the operator overloading of C++, arithmetic operators corresponding to the classes
provided by the framework such as ETArray and pos are provided. When an expression includes
objects of these classes as the operands of the operators, a structure representing the expression
is built at compile time by using the techniques of C++ expression template. When the right-
hand side of the assignment operator of an ETArray allocated on the device memory receives
this structure, this ETArray and the structure are transferred to GPU and then the expres-
sion represented by this structure is executed on GPU. The function funcf for writing stencil
functions described above also supports this mechanism based on the expression template.

3.4 Data transfer of halo regions between subdomains

In stencil simulations using multiple GPUs or multiple CPUs, domain decomposition method is
often used for parallelization of these. Figure 1 shows the domain decomposition method. Data
exchanges of halo regions of subdomains are performed frequently since stencil computation
that updates a point needs to access its neighboring points. This framework provides the
PBoundaryExchange class to easily describe the communication to exchange these halo regions.
PBoundaryExchange is typically used as follows:

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1649



Exchange of halo regionsDecomposition

Whole domain Decomposed subdomains Inside region
Halo region

Whole subdomain}

Figure 1: Multiple GPUs and CPUs computation for stencil applications.

mgnx mgnx

nx

mgny

ny

mgny
time

Central region comp.

Communication

x boundary comp.

x boundary comp.

y boundary comp.

y boundary comp.

mgnx mgnx

nx

mgny

ny

mgny

time

Computation for
inside region 

Communication for
halo regions

Whole subdomain Divided subdomain

x boundary

y boundary

Central region

Halo region

Inside region

Figure 2: Scheme of the non-overlapping and the kernel-division overlapping method.

PBoundaryExchange exchange(inside, rank, neighbor_connect);

exchange.append(f1);

exchange.append(f2);

exchange.transfer();

PBoundaryExchange is initialized by inside, which is a Range object, and MPI rank in-
formation with neighbor subdomain ranks. Halo regions of ETArray objects appended by
PBoundaryExchange::append are exchanged using MPI with CUDA Runtime API when
PBoundaryExchange::transfer is executed. PBoundaryExchange may allocate temporary
buffers on host memory when ETArray that PBoundaryExchange receives is allocated on GPU.

3.5 Overloading method for multi-GPU computation

In large-scale GPU computation, the communication time between GPUs cannot be ignored in
comparison with the total execution time of applications. The overlapping technique to hide
the communication costs by the calculation contributes to the performance improvement.

This framework provides the kernel-division overlapping method for multi-GPU computing
reported in our previous work [7]. This method exploits the data independence in a single
variable. Since each element of a variable can be calculated independently with the other
elements, computations for the boundary regions that depend on halo data can be performed
separately from other calculations for the remaining central region of the subdomain. Figure 2
shows the overlapping method provided by this framework. As shown in the figure, in the two-
dimensional domain decomposition case, when each of computational subdomains requires two-
element-thick mesh as halo regions, the framework divides one inside region into four boundary
regions with two-element-thick mesh and the remaining central region. The framework divides a
single execution of a stencil function on the whole inside region into five executions of it on these
five divided regions. In the overlapping method on multiple GPUs, first, the framework updates
the values in the central region by executing a user-written stencil function in a CUDA stream,

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1650



while simultaneously the boundary exchanges between subdomains to update the values in the
halo regions are performed in another stream. The boundary exchange consists of asynchronous
memory copy from GPU to CPU executed by a CUDA memory operation, data exchanges
between CPUs with MPI, and asynchronous memory copy from CPU to GPU. After this copy
sequence finishes, the user-written stencil function is executed to update the values in the
four boundary regions in four different streams, which contributes to exploiting computational
resources effectively.

This framework provides the overlap technique described above that corresponds to the
ETArray. The diffusion calculation using the overlapping method is written as follows:

ETProperty *prop = new DeviceOverlapProperty(Range3D::ndim);

vieweb(fn, &exchange, prop)

= funcf<float>(Diffusion3d(), ptr(f), idx(f), ce, cw, cn, cs, ct, cb, cc);

This code provides the same result as the following reference code, which does not use the
overlapping method:

ETProperty *prop = new DeviceProperty;

exchanges.transfer();

view(fn, exchanges.inside_region(), prop)

= funcf<float>(Diffusion3d(), ptr(f), idx(f), ce, cw, cn, cs, ct, cb, cc);

The vieweb function is the view function receiving PBoundaryExchange object that handles
the boundary exchanges. The vieweb function executes a stencil function and communication
in parallel described above. The prop is used not only to specify how to run the stencil
function, but also to provide information and working resources required for the execution;
for example, DeviceOverlapProperty enables the overlapping method and provides CUDA
streams for parallel execution.

3.6 Auto-tuning for single GPU computation

In this framework, three-dimensional stencil functions are invoked with a two-dimensional
CUDA thread block that is arranged parallel to the xy plane. Each thread specifies a point
(i, j) and calculates consecutive grid points marching in the z direction. Since the performance
of GPU is often improved for large numbers of threads, the framework divides a subdomain
assigned to each GPU into several pieces of subdomain in the z direction and assigns one CUDA
thread block to each piece.

In the stencil calculation by GPU, the performance is largely dependent on the run-time
parameters such as the number of CUDA threads and the number of divisions in the z direction.
This framework provides an automatic tuning mechanism for these parameters; the framework
selects the optimum parameters of the number of threads in x and y directions and the number of
grid points marching in z direction. Table 2 shows the auto-tuned parameters in this mechanism.
The programmer can apply this auto-tuning to user-written stencil functions by just specifying
DeviceATProperty or DeviceOverlapATProperty shown in Table 1 at view. The programmer
does not need to provide any other information at runtime. DeviceATProperty is typically used
as follows:

ETProperty *prop = new DeviceATProperty;

view(fn, inside, prop)

= funcf<float>(Diffusion3d(), ptr(f), idx(f), ce, cw, cn, cs, ct, cb, cc);

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1651



Table 2: ETProperty family
Number of threads in x direction 4, 8, 16, 32, 64, 128
Number of threads in y direction 1, 2, 4, 8, 16
Number of mesh in z-marching 1, 2, 4, 8, 16

When a stencil function by view with DeviceATProperty is executed, a new set of the parame-
ters is specified at each execution and the execution time with this set is measured and recorded.
After the measurement of execution time in all parameters is finished, the stencil function is
performed with the optimal parameters to minimize the execution time. The auto-tuning is
performed during early stage of time integration loop of applications. Although performance
degradation is observed while the tuning is performed, the increase of the execution time due
to this performance degradation can be ignored in comparison with the entire execution time
of applications since each stencil function is typically performed more than tens of thousands
of times in applications. DeviceOverlapATProperty provides the auto-tuning mechanism with
the overlapping method.

4 Performance Evaluation and Discussion

In this section, we show the performance evaluation of the proposed framework. We apply the
framework to a diffusion equation, which is a fundamental equation used in fluid simulations,
and a 3D compressible flow application simulating the Rayleigh-Taylor instability.

We use the TSUBAME 2.5 supercomputer at the Tokyo Institute of Technology for our
evaluation. The TSUBAME 2.5 supercomputer is equipped with 4224 NVIDIA Tesla K20X
GPUs. The peak performance of each GPU in single precision is 3.95TFlops. The on-board
device memory (also called global memory in CUDA) provides 250GB/s peak bandwidth in a
Tesla K20X. Each node of TSUBAME 2.5 has three Tesla K20X attached to the PCI Express
bus 2.0 ×16 (8 GB/s), two QDR InfiniBand and two sockets of the Intel CPU Xeon X5670
(Westmere-EP) 2.93 GHz 6-core. All calculations in this section are done in single precision.

In order to measure the performance of an application, we count the number of floating-
point operations in its simulation code by running it on a GPU with NVIDIA profiler. Using
the obtained count and the elapsed time of the application, its performance is evaluated.

4.1 Diffusion equation

A diffusion equation is well used in physical simulations such as computational fluid dynamics
and written as follows:

∂f

∂t
= κ∇2f, (1)

where f is a physical variable and κ is a diffusion coefficient. The physical variable on a certain
point of a grid is updated by seven neighbor elements of the physical variable around that point
in 3D. The boundary regions that have one-element-thick are needed for this computation.

Figure 3 shows the performance results of diffusion computation on a single GPU in the cases
using typical fixed number of threads with typical fixed number of divisions in z direction and the
case using the auto-tuning mechanism. As shown in the figure, the performance obtained by the
auto-tuning mechanism achieves the fastest in these results for all mesh sizes; the performance
of 215.3GFlops is achieved by using the auto-tuning mechanism for a 5123 mesh. Assuming that

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1652



Figure 3: Performance results of diffusion
computation with auto-tuning running on a
Tesla K20X.

Figure 4: Strong scaling results of diffusion
computation on multiple GPUs of TSUB-
AME2.5.

this computation is a memory-bound one and utilizes the peak bandwidth of GPU memory (i.e.,
250GB/s), the attainable performance is estimated to be 102.5GFlops. Since the performance
of 215.3GFlops is achieved by using the auto-tuning, which is more than the estimated value,
this auto-tuned stencil function is likely to be well optimized. Although the computation
invoked with (64, 2) threads and 16-element z marching, which is used for invoking non-tuned
GPU kernels generated by the framework, achieves higher performance for almost all mesh
sizes than other computations, that for a 8× 512× 512 mesh remains at 46.4GFlops since the
number of threads in the x direction is far from the mesh size in that direction. The proposed
auto-tuning mechanism overcomes this performance degradation and achieves 102.6GFlops.

Figure 4 shows the strong scaling results of diffusion equation running on GPUs of TSUB-
AME2.5. The performance results of computations using the overlapping method or the auto-
tuning mechanism or both are shown in this figure. The performance of non-optimized com-
putation is also shown in the figure. We use three GPUs per each node for these calculations
and vary the mesh size from 5123 to 20483. We have chosen 2D decomposition for this com-
putation since 3D decomposition, which looks better to reduce communication amount, tends
to degrade GPU performance due to complicated memory access patterns for data exchanges
between GPUs. As shown in this figure, the overlapping method contributes to the significant
performance improvements by hiding communication overhead. The auto-tuning mechanism
is considered to improve the single GPU performance, resulting that the overall multi-GPU
performance is slightly improved in all mesh sizes. In the performance results using a 10243

mesh on 64 GPUs, for example, the overlapping method with the auto-tuning mechanism, the
overlapping method only and the auto-tuning mechanism only achieve 3.78TFlops, 3.70TFlops
and 3.06TFlops, respectively while the non-optimized version reaches 2.70TFlops.

4.2 Compressible Flow

We perform 3D compressible flow computation written by this framework and show compu-
tational results of the Rayleigh-Taylor instability, which is a more realistic simulation than

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1653



Figure 5: Simulation results of the Rayleigh-Taylor instability.

diffusion one. To simulate this, we solve 3D Euler equations described as follows:

∂U

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= S, (2)

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρe

⎤
⎥⎥⎥⎥⎦
, E =

⎡
⎢⎢⎢⎢⎣

ρu
ρuu+ p
ρvu
ρwu

(ρe+ p)u

⎤
⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρvv + p
ρwv

(ρe+ p)v

⎤
⎥⎥⎥⎥⎦
, G =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρww + p
(ρe+ p)w

⎤
⎥⎥⎥⎥⎦
, S =

⎡
⎢⎢⎢⎢⎣

0
0
0
ρg
ρwg

⎤
⎥⎥⎥⎥⎦
,

where ρ is density, (u, v, w) are velocity, p is pressure, and e is energy. Here, g is gravitational
acceleration. An advection term is solved using three-order upwind scheme with three-order
TVD Runge-Kutta method. In this simulation, time integration of five variables ρ, ρu, ρv, ρw,
and ρe is solved. Each variable uses 4 ETArray objects to update itself in the time integration
in our implementation. Updating values of the five variables on a center point needs to use 13
neighbor elements of these variables. The boundary regions that have two-element-thick are
needed for this computation.

Figure 5 shows computational results of the Rayleigh-Taylor instability obtained by 3D
compressible flow computation on a 576× 576× 288 mesh written by this framework. We use
64 GPUs of TSUBAME2.5 for this calculation. In this figure, red and blue region fill on the
yz plane represent two fluids of different densities and white contour that is partly depicted
represents the an interface between them.

Figure 6 shows the strong scaling results of compressible flow running on GPUs of TSUB-
AME2.5. Similar to Figure 4, the performance results of optimized and non-optimized versions
are shown in this figure. We use three GPUs per each node for these calculations and vary the
mesh size from 2563 to 10243. Similar to diffusion computation, we have chosen 2D decomposi-
tion for this calculation. This compressible fluid computation needs five independent variables
described above. Our implementation exploits five different stencil functions to update these
variables. Since each of these stencil functions in this simulation often takes longer computation
time than one in the diffusion calculation, the proportion of communication time to the entire
execution time is considered to be smaller than one in the diffusion calculation. Thus the effect
of the overlapping method on the performance improvements in this application is smaller than
that in the diffusion computation as shown in this figure. On the other hand, since the number
of threads (64, 2) with 16-element z marching, which is used for non-optimized GPU kernels, is
not suitable for these stencil functions unlike diffusion computation, the auto-tuning contributes
to significant performance improvements shown in this figure. The auto-tuning mechanism, for

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1654





C++ and CUDA languages and the user code can be written in the C++ language. Further
optimizations for multi-GPU computation are introduced into our framework. A mechanism
for automatically selecting the optimum parameters at run time is introduced into this frame-
work. The framework provides optimizations for multi-GPU computing such as the overlapping
technique with auto-tuning mechanism to hide communication overhead by computation, re-
sulting in achieving optimal performance. The user code capable of GPU execution can be
also executed on multiple CPUs with OpenMP without any change, resulting in reduced main-
tenance cost of applications. We have demonstrated the results of diffusion computation and
compressible flow written by the framework. The optimized GPU version of compressible flow
using the overlapping method with auto-tuning mechanism has achieved 2.7 times faster than
the non-optimized GPU code.

6 Acknowledgments

This research was supported in part by KAKENHI, Grant-in-Aid for Young Scientists (B)
15K20995 and Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT) of Japan, and in part by “Joint Us-
age/Research Center for Interdisciplinary Large-scale Information Infrastructures” and “High
Performance Computing Infrastructure” in Japan.

References

[1] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code generation and autotuning framework
for parallel iterative stencil computations on modern microarchitectures. In Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE International, pages 676–687, 2011.

[2] Matthias Christen, Olaf Schenk, and Yifeng Cui. Patus for convenient high-performance stencils:
Evaluation in earthquake simulations. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 11:1–11:10, Salt Lake
City, Utah, 2012. IEEE Computer Society Press.

[3] C. Feichtinger, J. Habich, H. Köstler, G. Hager, U. Rüde, and G. Wellein. A Flexible Patch-Based
Lattice Boltzmann Parallelization Approach for Heterogeneous GPU–CPU Clusters. Parallel Com-
puting, 37(9):536–549, 2011.

[4] Tobias Gysi, Carlos Osuna, Oliver Fuhrer, Mauro Bianco, and Thomas C. Schulthess. STELLA: A
domain-specific tool for structured grid methods in weather and climate models. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’15, pages 41:1–41:12, New York, NY, USA, 2015. ACM.

[5] Naoya Maruyama, Tatsuo Nomura, Kento Sato, and Satoshi Matsuoka. Physis: an implicitly par-
allel programming model for stencil computations on large-scale GPU-accelerated supercomputers.
In Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 11:1–11:12, New York, NY, USA, 2011. ACM.

[6] Takashi Shimokawabe, Takayuki Aoki, Junichi Ishida, Kohei Kawano, and Chiashi Muroi. 145
TFlops performance on 3990 GPUs of TSUBAME 2.0 supercomputer for an operational weather
prediction. Procedia Computer Science, 4:1535 – 1544, 2011. Proceedings of the International
Conference on Computational Science, ICCS 2011.

[7] Takashi Shimokawabe, Takayuki Aoki, Chiashi Muroi, Junichi Ishida, Kohei Kawano, Toshio Endo,
Akira Nukada, Naoya Maruyama, and Satoshi Matsuoka. An 80-fold speedup, 15.0 TFlops full
GPU acceleration of non-hydrostatic weather model ASUCA production code. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, New Orleans, LA, USA, 2010. IEEE Computer Society.

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1656



[8] Takashi Shimokawabe, Takayuki Aoki, and Naoyuki Onodera. High-productivity framework on
GPU-rich supercomputers for operational weather prediction code ASUCA. In Proceedings of
the 2014 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’14, pages 1–11, New Orleans, LA, USA, 2014. IEEE Computer Society.

[9] Takashi Shimokawabe, Takayuki Aoki, Tomohiro Takaki, Akinori Yamanaka, Akira Nukada,
Toshio Endo, Naoya Maruyama, and Satoshi Matsuoka. Peta-scale phase-field simulation for den-
dritic solidification on the TSUBAME 2.0 supercomputer. In Proceedings of the 2011 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 1–11, Seattle, WA, USA, 2011. ACM.

[10] Didem Unat, Xing Cai, and Scott B. Baden. Mint: realizing CUDA performance in 3D stencil
methods with annotated C. In Proceedings of the international conference on Supercomputing, ICS
’11, pages 214–224, New York, NY, USA, 2011. ACM.

Framework for Large-scale GPU/CPU Stencil Computations Shimokawabe et al.

1657


