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a b s t r a c t

In this work, we have constructed the equations for generalized thermoelasticity of an
unbounded fiber-reinforced anisotropic medium with a circular hole. The formulation is
applied in the context of Green and Naghdi (GN) theory. The thermoelastic interactions
are caused by (I) a uniform step in stress applied to the boundary of the hole with zero
temperature change and (II) a uniform step in temperature applied to the boundary of
the hole which is stress-free. The solutions for displacement, temperature and stresses are
obtained with the help of the finite element procedure. The effects of the reinforcement
on temperature, stress and displacement are studied. Results obtained in this work can
be used for designing various fiber-reinforced anisotropic elements under mechanical or
thermal load to meet special engineering requirements.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During the second half of the twentieth century, non-isothermal problems in the theory of elasticity became increasingly
important. This is due to theirmany applications inwidely diverse fields. First, the high velocities ofmodern aircraft give rise
to aerodynamic heating, which produces intense thermal stresses that reduce the strength of the aircraft structure. Second,
in the nuclear field, the extremely high temperature and temperature gradients originating inside nuclear reactors influence
their design and operations [1]. Materials such as resins reinforced with strong aligned fibers exhibit highly anisotropic
elastic behavior in the sense that their elastic moduli for extension in the fiber direction are frequently of the order of 50
or more times greater than their elastic moduli in transverse extension or in shear. The mechanical behavior of many fiber-
reinforced composite materials is adequately modeled by the theory of linear elasticity for transversely isotropic materials,
with the preferred direction coincidingwith the fiber direction. In such composites the fibers are usually arranged in parallel
straight lines. However, other configurations are used. An example is that of circumferential reinforcement, for which the
fibers are arranged in concentric circles, giving strength and stiffness in the tangential (or hoop) direction. The theory of
strongly anisotropic materials has been extensively discussed in the literature. Belfield et al. [2] studied the stress in elastic
plates reinforced with fibers lying in concentric circles. Sengupta and Nath [3] discussed the problem of surface waves
in fiber-reinforced anisotropic elastic media. Singh [4] showed that, for wave propagation in fiber-reinforced anisotropic
media, this decoupling cannot be achieved by the introduction of the displacement potentials. Hashin and Rosen [5] studied
the elastic moduli for fiber-reinforcedmaterials. The classical theory of thermoelasticity as exposed for example in Carlson’s
article [6] has found generalizations andmodifications into various thermoelastic models that go under the label hyperbolic
thermoelasticity; see the survey of Chandrasekharaiah [7] and Hitnarski and Ignazack [8]. The description ‘‘hyperbolic’’
reflects the fact that thermal waves aremodeled, avoiding the physical paradox of infinite propagation speed of the classical
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model. In the decade of the 1990’s Green and Naghdi [9–11] proposed three new thermoelastic theories based on an
entropy equality rather than the usual entropy inequality. Singh [12] studied the wave propagation in thermally conducting
linear fiber-reinforced composite materials with one relaxation time. Verma [13] studied the problem of magnetoelastic
shear waves in self-reinforced bodies. Chattopadhyay and Choudhury [14] investigated the propagation, reflection and
transmission of magnetoelastic shear waves in self-reinforced media. Chattopadhyay and Choudhury [15] discussed the
propagation of magnetoelastic shear waves in an infinite self-reinforced plate. Chattopadhyay andMichel [16] gave amodel
for spherical SH-wave propagation in self-reinforced linearly elastic media. Tian et al. [17], Abbas [18] and Abbas and Abd-
alla [19] applied the finite element method in different generalized thermoelastic problems.

The exact solution of the governing equations of the generalized thermoelasticity theory for a coupled and nonlinear/
linear system exists only for very special and simple initial and boundary problems. To calculate the solution for general
problems, a numerical solution technique is used. For this reason the finite element method is chosen. The method of
weighted residuals offers the formulation of the finite element equations and yields the best approximate solutions to linear
and nonlinear boundary and partial differential equations (see Wriggers [20]).

This work considers a thermoelastic problem involving such circumferentially reinforced plates. The composite material
is then locally transversely isotropic, with the direction of the axis of transverse isotropy now not constant, but everywhere
directed along the tangents to circles in which the fibers lie. The problem has been solved numerically using a finite
element method (FEM). Numerical results for the temperature distribution, the displacement and the stress components
are represented graphically.

2. Formulation of the problem

Following [9–12], the basic equations ofGreen andNaghdi theory, for a fiber-reinforced linearly thermoelastic anisotropic
medium whose preferred direction is that of a unit vector a, in the absence of body forces and heat sources, are considered
as follows:
The equations of motion:

τij,j = ρüi, i, j = 1, 2, 3. (1)

The heat conduction equations:

K ∗T,ii + KijṪ,ii = ρceT̈ + Toβijüi,i, i, j = 1, 2, 3. (2)

The constitutive equation (stress–strain and temperature relations) is given by

τij = λekkδij + 2µT eij + α(akamekmδij + aiajekk) + 2(µL − µT )(aiakekj + ajakeki)

+ β akam ekmaiaj − βij (T − To) δij, i, j, k,m = 1, 2, 3, (3)

where T is the temperature change of a material particle; To is the reference uniform temperature of the body; ρ is the mass
density; the ui are the displacement vector components; eij is the strain tensor; τij is the stress tensor; βij is the thermal
elastic coupling tensor; Kij is the thermal conductivity; K ∗ is the material characteristic of the theory; ce is the specific heat
at constant strain; α, β , and (µL − µT ) are reinforced anisotropic elastic parameters; λ, µT are elastic parameters; and the
components of the vector a are (a1, a2, a3)where a21+a22+a23 = 1. The superimposed dot represents time differentiation and
the comma notation is used for spatial derivatives. For circumferential reinforcement the vector a is everywhere directed in
the tangential (i.e. θ ) direction, so in cylindrical polar coordinates a has components (0, 1, 0). We use a cylindrical system of
coordinates (r, θ, z); for this axially symmetric problem we have u = u(r, t), where r is the radial distance measured from
the origin (point of symmetry), and the stress tensor is determined by the radial stress τrr and the circumferential stress
(hoop stress) τθθ . Therefore, the radial strain err and the hoop strain eθθ are given by

err =
∂u
∂r

, eθθ =
u
r
. (4)

It is assumed that there are no body forces and heat sources in the medium. So, the equation of motion and energy equation
have the forms
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with β11 = 2(λ + µT )α11 + (λ + α)α22, β22 = 2(λ + α)α11 + (λ + 2α + 4µL − 2µT + β)α22, where α11, α22 are the
coefficients of linear thermal expansion. For convenience, the following non-dimensional variables are used:

(r ′, u′) = c1χ(r, u), t ′ = c21χ t,

τ ′

rr , τ
′

θθ


=

1
D

(τrr , τθθ ) , χ =
ρce
K11

,

T ′
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T − To
To

, c1 =


D
ρ

, D = λ + 2α + 4µL − 2µT + β.

(9)

In terms of the non-dimensional quantities defined in Eqs. (9), the above governing equations reduce to (dropping the dashes
for convenience)
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where (B1, B2, B3, B4) =
1
D (λ + 2µT , λ + α, Toβ11, Toβ22), (ε1, ε2, ε3, ε4) =
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K∗
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3. Boundary conditions

We consider boundary conditions of two types:
(I) The surface of the hole, i.e. r = 1, is subjected to a step input of radial stress and zero temperature change, so the

boundary conditions are taken as

τrr(1, t) = −σoH(t), T (1, t) = 0, t > 0. (14)

(II) The surface of the hole, i.e. r = 1, is assumed to be stress-free and is subjected to a uniform step in the temperature
effect, so the boundary conditions are taken as

τrr(1, t) = 0, T (1, t) = T1H(t), t > 0, (15)

where H(t) denotes the Heaviside unit step function. The medium is assumed to be at rest and undisturbed initially. The
initial and regularity conditions are

u = T = 0 at t = 0, r ≥ 1,
∂u
∂t

=
∂T
∂t

= 0 at t = 0 and u, T → 0 when r → ∞. (16)

4. The finite element method

The finite element method is a powerful technique originally developed for numerical solution of complex problems in
structural mechanics, and it remains the method of choice for complex systems. A further benefit of this method is that it
allows physical effects to be visualized and quantified regardless of experimental limitations. In this section, the governing
equations of generalized thermoelasticity based upon Green and Naghdi theory are summarized, using the corresponding
finite element equations. In the finite element method, the displacement component u and temperature T are related to the
corresponding nodal values by

u =

m
i=1

Niui(t), T =

m
i=1

NiTi(t), (17)

where m denotes the number of nodes per element, and N the shape functions. In the framework of the standard Galerkin
procedure, the weighting functions and the shape functions coincide. Thus,

δu =

m
i=1

Niδui, δT =

m
i=1

NiδTi. (18)
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Table 1
Grid independence test (t = 0.3, r = 1.5).

Mesh size Case I Case II
T × 10−3 u × 10−8 T × 10−1 u × 10−6

1,000 8.324960 4.244323 3.538151 1.326896
3,000 8.323887 4.243051 3.538154 1.326914
6,000 8.323808 4.242957 3.538155 1.326915
9,000 8.323790 4.242934 3.538155 1.326916

12,000 8.323788 4.242933 3.538155 1.326916

With Eqs. (17) and (18), u′
= u,i and T ′

= T,i can be expressed as
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=
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Thus, the finite element equations corresponding to Eqs. (10) and (11) can be obtained as
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where me is the total number of elements. The coefficients in Eq. (21) are presented in the Appendix. Symbolically, the
discretized equations of Eqs. (21) can be written as

Md̈ + Cḋ + Kd = F ext , (22)

whereM, C, K and F ext represent themass, damping, stiffness matrices and external force vectors, respectively; d = [u T ]T ;
on the other hand, the time derivatives of the unknown variables have to be determined, by the Newmark time integration
method (see Wriggers [20]).

5. A numerical example

With a view to illustrating and comparing the theoretical results obtained in the previous sections in the context of the
GN model of thermoelasticity, we now present some numerical results. The physical data for the material are given as [12]

ρ = 2660 kg/m3, λ = 5.65 × 1010 N/m2, µT = 2.46 × 1010 N/m2,

µL = 5.66 × 1010 N/m2, T1 = 1, σo = 1,
α = −1.28 × 1010 N/m2, β = 220.90 × 1010 N/m2, α11 = 0.017 × 10−4 deg−1,

α22 = 0.015 × 10−4 deg−1, t = 0.3,
ce = 0.787 × 103 J kg−1 deg−1, K11 = 0.0921 × 103 J m−1s−1 deg−1,

K22 = 0.0963 × 103 J m−1s−1 deg−1, To = 293 k.

Before going to the analysis, the grid independence test has been conducted and the results are presented in Table 1.
The grid size has been refined and consequently the values of different parameters as observed from Table 1 are stabilized.
Further refinement of mesh size over 12,000 elements does not change the values very considerably, and this is therefore
accepted as the grid size for computing purposes.

Using this data set, the displacement u, temperature T , and radial and circumferential stresses τrr , τθθ are numerically
computed for different values of the radial distance r and their graphical representation is presented in Figs. 1–8. The solid
line (—) refers to thermoelastic solidwithout reinforcement (NRE) and the dotted line (· · ·) refers to thermoelastic solidwith
reinforcement (WRE). As expected, the reinforcement has a great effect on the distribution of field quantities.
Case (I): Fig. 1 represents the radial variations of displacement with reinforcement (WRE) andwithout reinforcement (NRE).
It is observed that the displacement is continuous and the displacement gradually decreases with r and is zero at r = 1.35
for NRE, and is zero at r = 1.1 for WRE. This is also in agreement with the theoretical result where beyond the thermal
wave front, displacement vanishes. As shown in Fig. 2, the value of the temperature under NRE increases sharply in the
range 1 < r < 1.4 and then decreases for r ≥ 1.4 while the value of the temperature under WRE increases sharply in the
range 1 < r < 1.1 and then decreases for r ≥ 1.1. Fig. 3 shows the graphical presentation of radial stress versus distance r
and indicates finite jumps at the elastic wave fronts at r = 1.45 for NRE and r = 1.1 for WRE. Fig. 4 gives the variation of
hoop stress versus r . The hoop stress at first decreases and then suffers a finite jump at the elastic wave front at r = 1.2 for
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Fig. 1. Case (I): the variations of displacement.

Fig. 2. Case (I): the variations of temperature.

Fig. 3. Case (I): the variations of radial stress.

Fig. 4. Case (I): the variations of hoop stress.
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Fig. 5. Case (II): the variations of displacement.

Fig. 6. Case (II): the variations of temperature.

Fig. 7. Case (II): the variations of radial stress.

NRE, and at r = 1.08 forWRE, and then it approaches and ultimately becomes zero. This is in agreementwith the theoretical
result that the disturbance is zero beyond the thermal wave front.
Case (II): The displacement is negative at r = 1 where its magnitude is maximum, as in Fig. 5. The displacement increases
from the negative value to a positive value. In the positive values, the displacement has a peak value that depends on the
presence and absence of reinforcement. Fig. 6 shows that the temperature decreases as r increases. Figs. 7 and 8 depict the
variations of radial and hoop stresses with respect to r for the presence and absence of reinforcement; in these we observe
that the radial stress is zero at r = 1, which satisfies the boundary conditions of the problem, and the reinforcement has a
great effect on the distribution of stresses.

6. Conclusion

In this work we have investigated the generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic
plate containing a circular hole with Green and Naghdi (GN) theory. The problem has been solved numerically using a finite
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Fig. 8. Case (II): the variations of hoop stress.

element method (FEM). The differences of the field quantities predicted by the GN theory in the presence and absence of
reinforcement are remarkable. The reinforcement has a great effect on the distribution of field quantities. The results which
are obtained in this work may be used for designing various fiber-reinforced anisotropic thermoelastic elements under
mechanical or thermal load to meet special engineering requirements.
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Appendix

The coefficients that appeared in Eq. (21) are given by
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where τ̄ represents the component of the traction, and q̄ represents the heat flux.
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