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Lie-group method for unsteady flows in a semi-infinite expanding
or contracting pipe with injection or suction through a porous wall
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Abstract

The unsteady incompressible laminar flow in a semi-infinite porous circular pipe with injection or suction through the pipe
wall whose radius varies with time is considered. The present analysis simulates the flow field by the burning of inner surface
of cylindrical grain in a solid rocket motor, in which the burning surface regresses with time. We apply Lie-group method for
determining symmetry reductions of partial differential equations. Lie-group method starts out with a general infinitesimal group of
transformations under which given partial differential equations are invariant, then, the determining equations are derived [Ibragimov,
Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley, New York, 1999; Hydon, Symmetry Methods for
Differential Equations, Cambridge University Press, Cambridge, 2000; Olver, Applications of Lie Groups to Differential Equations,
Springer, New York, 1986; Seshadri, Na, Group invariance in engineering boundary value problems, Springer, New York, 1985; Yi,
Fengxiang, Lie symmetries of mechanical systems with unilateral holonomic constraints, Chinese Sci. Bull. 45 (2000) 1354–1358;
Moritz, Schwalm, Uherka, Finding Lie groups that reduce the order of discrete dynamical systems, J. Phys. A: Math. 31 (1998)
7379–7402; Nucci, Clarkson, The nonclassical method is more general than the direct method for symmetry reductions. An example
of the Fitzhugh–Nagumo equation, Phys. Lett. A 164 (1992) 49–56; Basarab, Lahno, Group classification of nonlinear partial
differential equations: a new approach to resolving the problem, Proceedings of Institute of Mathematics of NAS of Ukraine, vol.
43, 2002, pp. 86–92; Burde, Expanded Lie group transformations and similarity reductions of differential equations, Proceedings of
Institute of Mathematics of NAS of Ukraine, vol. 43, 2002, pp. 93–101; Gandarias, Bruzon, Classical and nonclassical symmetries
of a generalized Boussinesq equation, J. Nonlinear Math. Phys. 5 (1998) 8–12; Hill, Solution of Differential Equations by Means
of One-Parameter Groups, Pitman Publishing Co., 1982]. The determining equations are a set of linear differential equations, the
solution of which gives the transformation function or the infinitesimals of the dependent and independent variables. After the group
has been determined, a solution to the given partial differential equation may be found from the invariant surface condition such
that its solution leads to similarity variables that reduce the number of independent variables in the system. Effect of the cross-flow
Reynolds number Re and the dimensionless wall expansion ratio � on velocity, flow streamlines, axial and radial pressure drop, and
wall shear stress has been studied both analytically and numerically and the results are plotted.
© 2006 Elsevier B.V. All rights reserved.
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Nomenclature

A injection coefficient
a instantaneous wall radius, m
ȧ wall expansion rate, m/s
P̄ dimensional pressure, Pa
r̄ radius, m
Re cross-flow Reynolds number
t time, s
Ū velocity (ū, v̄), m/s
ū axial velocity, m/s
z̄ axial coordinate, m
� kinematic viscosity, m2/s
�̄ radial velocity, m/s
� density, kg/m3

� dimensionless stream function
� dimensionless vorticity
� dimensionless shear stress
� dimensionless wall expansion ratio
� viscosity, kg/m s

1. Introduction

Goto and Uchida [4] analyzed the flow within a circular pipe when an incompressible fluid flows in through the
wall surface while the radius of a semi-infinite circular pipe expands with time. They studied the case of expanding
pipe with injection through wall. An exact similar solution is obtained through numerical calculation. The flow field is
classified by the expansion ratio �, showing the expansion velocity of the pipe radius and the injection coefficient A,
showing the injection velocity at the wall surface position.

The velocity distribution, pressure distribution and wall surface shearing stress are determined with the expansion
ratio and injection coefficient as parameters through numerical calculation to clarify the influence of � and A on the
flow field.

Magdalani et al. [8] studied higher mean-flow approximation for solid rocket motors with radially regressing walls.
Rotational, incompressible, and viscous flow model that incorporates the effect of wall regression was used to describe
the bulk gas motion in a circular-port rocket motor. They follow Goto and Uchida’s approach [4] and write the stream
function in a form that is consistent with mass conservation, namely, a Proudman–Johnson form [12]. The procedure
involves a spatial transformation that presumes a linear varying axial velocity and a temporal transformation that is
granted by a time-invariant dimensionless regression. When these transformations are applied to both space and time,
the Navier–Stokes equations are reduced to a single, nonlinear, fourth-order differential equation. The resulting problem
is solved using variation of parameters and small-parameter perturbations. The effect of injection Reynolds number
Re and the dimensionless regression ratio � on the asymptotic solutions for the velocity, axial and normal pressure,
vorticity, and shear stresses are obtained.

This paper is concerned with the solution of the Navier–Stokes equations which described the unsteady incompress-
ible laminar flow in a semi-infinite porous circular pipe with injection or suction through the pipe wall whose radius
varies with time. Lie-group method is applied to the equations of motion for determining symmetry reductions of partial
differential equations. The resulting fourth-order nonlinear differential equation is then solved using small-parameter
perturbations [14,15], and the results are compared with numerical solutions using shooting method coupled with
Runge–Kutta scheme.
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Fig. 1. Flow pattern in an expanding pipe.

2. Mathematical formulation of the problem

A circular pipe of a semi-infinite length with one end closed is considered. It is assumed that the pipe wall is porous
and its radius varies with time. A coordinate system can be chosen based on axisymmetry as shown in Fig. 1.

The wall of the pipe moves only in the radial direction and expands at a speed equal to ȧ. The fluid is injected or
sucked uniformly through the moving wall surface at velocity vw(= − V ) at right angle to the wall surface and that is
proportional to the moving velocity at the wall surface. In our analysis, we shall take the azimuthal component of the
velocity to be zero and the kinematic viscosity is assumed to be constant.

The equations of continuity and of motion for an axisymmetric unsteady flow of incompressible fluid with no body
forces, are given as follows:

�(r̄ū)

�z̄
+ �(r̄ v̄)

�r̄
= 0, (2.1)

�ū

�t
+ ū

�ū

�z̄
+ v̄

�ū

�r̄
= − 1

�

�P̄

�z̄
+ �

[
�2ū

�z̄2 + 1

r̄

�

�r̄

(
r̄

�ū

�r̄

)]
, (2.2)

�v̄

�t
+ ū

�v̄

�z̄
+ v̄

�v̄

�r̄
= − 1

�

�P̄

�r̄
+ �

[
�2v̄

�z̄2 + �

�r̄

(
1

r̄

�(r̄ v̄)

�r̄

)]
, (2.3)

where the variables are given in the Nomenclature.
For time-dependent radius r̄ = a(t), the boundary conditions will be

(i) ū = 0, v̄ = v̄w = −V = −Aȧ at r̄ = a(t),

(ii)
�ū

�r̄
= 0, v̄ = 0 at r̄ = 0,

(iii) ū = 0 at z̄ = 0. (2.4)

In our analysis, we shall express the axial velocity, radial velocity and boundary conditions in terms of the stream
function �̄. We can eliminate the pressure from the equations of motion (2.2) and (2.3) by using P̄z̄r̄ from (2.3) after
differentiating it with respect to z̄ into (2.2) after differentiating it with respect to r̄ . Finally we can get both axial and
radial pressure drops in terms of the stream function.
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From the continuity equation (2.1), there exists a dimensional stream function �̄(z̄, r̄, t) such that

ū = 1

r̄

��̄

�r̄
, v̄ = −1

r̄

��̄

�z̄
, (2.5)

which satisfies Eq. (2.1) identically.
If we introduce the dimensionless radial position r = r̄/a(t), Eq. (2.5) becomes

ū = 1

a2r

��̄

�r
, v̄ = − 1

ar

��̄

�z̄
. (2.6)

Substituting (2.6) into (2.2) and (2.3) will lead to

a2r2�̄rt − aȧr3�̄rr − aȧr2�̄r + r�̄r�̄rz̄ − r�̄rr�̄z̄ + �̄z̄�̄r

= −a4r3

�
P̄z̄ + �[a2r2�̄rz̄z̄ + r2�̄rrr − r�̄rr + �̄r ] (2.7)

and

−a2r2�̄z̄t + aȧr3�̄z̄r − r�̄r�̄z̄z̄ + r�̄z̄�̄z̄r − (�̄z̄)
2 = −a3r3

�
P̄r + �[−a2r2�̄z̄z̄z̄ − r2�̄z̄rr + r�̄z̄r ], (2.8)

where subscripts denote partial derivatives.
The variables in Eqs. (2.7) and (2.8) are dimensionless according to

u = ū

V
, v = v̄

V
, z = z̄

a(t)
, t̄ = tV

a
, � = �̄

a2V
, P = P̄

�V 2 , � = aȧ

�
. (2.9)

Substituting (2.9) into (2.7) and (2.8) gives

r2�r t̄ + r�r�rz + �z[�r − r�rr ] + r3Pz

+ 1

Re
[(r − �r3)�rr − r2�rrr − r2�rzz − (1 + �r2)�r ] = 0 (2.10)

and

r2�zt̄ + r�r�zz + �z[�z − r�rz] − r3Pr + 1

Re
[(r − �r3)�rz − r2�zrr − r2�zzz] = 0, (2.11)

where Re ≡ aV /� is the cross-flow Reynolds number. Note that Re is positive for injection and negative for suction.
The wall permeance or injection coefficient A is defined as A = Re/�, it is a measure of wall permeability.
From (2.6) and (2.9), we can write

u = 1

r

��

�r
, v = −1

r

��

�z
. (2.12)

The boundary conditions (2.4) will be

(i) �r = 0, �z = 1 at r = 1,

(ii)

(
�r

r

)
r

= 0, �z = 0 at r = 0,

(iii) �r = 0 at z = 0. (2.13)

From a physical standpoint, our idealization is based on a decelerating expansion rate that follows a plausible model
according to which

aȧ = constant. (2.14)

So, the rate of expansion decreases as the internal radius increases.
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Since � = aȧ/�, then, integration of (2.14) yields

a

a0
=

√
1 + 2��t

a2
0

, (2.15)

where a0 is the initial value of the radius.

3. Solution of the problem

Firstly, we shall derive the similarity solutions using the Lie group method under which (2.10) and (2.11) are invariant.

3.1. Lie point symmetries

Consider the one-parameter (	) Lie group of infinitesimal transformations in (z, r, t̄ , �, P ) given by

z∗ = z + 	
(z, r, t̄ , �, P ) + O(	2),

r∗ = r + 	�(z, r, t̄ , �, P ) + O(	2),

t∗ = t̄ + 	F(z, r, t̄ , �, P ) + O(	2),

�∗ = � + 	�(z, r, t̄ , �, P ) + O(	2),

P ∗ = P + 	g(z, r, t̄ , �, P ) + O(	2), (3.1)

where “	” is a small parameter.
A system of partial differential equations (2.10) and (2.11) is said to admit a symmetry generated by the vector field

X ≡ 

�

�z
+ �

�

�r
+ F

�

�t̄
+ �

�

��
+ g

�

�P
, (3.2)

if it is left invariant by the transformation (z, r, t̄ , �, P ) → (z∗, r∗, t∗, �∗, P ∗).
Equivalently, we can obtain (z∗, r∗, t∗, �∗, P ∗) by solving

dz∗

d	
= 
(z∗, r∗, t∗, �∗, P ∗), dr∗

d	
= �(z∗, r∗, t∗, �∗, P ∗), dt∗

d	
= F(z∗, r∗, t∗, �∗, P ∗),

d�∗

d	
= �(z∗, r∗, t∗, �∗, P ∗), dP ∗

d	
= g(z∗, r∗, t∗, �∗, P ∗), (3.3)

subjected to the initial conditions

(z∗, r∗, t∗, �∗, P ∗)|	=0 ≡ (z, r, t̄ , �, P ). (3.4)

The solutions � = �(z, r, t̄) and P = P(z, r, t̄) are invariant under symmetry (3.2) if

� = X(� − �(z, r, t̄)) = 0 when � = �(z, r, t̄) (3.5)

and

P = X(P − P(z, r, t̄)) = 0 when P = P(z, r, t̄). (3.6)

These conditions can be expressed by using the characteristic of the group, which are

� = � − 

��

�z
− �

��

�r
− F

��

�t̄
− g

��

�P
(3.7)
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and

P = g − 

�P

�z
− �

�P

�r
− F

�P

�t̄
− �

�P

��
. (3.8)

From (3.5)–(3-6), the solutions � = �(z, r, t̄) and P = P(z, r, t̄) are invariant provided that

� = 0 when � = �(z, r, t̄) (3.9)

and

P = 0 when P = P(z, r, t̄). (3.10)

Thus, (3.7) and (3.8) can be rewritten as,



��

�z
+ �

��

�r
+ F

��

�t̄
+ g

��

�P
= �, (3.11)



�P

�z
+ �

�P

�r
+ F

�P

�t̄
+ �

�P

��
= g. (3.12)

Eqs. (3.11) and (3.12) are called the invariant surface conditions, which are quasilinear equations.
The subsidiary equations may be written as

dz


(z, r, t̄ , �, P )
= dr

�(z, r, t̄ , �, P )
= dt̄

F (z, r, t̄ , �, P )
= d�

�(z, r, t̄ , �, P )
= dP

g(z, r, t̄ , �, P )
. (3.13)

To calculate the prolongation of a given transformation, we need to differentiate (3.1) with respect to each of the
variables, z, r and t̄ . To do this, we introduce the following total derivatives:

Dz ≡ �z + �z�� + Pz�P + �zz��z
+ Pzz�Pz

+ �zr��r
+ · · · ,

Dr ≡ �r + �r�� + Pr�P + �rr��r
+ Prr�Pr

+ �zr��z
+ · · · ,

Dt̄ ≡ �t̄ + �t̄�� + Pt̄�P + �t̄ t̄��t̄
+ Pt̄t̄�Pt̄

+ �zt̄��z
+ · · · , (3.14)

A vector X given by (3.2) is said to be a Lie point symmetry vector field for (2.10) and (2.11) if

X[3](r2�r t̄ + r�r�rz + �z[�r − r�rr ] + r3Pz

+ 1

Re
[(r − �r3)�rr − r2�rrr − r2�rzz − (1 + �r2)�r ]) = 0 (3.15)

and

X[3](r2�zt̄ + r�r�zz + �z[�z − r�rz] − r3Pr + 1

Re
[(r − �r3)�rz − r2�zrr − r2�zzz]) = 0, (3.16)

where

X[3] ≡ 

�

�z
+�

�

�r
+F

�

�t̄
+�

�

��
+g

�

�P
+�z �

��z

+�r �

��r

+gz �

�Pz

+ gr �

�Pr

+ �rz �

��rz

+ �r t̄ �

��r t̄

+ �zt̄ �

��zt̄

+ �zz �

��zz

+ �rr �

��rr

+ �rzz �

��rzz

+ �zrr �

��zrr

+ �zzz �

��zzz

+ �rrr �

��rrr

(3.17)

is the third prolongation of X.
The components �z, �r , gz, gr , �rz, �r t̄ , �zt̄ , �zz, �rr , �rzz, �zrr , �zzz, �rrr can be determined from the following ex-

pressions:

�S = DS� − �zDS
 − �rDS� − �t̄DSF, gN = DNg − PzDN
 − PrDN� − Pt̄DNF ,

�JS = DS�J − �JzDS
 − �J rDS� − �J t̄DSF , (3.18)

where S, J stand for z, r, t̄ and N stands for z, r .
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Substituting (3.18) into (3.15), and using (2.10) and (2.11) to eliminate Pz and Pr , will lead to a large expression;
then, equating to zero the coefficients of �t̄ t̄ , �r�t̄ t̄ , �r t̄�t̄ t̄ , �zzzzz, �z�zzzzz, �r�zzzzz and �zrt̄ gives

Fr = F� = FP = �P = 
P = �P = Fz = 0. (3.19)

Substituting (3.19) into (3.15) will remove many terms. Then, equating to zero the coefficients of �r�zzz, (�rz)
2,

�r�t̄ and �t̄ gives


� = �� = ��� = �r� = 0. (3.20)

Substituting (3.20) into (3.15), from (3.19) and (3.20) into (3.16), leads to a system of determining equations
[1–3,5–7,9–11,13,16]. Solving the determining equations, we get


 = C1(t̄), � = 0, F = C2, � = r2

2
C′

1(t̄) + C3(t̄), g = (2�KC′
1(t̄) − C′′

1 (t̄))z + C4(t̄), (3.21)

where K = 1/Re.
The invariance of boundary conditions (2.13) yields

C1(t̄) = C1. (3.22)

Substituting (3.22) into (3.21) gives


 = C1, � = 0, F = C2, � = C3(t̄), g = C4(t̄). (3.23)

The system of nonlinear equations (2.10)–(2.11) has the four-parameter Lie group of point symmetries generated by

X1 ≡ �

�z
, X2 ≡ �

�t̄
, X3 ≡ C3(t̄)

�

��
, X4 ≡ C4(t̄)

�

�P
. (3.24)

The one-parameter group generated by X1 and X2 consists of translations, whereas the remaining symmetries X3 and
X4 are nontrivial.

The commutator table of the symmetries is given below, where the entry in the ith row and jth column is defined as
[Xi, Xj ] = XiXj − XjXi , see Table 1.

The finite transformations corresponding to the symmetries X1 to X4 are, respectively,

X1: z∗ = z + 	1, r∗ = r, t∗ = t̄ , �∗ = �, P ∗ = P ,

X2: z∗ = z, r∗ = r, t∗ = t̄ + 	2, �∗ = �, P ∗ = P ,

X3: z∗ = z, r∗ = r, t∗ = t̄ , �∗ = � + 	3C3(t̄), P ∗ = P ,

X4: z∗ = z, r∗ = r, t∗ = t̄ , �∗ = �, P ∗ = P + 	4C4(t̄), (3.25)

where 	1 to 	4 are group parameters.
For X3, the characteristic

 = (�, P ) (3.26)

has the components

� = C3(t̄), P = 0. (3.27)

Therefore, no solutions are invariant under the group generated by X3.
For X4, the characteristic (3.26) has the components

� = 0, P = C4(t̄). (3.28)

Therefore, no solutions are invariant under the group generated by X4.
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Table 1
Table of commutators of the basis operators

X1 X2 X3(C3) X4(C4)

X1 0 0 0 0
X2 0 0 X3(C′

3) X4(C′
4)

X3(C3) 0 −X3(C′
3) 0 0

X4(C4) 0 −X4(C′
4) 0 0

For X1, the characteristic (3.26) has the components

� = −�z, P = −Pz. (3.29)

Therefore, the general solutions of the invariant surface conditions (3.9) and (3.10) are

� ≡ �(r, t̄), P ≡ P(r, t̄). (3.30)

From (3.30) into (2.12), we get

u = u(r, t̄), v = 0. (3.31)

Eq. (3.31) is a solution of the continuity equation (2.1) and momentum equation (2.2), even though it is not a particularly
interesting one since it contradicts the boundary conditions.

For X2, the characteristic (3.26) has the components

� = −�t̄ , P = −Pt̄ . (3.32)

Therefore, the general solutions of the invariant surface conditions (3.9) and (3.10) are

� = h(r)H(z, r),

P = �(z, r). (3.33)

Substituting (3.33) into (2.10) yields

− r2K
d3h

dr3 +
[
−rhHz + Kr − �Kr3 − 3Kr2 Hr

H

]
d2h

dr2

+
[
hHz − rh

HzHr

H
+ 2K(r − �r3)

Hr

H
− 3Kr2 Hrr

H
− Kr2 Hzz

H
− K − �Kr2 + rhHrz

]
dh

dr

+ rHz

(
dh

dr

)2

+
[
K(r − �r3)

Hrr

H
− Kr2 Hrrr

H
− Kr2 Hrzz

H
− K(1 + �r2)

Hr

H

]
h

+
[
r

HrHrz

H
+ HrHz

H
− r

HzHrr

H

]
h2 + r3

H

��

�z
= 0, (3.34)

which can be rewritten as

− r2K
d3h

dr3 + [−rhK1 + Kr − �Kr3 − 3Kr2K2]d2h

dr2

+ [hK1 − rhK3 + 2K(r − �r3)K2 − 3Kr2K5 − Kr2K4 − K − �Kr2 + rhK8]dh

dr
+ rK1

(
dh

dr

)2

+ [K(r − �r3)K5 − Kr2K7 − Kr2K6 − K(1 + �r2)K2]h + [rK9 + K3 − rK10]h2 + r3

H

��

�z
= 0, (3.35)
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where

K1 = Hz, K2 = Hr

H
, K3 = HzHr

H
, K4 = Hzz

H
, K5 = Hrr

H
, K6 = Hrzz

H
, K7 = Hrrr

H
,

K8 = Hrz, K9 = HrHrz

H
, K10 = HzHrr

H
. (3.36)

Since h is a function of r only, whereas H and � are functions of z and r , thus from Eq. (3.35) we conclude that each
of Ki, i = 1, 2, . . . , 10, must be a constant or function of r only to obtain an expression in the single variable r .

Solution of Hz = K1 in (3.36) gives

H(z, r) = zK1(r) + K11(r). (3.37)

Substituting (3.37) into (3.33) will give

� = (zK1(r) + K11(r))h(r). (3.38)

Differentiation of (3.38) with respect to r, and using (2.13)(iii), yields

K11(r)h(r) = K12, (3.39)

where K12 is constant.
Substituting (3.39) into (3.38) gives

� = zG(r) + K12, (3.40)

where

G(r) = K1(r)h(r). (3.41)

Substitution from the second equation of (3.33) and (3.40) into (2.10) yields

r3 ��

�z
= z

[
r2K

d3G

dr3 + (rG − (r − �r3)K)
d2G

dr2 + ((1 + �r2)K − G)
dG

dr
− r

(
dG

dr

)2
]

. (3.42)

Substituting (3.37) and (3.42) into the last term of (3.35) yields

K11 = 0. (3.43)

Substituting (3.43) into (3.37), we get

H(z, r) = zK1(r), (3.44)

which satisfies the remaining Kj , j = 2, . . . , 10.
Substituting (3.43) into (3.39), then into (3.40), we get

� = zG(r). (3.45)

Using (3.45) in (2.12), we get

u = z

r

dG

dr
, v = −G

r
. (3.46)

Substituting (3.45) into (2.11) and then differentiating with respect to z yields

Prz = 0. (3.47)

Using (3.45) into (2.10), then differentiating with respect to r and using (3.47), we get

K

[
r2 d4G

dr4 + (�r3 − 2r)
d3G

dr3 + (�r2 + 3)
d2G

dr2 −
(

�r + 3

r

)
dG

dr

]
− r

dG

dr

d2G

dr2 +
(

dG

dr

)2

− 3G
d2G

dr2 + 3

r
G

dG

dr
+ rG

d3G

dr3 = 0. (3.48)
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For simplification, let

� ≡ r2

2
. (3.49)

Eq. (3.48) will take the form

K

[
2�

d4G

d�4 + (2�� + 4)
d3G

d�3 + 4�
d2G

d�2

]
+ G

d3G

d�3 − dG

d�

d2G

d�2 = 0. (3.50)

The boundary conditions (2.13) will be

(i)
dG(1/2)

d�
= 0, (ii) G( 1

2 ) = 1, (iii) G(0) = 0, (iv) Lim
�→0

√
2�

d2G

d�2 = 0. (3.51)

3.2. Analytical solution

The fourth-order, nonlinear differential equation (3.50) with the boundary conditions (3.51) is solved using small-
parameter perturbations [14,15].

First, assume

G = G1 + KG2 + O(K2). (3.52)

Substituting (3.52) into (3.50), the leading order term will be

G1
d3G1

d�3 − dG1

d�

d2G1

d�2 = 0, (3.53)

with the boundary conditions

(i)
dG1(1/2)

d�
= 0, (ii) G1(

1
2 ) = 1, (iii) G1(0) = 0, (iv) Lim

�→0

√
2�

d2G1

d�2 = 0. (3.54)

Solution of (3.53) with the boundary conditions (3.54) gives

G1 = sin �, (3.55)

where

� = ��. (3.56)

The first-order term will be

2 �
d4G1

d�4 + (2�� + 4)
d3G1

d�3 + 4�
d2G1

d�2 + G1
d3G2

d�3 + G2
d3G1

d�3 − dG1

d�

d2G2

d�2 − dG2

d�

d2G1

d�2 = 0, (3.57)

with the boundary conditions

(i)
dG2(

1
2 )

d�
= 0, (ii) G2(

1
2 ) = 0, (iii) G2(0) = 0, (iv) Lim

�→0

√
2�

d2G2

d�2 = 0. (3.58)

Substituting (3.55) and (3.56) into (3.57) and (3.58), we get

sin �
d3G2

d�3 − cos �
d2G2

d�2 + sin �
dG2

d�
− cos �G2 =

(
2

�
�� + 4

)
cos � + 4

�
� sin � − 2� sin �, (3.59)

with the boundary conditions

(i)
dG2(�/2)

d�
= 0, (ii) G2(�/2) = 0, (iii) G2(0) = 0, (iv) Lim

�→0

√
�

d2G2

d�2 = 0. (3.60)
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We guess a solution for the homogenous part of Eq. (3.59) in the form

G2h = cos �. (3.61)

Following [8], we use the variation of parameters approach to find the correction multiplier based on

G2h = C(�) cos �. (3.62)

Substituting (3.62) into the homogenous part of (3.59) yields

C(�) = D1 tan � + D2� + D3. (3.63)

Using (3.63) into (3.62), we get

G2h = D1 sin � + D2� cos � + D3 cos �. (3.64)

Using the method of variation of parameters, we assume

G2 = D1(�) sin � + D2(�)� cos � + D3(�) cos �. (3.65)

D1(�), D2(�) and D3(�) can be determined from

⎛
⎜⎝

sin � � cos � cos �

cos � cos � − � sin � − sin �

− sin � −2 sin � − � cos � − cos �

⎞
⎟⎠

⎛
⎜⎝

D′
1

D′
2

D′
3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0

0(
2

�
�� + 4

)
cot � + 4

�
� − 2�

⎞
⎟⎟⎟⎠ . (3.66)

Then, solving system (3.66) and integrating with respect to �, we get

D1(�) = �

�
[cos � − � sin � + 3 ln tan(�/2) − � cosec�] − sin � − 2 cosec � − � cos � − I1 + b1,

D2(�) = �

�
[� cosec � − 3 ln tan(�/2)] + 2cosec� + I1 + b2,

D3(�) = �

�
[−�2cosec � − � cos � − sin � + 3I1] + � sin � − 2� cosec � − cos � − I2 + b3, (3.67)

where

I1 =
∫ �

0
� cosec � d�, I2 =

∫ �

0
�2cosec � d� and b1, b2 and b3 are constants.

Substituting (3.67) into (3.65), we get

G2 =
⎡
⎢⎣

�

�
[3 ln tan(�/2)(sin � − � cos �) − 2�] − 3 + (� cos � − sin �)I1

+
(

3�

�
I1 − I2

)
cos � + b1 sin � + b2� cos � + b3 cos �

⎤
⎥⎦ . (3.68)

Using (3.68) and (3.55) into (3.52) yields

G = sin � + K

⎡
⎢⎣

�

�
[3 ln tan(�/2)(sin � − � cos �) − 2�] − 3 + (� cos � − sin �)I1

+
(

3�

�
I1 − I2

)
cos � + b1 sin � + b2� cos � + b3 cos �

⎤
⎥⎦ , (3.69)

with boundary conditions

(i)
dG(�/2)

d�
= 0, (ii) G(�/2) = 1, (iii) G(0) = 0, (iv) Lim

�→0

√
�

d2G

d�2 = 0. (3.70)
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Using (3.70) into (3.69), we get

b1 = � + 3 + I1(�/2), (3.71)

b2 = − 6

�
+

[
2�

�2 − 1

]
−

[
1 + 6�

�2

]
I1(�/2) + 2

�
I2(�/2), (3.72)

b3 = 3. (3.73)

The integrals I1 and I2 can be written in series form as

I1(�)�� + �3

18
−

[
1

5! + 1

(3!)2

]
�5

5
+

[
1

7! + 2

(3!)(5!) + 1

(3!)3

]
�7

7

−
[

1

9! + 1

(5!)2 + 2

(3!)(7!) + 3

(3!)25! + 1

(3!)4

]
�9

9
+ · · · , (3.74)

I2(�)�
�2

2
+ �4

24
−

[
1

5! + 1

(3!)2

]
�6

6
+

[
1

7! + 2

(3!)(5!) + 1

(3!)3

]
�8

8

−
[

1

9! + 1

(5!)2 + 2

(3!)(7!) + 3

(3!)25! + 1

(3!)4

]
�10

10
+ · · · . (3.75)

4. The velocity fields

In terms of �, Eq. (3.46) can be written as

u = zG�, v = − G√
2�

. (4.1)

4.1. Axial velocity

4.1.1. The effect of the wall expansion ratio �
Fig. 2 illustrates the behaviour of self-similar axial velocity u/z for cross-flow Reynolds numbers Re=100, Re=500

and Re = 1000, respectively, over a range of wall expansion ratio �. An initial glance indicates the greater sensitivity to
wall expansion at Re = 100, see Fig. 2a. In case of expanding wall (� > 0), the greater the �, that is, the expansion ratio
of the wall is, the higher will be the axial velocity near the centre, and the lower near the wall. That is because the flow
toward the centre becomes greater to make up for the space caused by the expansion of the wall and as a result the axial
velocity also becomes greater near the centre. In case of contracting wall (� < 0), increasing contraction ratio leads to
lower axial velocity near the centre, and the higher near the wall because the flow toward the wall becomes greater
and as a result the axial velocity near the wall becomes greater. The effect of suction on the self-similar axial velocity
u/z over a range of wall expansion ratio � is illustrated in Fig. 3. The greater sensitivity to wall expansion appears at
Re = −100, see Fig. 3a. In case of contracting wall, the greater the contraction ratio, that is, the higher the contraction
velocity of the pipe wall, the higher the axial velocity will be near the centre, and the lower near the wall. In case of
expanding wall, the greater the expansion ratio, that is, the higher the expanding velocity of the pipe wall, the lower
the axial velocity will be near the centre, and the higher near the wall. Comparing analytical and numerical solutions,
the results are found to be in very well agreement. As seen in Figs. 2 and 3, the largest error seems to occur near the
centre. The injection solution with Re = 100 becomes less accurate with higher values of |�|, especially with positive
values of � (i.e., � = 50). On the other hand, the suction solution with Re = −100 becomes more accurate with lower
positive values of �, also with higher negative values of �, see Table 2. The magnified portions of the graphs indicate that
the analytical and numerical solutions become indistinguishable in both cases, injection (Re = 500, Re = 1000) and
suction (Re = −500, Re = −1000) each combined with contracting wall, while a small error appears with expanding
wall, see Figs. 2b, c, 3b, c.
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Fig. 2. Self-similar axial velocity profiles shown over a range of � at (a) Re = 100, (b) Re = 500 and (c) Re = 1000.

4.1.2. The effect of the cross-flow Reynolds number Re

Fig. 4 illustrates the behaviour of self-similar axial velocity u/z for wall expansion ratios � = 20 and � = 50,
respectively, over a range of cross-flow Reynolds number Re. In case of injection, the percentage increase in self-
similar axial velocity u/z at the centreline, as � varies from 20 to 50, at Re = 100 is very high compared with the
percentage increase in case of Re = 1000. So, for smaller values of Re, the wall expansion is more sensitive than that
for higher values of Re, which is due to the diminished role of viscosity at a higher Reynolds number, see Table 3.
Similar conclusion can be made in case of suction, see Table 4. Also, the self-similar axial velocity near the centre
increases as Re decreases in case of injection and it decreases as |Re| decreases in case of suction. In case of contracting
wall combined with both injection and suction, the behaviour of self-similar axial velocity u/z is illustrated in Fig. 5.
The self-similar axial velocity u/z near the centre increases as Re increases in case of injection and it decreases as
|Re| increases in case of suction. The error between analytical and numerical solutions becomes noticeable in case of
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Fig. 3. Self-similar axial velocity profiles shown over a range of � at (a) Re = −100, (b) Re = −500 and (c) Re = −1000.

Table 2
Comparison between analytical and numerical solutions for self-similar axial velocity u/z at � = 0.15

u/z at � = 0.15 Re = 100 Percentage error (%) Re = −100 Percentage error (%)

Analytical Numerical Analytical Numerical

� = 50 3.005369 2.901740 3.44813 2.592990 2.624850 1.22869
� = 20 2.877895 2.838464 1.37013 2.720464 2.750422 1.10121
� = 0.0 2.792913 2.796448 0.12657 2.805446 2.762831 1.51901
� = −5.0 2.771667 2.781716 0.36256 2.826692 2.791586 1.24195
� = −10 2.750422 2.765097 0.53355 2.847937 2.814923 1.15923
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Fig. 4. Self-similar axial velocity profiles shown over a range of Re at (a) � = 20 and (b) � = 50.

Table 3
Comparison between the values of u/z at centreline in case of injection for different Re (analytical solution)

Re = 100 Re = 1000

� = 20 � = 50 � = 20 � = 50

u/z 3.463053 3.907648 3.173737 3.218197

Table 4
Comparison between the values of u/z at centreline in case of suction for different Re (analytical solution)

Re = −100 Re = −1000

� = 20 � = 50 � = 20 � = 50

u/z 2.816462 2.375538 3.109079 3.064987

Re = 100 and −100, especially with expanding wall, while analytical and numerical solutions in case of Re = 1000
and −1000 become indistinguishable in both cases, expanding and contracting wall, see Figs. 4 and 5.

4.2. Radial velocity

4.2.1. The effect of the wall expansion ratio �
Fig. 6 illustrates the behaviour of radial velocity v at different values of wall expansion ratio � for a fixed cross-flow

Reynolds numbers Re=100, 500 and 1000, respectively. The greater sensitivity to wall expansion appears at Re=100,
see Fig. 6a. In case of expanding wall, the radial velocity (absolute value) increases as � increases, while, in case of
contracting wall, the radial velocity (absolute value) increases as |�| decreases. The effect of suction on the radial
velocity v over a range of expansion ratio � is illustrated in Fig. 7. An initial glance indicates the greater sensitivity to
wall expansion at Re=−50, see Fig. 7a. The higher the contraction velocity is, the greater the radial velocity (absolute
value) will be. Hence, the radial velocity (absolute value) increases as � decreases. An interesting phenomenon is also



480 Y.Z. Boutros et al. / Journal of Computational and Applied Mathematics 197 (2006) 465–494

Fig. 5. Self-similar axial velocity profiles shown over a range of Re at (a) � = −5.0 and (b) � = −10.

observed in both cases of injection and suction, which is the existence of a point along the interval 0 < � < 0.5, such that
the radial velocity exceeds its (absolute) value at the wall. After this point, the radial velocity decreases until it reaches
its value at the wall (v = −1) at � = 0.5. That is because the cylindrical flow area normal to the incoming streams is
proportional to the radius, and the sudden reduction in it in the vicinity of the wall forces the radial velocity to increase
(in absolute value) to keep satisfying mass conservation. Tables 5 and 6 indicate these points and the corresponding
radial velocity overshoots relative to the wall.

As seen, the smallest overshoots (absolute value) with the closest distance to the wall in case of injection appears
when wall expansion ratio is small enough (in case of expanding wall) or high enough (in case of contracting wall), see
Table 5. While, in case of suction, the smallest overshoots (absolute value) with the closest distance to the wall appears
when wall expansion ratio is high enough (in case of expanding wall) or low enough (in case of contracting wall), see
Table 6. The error between analytical and numerical solutions becomes noticeable in case of Re = 100 with expanding
wall (� = 50), except this case, the results are found to be in excellent agreement, see Figs. 6 and 7.

4.2.2. The effect of the cross-flow Reynolds number Re

Fig. 8 illustrates the behaviour of radial velocity v at different values of cross-flow Reynolds number for fixed wall
expansion �=20 and −10, respectively. In case of expanding wall combined with injection, the radial velocity increases
(absolute value) with decreasing Re and it increases (absolute value) with increasing |Re| in case of expanding wall
combined with suction, see Fig. 8(a).Also, the radial velocity (absolute value) decreases with decreasing Re (contracting
wall combined with injection) and it increases (absolute value) with decreasing |Re| (contracting wall combined with
suction), see Fig. 8b. Table 7 illustrates the comparison between the analytical and numerical solutions for radial
velocity v at different values of cross-flow Reynolds number Re for dimensionless wall expansion ratio � = 20 and
�=−10 at �=0.15. In both cases, expanding wall with �=20 and contracting wall with �=−10, the percentage error
increases with decreasing Re (case of injection), while it decreases with increasing |Re|(case of suction), see Table 7.

The points that lie in the interval 0 < � < 0.5, such that the radial velocity exceeds its value at the wall, are indicated
in Table 8.

In case of expanding wall, the smallest overshoots (absolute value) with the closest distance to the wall appears
when the cross-flow Reynolds number is high enough (in case of injection) or low enough (in case of suction), while,
in case of contracting wall, the smallest overshoots (absolute value) with the closest distance to the wall appears when
the cross-flow Reynolds number is low enough (in case of injection) or high enough (in case of suction), see Table 8.
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Fig. 6. Radial velocity profiles shown over a range of � at (a) Re = 100, (b) Re = 500 and (c) Re = 1000.

4.3. Flow streamlines

4.3.1. The effect of the wall expansion ratio �
Fig. 9 illustrates the streamlines at several discrete points along the length of the wall at different values of wall

expansion ratio � for fixed cross-flow Reynolds numbers Re = −50 and 100, respectively. The suction pushes the
streamlines away from the core closer to the wall, see Fig. 9a, while injection tends to push them closer to the core,
see Fig. 9b. Differences in streamline curvatures and, hence, the flow turning speed become more appreciable in the
downstream portions in both cases. A more gradual flow turning occurs when the walls are in the expansion mode
in case of injection and in contraction mode in case of suction. As seen in Fig. 9, the fluid enters the wall almost
perpendicular.
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Fig. 7. Radial velocity profiles shown over a range of � at (a) Re = −50, (b) Re = −100 and (c) Re = −1000.

Table 5
Radial velocity overshoots relative to the wall in case of injection for different � (analytical solution)

Re = 100 Re = 500 Re = 1000

r v r v r v

� = 50 0.78740 −1.125738 0.84853 −1.075596 0.84853 −1.070972
� = 20 0.82462 −1.084838 0.86023 −1.07006 0.86023 −1.068464
� = 0.0 0.86023 −1.066390 0.86023 −1.066753 0.86023 −1.066810
� = −5 0.87178 −1.062324 0.86023 −1.065926 0.86023 −1.066397
� = −10 0.87178 −1.058715 0.86023 −1.065099 0.86023 −1.065984
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Table 6
Radial velocity overshoots relative to the wall in case of suction for different � (analytical solution)

Re = −50 Re = −100 Re = −1000

r v r v r v

� = 50 0.93808 −1.027383 0.91652 −1.039776 0.87178 −1.062978
� = 20 0.90554 −1.044215 0.88318 −1.053519 0.86023 −1.065272
� = 0.0 0.86023 −1.068020 0.86023 −1.067444 0.86023 −1.066926
� = −5 0.84853 −1.076798 0.86023 −1.071578 0.86023 −1.067339
� = −10 0.83666 −1.086915 0.84853 −1.076252 0.86023 −1.067752

Fig. 8. Radial velocity profiles shown over a range of Re at (a) � = 20 and (b) � = −10.

Table 7
Comparison between analytical and numerical solutions for radial velocity v at � = 0.15

v at � = 0.15 � = 20 Percentage error (%) � = −10 Percentage error (%)

Analytical Numerical Analytical Numerical

Re = 1000 −0.834817 −0.833714 0.13212 −0.826263 −0.826609 0.04188
Re = 100 −0.888348 −0.874576 1.55029 −0.802806 −0.808874 0.75585
Re = −50 −0.709912 −0.701209 1.22593 −0.880996 −0.857874 2.62453
Re = −100 −0.769391 −0.764779 0.59944 −0.854933 −0.843372 1.35227
Re = −1000 −0.822922 −0.826419 0.42495 −0.831476 −0.829360 0.25449

4.3.2. The effect of the cross-flow Reynolds number Re
The effect of cross-flow Reynolds number on the streamlines for wall expansion ratios �=20 and −10, respectively,

is illustrated in Fig. 10. As the Reynolds number decreases, the effect of viscosity is more significant in the downstream
sections of the tube and as a result, the flow turning speed is increased, leading to a sharper streamline curvature near
the wall. As concluded in Section 4.3.1, a more gradual flow turning occurs in case of expanding wall combined with
injection, see Fig. 10a and in case of contracting wall combined with suction, see Fig. 10b.
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Table 8
Radial velocity overshoots relative to the wall for different Re (analytical solution)

� = 20 � = −10

r v r v

Re = 1000 0.86023 −1.068464 0.86023 −1.065984
Re = 100 0.82462 −1.084838 0.87178 −1.058715
Re = −50 0.90554 −1.044215 0.83666 −1.086915
Re = −100 0.88318 −1.053519 0.84853 −1.076252
Re = −1000 0.86023 −1.065272 0.86023 −1.067752
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Fig. 9. Flow streamlines for � = 0 ——, � = 50 (· · · · · · · · ·) and � = −10 (− · · − ··) at (a) Re = −50 and (b) Re = 100.

5. Vorticity, stress and pressure fields

5.1. Vorticity

For rotational flow, the curl of the velocity is non-zero which is the measure of vorticity. It is defined mathematically as

�̄ = |∇ × Ū | = �v̄

�z̄
− �ū

�r̄
. (5.1)

Introducing dimensionless vorticity as � = �̄a/V , Eq. (5.1) can be written as

� = �v

�z
− �u

�r
. (5.2)
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Fig. 10. Flow streamlines for Re = 1000 (—), Re = 100 (· · · · · ·) and Re = −100 (− · · − ··) at (a) � = 20 and (b) � = −10.

Substituting (4.1) into (5.2) yields

� = −�u

�r
= −z

√
2�

d2G

d�2 . (5.3)

5.2. Shear stress distribution

The shear stress can be determined from Newton’s law for viscosity

�̄ = �

[
�v̄

�z̄
+ �ū

�r̄

]
= −��̄. (5.4)

Introducing the dimensionless shear stress � = �̄/(�V 2), Eq. (5.4) becomes

� = −K�. (5.5)

We can get the stress at the wall by substituting in Eq. (5.3) r = 1, i.e., � = 1
2 , thus, Eq. (5.5) will take the form

�w = Kz
d2G(1/2)

d�2 . (5.6)

5.2.1. The effect of the wall expansion ratio �
Fig. 11 illustrates the behaviour of wall shear stress �w at different values of wall expansion ratio �, for fixed cross-

flow Reynolds numbers Re = 100, 500 and 1000, respectively, along the wall surface. The shear stress along the wall
surface increases in proportion to z. A first look shows that the greater sensitivity to wall expansion at Re = 100, see
Fig. 11a. In case of expanding wall, the wall shear stress (absolute value) increases as � decreases, while it increases
(absolute value) as |�| increases in case of contracting wall. That is because, as shown in Fig. 2, the greater the � is (case
of expanding wall), the smaller the axial velocity near the wall surface, and the velocity gradient at the wall surface will
be small, while the greater the |�| is (in case of contracting wall), the higher the axial velocity near the wall surface,
and the velocity gradient at the wall surface will be high. The effect of suction on the wall shear stress for different
values of wall expansion is illustrated in Fig. 12. The greater sensitivity to wall expansion appears at Re = −50, see
Fig. 12a. The wall shear stress increases as � increases in case of expanding wall and it decreases as |�| increases in
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Fig. 11. Wall shear stress profiles shown over a range of � at (a) Re = 100, (b) Re = 500 and (c) Re = 1000.

case of contracting wall. This is as mentioned above. In cases, injection and suction, the wall shear stress decreases
as |Re| increases, see Figs. 11 and 12. This is due to the diminished role of viscosity at a higher Reynolds number.
Comparing analytical and numerical solutions, the error in case of contracting wall combined with either suction or
injection is very small compared with that of expanding wall combined with either suction or injection.

5.2.2. The effect of cross-flow Reynolds number Re
The effect of cross-flow Reynolds number Re on the wall shear stress �w, along the wall surface, for a fixed expansion

ratios � = 20 and −10, respectively, is illustrated in Fig. 13. In both cases, expanding and contracting walls, the wall
shear stress (absolute value) decreases as Re increases (case of injection). Also it increases as |Re| decreases (case of
suction). This is due to the diminished role of viscosity at a higher Reynolds number. The analytical and numerical
solutions become indistinguishable in both cases, expanding and contracting wall, combined with high |Re|. Also, a
small error appears in both cases when combined with small |Re|, see Fig. 13.
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Fig. 12. Wall shear stress profiles shown over a range of � at (a) Re = −50, (b) Re = −100 and (c) Re = −1000.

5.3. Radial pressure distribution

To determine the radial pressure drop, substitute from (3.45) into (2.11) and use (3.49),

P� = −
[
KG� + K�G + 1

�

(
G

2

)2
]

�

. (5.7)

The radial pressure distribution can be determined by integrating (5.7) with the boundary conditions (3.51) and letting
Pc be the centreline pressure, we get

∫ P(�)

Pc

dP = −
∫ �

0

[
KG� + K�G + 1

�

(
G

2

)2
]

d�. (5.8)
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Fig. 13. Wall shear stress profiles shown over a range of Re at (a) � = 20 and (b) � = −10.

Fig. 14. Radial pressure distribution profiles shown over a range of � at (a) Re = 100 and (b) Re = 1000.

The resulting radial pressure drop will be

�Pr ≡ P(�) − Pc = KG�(0) −
[
KG� + K�G + 1

�

(
G

2

)2
]

. (5.9)

5.3.1. The effect of the wall expansion ratio �
Fig. 14 illustrates the behaviour of the radial pressure drop �Pr at different values of wall expansion ratio � for fixed

cross-flow Reynolds numbers Re = 100 and 1000, respectively. This behaviour is similar to the behaviour of the radial
velocity (see Fig. 6). As seen, the whole central portion is higher than on the wall surface in pressure and the higher
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Fig. 15. Radial pressure distribution profiles shown over a range of � at (a) Re = −100 and (b) Re = −1000.

Table 9
Radial pressure drop overshoots relative to the wall in case of injection for different � (analytical solution)

Re = 100 Re = 1000

r �Pr r �Pr

� = 50 0.83666 −1.062377 0.86023 −0.6175179
� = 20 0.84853 −0.7486982 0.86023 −0.5872490
� = 0 0.84853 −0.5496595 0.86023 −0.5671443
� = −5 0.84853 −0.5006549 0.86023 −0.5621278
� = −10 0.84853 −0.4521734 0.86023 −0.5571153

Table 10
Radial pressure drop overshoots relative to the wall in case of suction for different � (analytical solution)

Re = −100 Re = −1000

r �Pr r �Pr

� = 50 0.82462 −0.0956602 0.86023 −0.5208311
� = 20 0.87178 −0.3856838 0.86023 −0.5509211
� = 0 0.87178 −0.5888647 0.86023 −0.5710558
� = −5 0.87178 −0.6404785 0.86023 −0.5760981
� = −10 0.87178 −0.6924208 0.86023 −0.5811445

the expansion ratio is (case of expanding wall), the higher the radial pressure drop (absolute value). Also, the higher
the |�| (case of contracting wall), the lower the radial pressure drop (absolute value). The effect of suction on the radial
pressure drop at different values of � is illustrated in Fig. 15. The higher the expansion ratio is (case of expanding wall),
the lower the radial pressure drop (absolute value). Also, the higher the |�| (case of contracting wall), the higher the
radial pressure drop (absolute value). As concluded in Section 4.2.1, there exists a point along the interval 0 < � < 0.5,
such that the radial pressure drop overshoots relative to its value at the wall. Tables 9 and 10 indicate these points and
the corresponding radial pressure drop overshoots relative to the wall.
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Table 11
Comparison between analytical and numerical solutions for radial pressure drop at � = 0.15

�Pr at Re = 100 Percentage error (%) Re = −100 Percentage error (%)

� = 0.15 Analytical Numerical Analytical Numerical

� = 50 −0.73192 −0.70886 3.15062 −0.04437 −0.04298 3.13275
� = 20 −0.48601 −0.47238 2.80447 −0.21266 −0.21042 1.05332
� = 0.0 −0.34175 −0.34217 0.12290 −0.34453 −0.33707 2.16527
� = −5 −0.30814 −0.31079 0.86000 −0.37996 −0.37211 2.06601
� = −10 −0.27552 −0.27994 1.60424 −0.41638 −0.40575 2.55296

Fig. 16. Radial pressure distribution profiles shown over a range of Re at (a) � = 20 and (b) � = −10.

In case of injection, the smallest overshoots (absolute value) with the closest distance to the wall appear when wall
expansion ratio is small enough (in case of expanding wall) or high enough (in case of contracting wall), see
Table 9, while in case of suction, the smallest overshoots (absolute value) with the closest distance to the wall ap-
pear when wall expansion ratio is high enough (in case of expanding wall) or low enough (in case of contracting wall),
see Table 10. Table 11 illustrates the comparison between the analytical and numerical solutions of the radial pressure
drop at different values of wall expansion ratio for cross-flow Reynolds number Re = 100 and −100. In both cases,
injection with Re = 100 and suction with Re =−100, the percentage error increases as |�| increases, especially, in case
of expanding wall with � = 50, see Table 11.

5.3.2. The effect of the cross-flow Reynolds number Re
The effect of the cross-flow Reynolds number Re on the radial pressure drop �Pr for fixed wall expansion ratios

is illustrated in Fig. 16. By comparison to Figs. 14 and 15, similar conclusions can be deduced. In case of expanding
wall combined with injection, the radial pressure drop decreases (absolute value) with increasing Re and it increases
(absolute value) with increasing |Re| in case of expanding wall combined with suction, see Fig. 16a. In case of
contracting wall combined with injection, the radial pressure drop increases (absolute value) with increasing Re and it
decreases (absolute value) with increasing |Re| in case of contracting wall combined with suction, see Fig. 16b.

The analytical and numerical solutions become indistinguishable in cases, expanding and contracting wall, combined
with high |Re|. A small error appears in both cases when combined with small |Re|, see Fig. 16.
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Table 12
Radial pressure overshoots relative to the wall for different Re (analytical solution)

� = 20 � = −10

r �Pr r �Pr

Re = 1000 0.86023 −0.5872490 0.86023 −0.5571153
Re = 100 0.84853 −0.7486982 0.84853 −0.4521734
Re = −100 0.87178 −0.3856838 0.87178 −0.6924208
Re = −1000 0.86023 −0.5509211 0.86023 −0.5811445

Fig. 17. Axial pressure distribution profiles shown over a range of � at (a) Re = 500 and (b) Re = 1000.

The points that lie in the interval 0 < � < 0.5, such that the radial pressure drop exceeds its value at the wall, are
indicated in Table 12.

5.4. Axial pressure distribution

Substituting (3.45) into (2.10) and using (3.49), we get

Pz = z

[
K

(
2�

d3G

d�3 + (2�� + 2)
d2G

d�2 + 2�
dG

d�

)
+ G

d2G

d�2 −
(

dG

d�

)2
]

. (5.10)

The resulting axial pressure will be

�Pa = 1

2
z2

[
K

(
2�

d3G

d�3 + (2�� + 2)
d2G

d�2 + 2�
dG

d�

)
+ G

d2G

d�2 −
(

dG

d�

)2
]

. (5.11)

5.4.1. The effect of the wall expansion ratio �
Fig. 17 illustrates the behaviour of axial pressure drop �Pa at different values of wall expansion ratio � for fixed

cross-flow Reynolds numbers Re = 500 and 1000, respectively. It takes a parabolic form along the axis of the pipe.
The axial pressure drop increases (absolute value) as � increases in case of expanding wall and it decreases as |�|
increases in case of contracting wall. The effect of suction on the axial pressure distribution at different values of wall
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Fig. 18. Axial pressure distribution profiles shown over a range of � at (a)Re = −100 and (b) Re = −1000.

expansion ratio is shown in Fig. 18. The greater sensitivity to wall expansion appears at Re = −100, see Fig. 18a. The
axial pressure drop �Pa increases as � decreases in case of expanding wall and it increases as |�| increases in case of
contracting wall. Comparing analytical and numerical solutions as seen in magnified portions of Fig. 17, one notes that,
a small error appears in case of expanding wall combined with injection with Re = 500, see Fig. 17a. The analytical
and numerical solutions become indistinguishable in case of injection with Re = 1000, combined with both expanding
and contracting wall, see Fig. 17b. A small error appears in case of suction with Re = −100 combined with expanding
wall, see Fig. 18a.

5.4.2. The effect of the cross-flow Reynolds number Re

The effect of the cross-flow Reynolds number Re on the axial pressure drop �Pa for fixed wall expansion ratios is
illustrated in Fig. 19. By comparison to Figs. 17 and 18, similar conclusions can be deduced. In case of expanding wall
combined with injection, the axial pressure drop increases (absolute value) with decreasing Re and it increases (absolute
value) with increasing |Re| in case of expanding wall combined with suction, see Fig. 19a. In case of contracting wall
combined with injection, the axial pressure drop increases (absolute value) with increasing Re and it increases (absolute
value) with decreasing |Re| in case of contracting wall combined with suction, see Fig. 19b. Comparing analytical and
numerical solutions as seen in magnified portions of Fig. 19, one notes that a small error appears in case of contracting
wall combined with suction, see Fig. 19b. Also a small error appears in case of expanding wall combined with suction,
see Fig. 19a.

6. Conclusions

Lie-group method is applicable to both linear and non-linear partial differential equations, which leads to similarity
variables that may be used to reduce the number of independent variables in partial differential equations. By determining
the transformation group under which a given partial differential equation is invariant, we can obtain information about
the invariants and symmetries of that equation. This information can be used to determine the similarity variables that
will reduce the number of independent variables in the system. In this work, we have used Lie symmetry techniques to
obtain similarity reductions of nonlinear equations of motion (2.1)–(2.3) which describe the unsteady incompressible
laminar flow in a semi-infinite porous circular pipe with injection or suction through the pipe wall. This analysis
simulates the flow field by the burning of inner surface of cylindrical grain in a circular-port rocket motor.
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Fig. 19. Axial pressure distribution profiles shown over a range of Re at (a) � = 20 and (b) � = −10.

By determining the transformation group under which a given partial differential equation is invariant, we obtained
information about the invariants and symmetries of that equation. This information, in turn, was used to determine
similarity variables that reduced the number of independent variables. With constant wall expansion ratio, we get a
fourth-order ordinary differential equation (3.50) with boundary condition (3.51), which has been solved using small-
parameter perturbations and the results are compared with numerical solutions using shooting method coupled with
Runge–Kutta scheme. We have studied and plotted the effects of cross-flow Reynolds number and wall expansion ratio
on velocity, flow streamlines, axial and radial pressure, and wall shear stress. We found that the numerical solution is
in a good agreement with the analytical solution.
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