
INFORMATION AND CONTROL 64, 100--118 (1985)

Algorithms for Approximate String Matching*
ESKO UKKONEN

Department of Computer Science, University of Helsinki,
Tukholmankatu 2, SF-00250 Helsinki, Finland

The edit distance between strings a~ ... a m and bl "'" b, is the minimum cost s of a
sequence of editing steps (insertions, deletions, changes) that convert one string into
the other. A well-known tabulating method computes s as well as the corresponding
editing sequence in time and in space O(mn) (in space O(min(m, n)) if the editing
sequence is not required). Starting from this method, we develop an improved
algorithm that works in time and in space O(s. min(m, n)). Another improvement
with time O(s.min(m, n)) and space O(s-min(s, m, n)) is given for the special case
where all editing steps have the same cost independently of the characters involved.
If the editing sequence that gives cost s is not required, our algorithms can be
implemented in space O(min(s, m, n)). Since s = O(max(m, n)), the new methods
are always asymptotically as good as the original tabulating method. As a by-
product, algorithms are obtained that, given a threshold value t, test in time
O(t 'min(m,n)) and in space O(min(t ,m,n)) whether s<<.t. Finally, different
generalized edit distances are analyzed and conditions are given under which our
algorithms can be used in conjunction with extended edit operation sets, including,
for example, transposition of adjacent characters. © 1985 Academic Press, Inc.

1. INTRODUCTION

To define the edit distance between two strings, let A = a l ' " a m be any
string over an a lphabet X and let the possible editing operations on A be:

(i) deleting a symbol from any posit ion, say i, to give

a 1 . . . a i l a i + l " " a m ;

(ii) inserting a symbol b ~ £" at posi t ion i to give al "'" aibai+ 1 "'" am;

(iii) changing a symbol at posit ion i to a new symbol b ~ S to give

al "'" a i - l ba i+ l " "" am.

Each editing step can be unders tood as an appl icat ion of a rewrit ing rule
a ~ b where a and b, a :~ b, are in S or at most one of a and b is the empty
string e. Rules with b = e define deletions, rules with a = e define insertions
and rules with nonempty a and b define changes. Clearly, with these editing
operat ions it is possible to convert , s tep-by-step, any string A into another
string B.

* This paper is a revised and expanded version of a paper presented at the International
Conference on "Foundations of Computation Theory" held in Borgholm, Sweden, August
21-27, 1983.

100
0019-9958/85 $3.00
Copyright © 1985 by Academic Press, Inc.
All rights of reproduction in any form reserved.

APPROXIMATE STRING MATCHING 101

Each editing operation a--* b has a non-negative cost 6(a ~ b). Given
strings A = a l . " a m and B = b l " b n , we want to determine a sequence of
editing operations which convert A into B so that the sum of individual
costs of editing operations in the sequence is minimized. The minimum cost
is denoted by D(A, B) and called, as by Wagner and Fischer (1974), the
edit distance from A to B; Sellers (1974) uses the term evolutionary distance
while the idea was formulated already by Levenshtein (1966). The problem
of computing D(A, B) is also known as the string-to-string correction
problem. Being able to compute the edit distance as well as the
corresponding sequence of editing steps has applications in various string
matching problems arising in areas such as information retrieval, pattern
recognition, error correction, and molecular genetics.

Computing D(A, B) becomes considerably simpler as soon as we may
assume that there is always an editing sequence with cost D(A, B) con-
verting A into B such that if an element is deleted, inserted or changed, it is
not modified again. This means that all editing operations could be applied
on A in one parallel step yielding B; cf. the "traces" of Wagner and Fischer
(1974).

As noted by Wagner and Fischer, this requirement is easily satisfied: It
suffices that the cost function 8 fulfills the triangle inequality, i.e.,

6(a ~ c) <~ 6(a -, b) + 6(b --, c) (1)

for all a, b, c such that a ~ c, a--+ b, and b ~ c are editing operations. We
also assume that

6 (a ~ b) > O (2)

for all operations a ~ b. This is a natural requirement (since a d-b) which is
essential for our results. When (1) is true, distance D(A, B) can be deter-
mined with a well-known tabulation method as follows: For all 0 ~ i~< m
and O<<,j<~n, denote by d,j the edit distance D(al . . .a i , b l . . .b i) from
string al.. .a~ to string b l . . . b j. Then the (m+ 1)x (n+ 1) matrix (d•) can
be computed from the recurrence

doo = 0
(3)

d~j = min(d~_ ~.j_ 1 -}- IF a i = bj THEN 0 ELSE 6(a i ~ bj),

d i - 1,j -}- (~(a i --* e),

di .s_l+6(e~bj)) , i > 0 o r j > 0 .

Clearly, matrix (do.) can be evaluated starting from doo and proceeding
row-by-row or column-by-column (and assuming that all undefined values
d~i referred to in the minimization step have default value oo). This takes

102 ESKO UKKONEN

time and space O(mn). Finally, dmn equals D(A, B). Moreover, the
sequence of editing steps that give D(A, B) can be recovered from the
matrix (du) using the standard technique applied in dynamic programming
in which one follows some "minimizing path" backwards from dmn to d0o
and records at each stage, which of the alternatives gives the minimum. So,
if we have found that d U is on a minimizing path and, for example,
d o. = dr_ 1,~ + 6(ai ~ e) then dt ~,j is the next entry on the path and "delete
at" is the editing operation.

This method (hereafter called the basic algorithm) with different
variations has been invented and analyzed several times in various con-
texts, see, e.g., Lowrance and Wagner (1975), Needleman and Wunsch
(1970), Sankoff (1972), Sellers (1974, 1980), Vintsyuk (1968), Wagner and
Fisher (1974). Note that for computing dmn without the editing sequence it
suffices in the basic algorithm to save only one row or column of (d~) from
which the next row or column can be generated. Hence only O(min(m, n))
space is needed.

It turns out that the basic algorithm often evaluates unnecessary values
d~ and stores them inefficiently. These observations are presented in more
detail in Section 2 where we also give the resulting improved algorithm for
computing D(A, B). Compared to the O(mn) algorithm, the new method
has the interesting feature that its efficiency does not depend only on m and
n but also on the value of edit distance D(A, B) to be computed. The
smaller is D(A, B), the faster is the algorithm. In Section 3 we modify the
basic algorithm for the important special case where the cost function 6 is
constant. An application to the problem of computing the longest common
subsequence is also considered. Section 4 presents some generalizations
where we allow additional editing operations such as transpositions.

2. IMPROVED ALGORITHM

Let us assume henceforth that the cost function 6 satisfies (1) and (2)
which means that recurrence (3) correctly defines matrix (d•). We now
examine the relation between different entries d U more carefully.

Graphically, the dependencies between entries d~ can be illustrated by
drawing a directed arc from di7, to d U if and only if the minimization step in
(3) gives d~ from dcj,. The resulting graph is called the dependency graph.
An example matrix (dg) for strings A = yxxzy and B = xyxzyz is shown in
Fig. 1. The arcs of the dependency graph on paths from doo to d56 are also
represented.

Cost function 8 used in the example is given by 6(a ~ b)= 2 whenever
a = e or b = e, and 6(a ~ b) = 3 in the remaining cases where a va b. From
(3) it follows that vertical arcs correspond to deletions, horizontal arcs

APPROXIMATE STRING MATCHING

B

x y x z y z

A

0--*2 4 6

y 2 3 2 4

x 4 2 ~ 4 2

x 6 4 5 4

z 8 6 7 6

y 10 8 6 8

8 10 12

6 8 10

4 6 8

5 7 9
\

4 6 7

6 4 ~ 6

FIG. 1. Matrix (du) with the dependency graph.

103

correspond to insertions, and diagonal arcs correspond to changes or
matches. Moreover, if we label each arc with the cost 5(a ~ b) of the
associated editing operation (we let 6(a --, b) = 0 if a = b), the value d~: is
the sum of labels on any path from doo to do. Hence we have

LEMMA 1. I f the dependency graph contains a directed path from d~/ to
di,:, then di, :, = d~ + d, where d denotes the sum of labels' on the path.

The dependency graph can be understood as a subgraph of a larger
graph of the form shown in Fig. 2, The graph has nodes (do) and directed
arcs such that an arc comes to d:: from d~ 1,:, from d~_ ~,j_ 1 and from
di, j_ 1, and the costs associated with the arcs are 6(ag--* e), 6(ag ~ bj), and
6(e ~ bj), respectively. It is not difficult to see that the value of dmn is the
minimum total cost on the paths leading from d00 to dm,. So the problem
of computing the edit distance could be solved, say, with Dijkstra's
algorithm for the single source shortest path problem which in this special
case can be made to run in time O(mnlog(mn)). However, the regular

FIG. 2. Potential dependencies.

643/64/1-3-8

104 ESKO UKKONEN

topology of the above graph allows simpler and more efficient solutions
such as the basic O(mn) method.

Returning to the dependency graph, it should be clear that only those
entries d o that are on some path from doo to d,~n are relevant for the value
of dm,. In fact, were some such path known a priori, we could compute din,
by evaluating the entries on the path starting from d0o and assuming that
all the entries not on the path have default value oe. Also note that dm,, =
O(max(m, n)) since any path from doo to dmn contains at most m + n arcs.

Consider now the problem of testing whether or not D(A, B) is at most t
where t ~> 0 is a given threshold value. This can be solved, of course, by
evaluating (d~) with the basic algorithm and then testing whether dm, ~ t.
On the other hand, from Lemma 1 we know that the values d 0 are
monotonically increasing along any path in the dependency graph.
Therefore, if dmn actually is ~< t and if some d o. gets a value larger than t,
then d,7 cannot belong to any path leading to din,. Moreover, all entries
that will not get a value > t, must be in a diagonal band of (do) which is
the narrower the smaller is t.

To make this precise, denote by A the minimum cost of all deletions and
insertions, that is,

A = min(c~(a ~ b) [a ¢ b and (a = e or b = e)

and, by (2), A > 0. To refer to the diagonals of (do) we number them with
integers - m , - m + 1,..., 0, 1 n such that the diagonal denoted by k con-
sists of those de for which j - i = k.

LEMMA 2. I f the dependency graph contains a directed path f rom d o. to
drj, then drj, >~ d~j + Ij' - i' - (j - i)l " A.

Proof Since d 0 is on diagonal k = j - i and diT, on diagonal k' = j ' - i',
any path from d 0 to di7. contains at least J k ' - k [deletions (i.e., vertical
arcs) if k ' - k ~ O and at least I k ' - k [insertions (i.e., horizontal arcs) if
k ' - k/> 0. Lemma 2 now follows from Lemma 1. I

Lemma 2 implies d i j) [j - i [.A for every d o on a path from doo to dmn,
and so, by Lemma 1, I J - i[~ do/A <~ dmn/A. Hence to compute dm, it suf-
fices to consider elements d o in the diagonal band given by
-dmn/A < ~ j - i <~ dm,/A. However, an even smaller diagonal band can be
taken:

COROLLARY l. If d~j is on some path leading f rom doo to dmn in the
dependency graph then - p <~ j - i <<, n - m + p i f m <~ n, and n - m - p <~
j - i < , p i f m > n , where p = L ½ (d m n / J - I n -m iL l .

APPROXIMATE STRING MATCHING 105

Proof A path from do0 to d,nn consists of subpaths leading from d0o to
d U and from d,j to dmn. Hence; from Lemma 2,

dmn>~doo + [j - i [" A + [n - m - (j - i) [" A
(4)

= ([j - i [+ t n - m - (j - i) l) ' A .

The rest of the proof is by a straightforward case analysis. For example,
suppose that n ~>m and j~< i. Then from (4) we get
d m ~ > ~ [- (j - i) + n - m - (j - i)] . A , that is, d m ~ / A - (n - m) > ~ - 2 (j - i) .
This means, because j - i ~ < 0 is an integer and n~>m, that
- h ½ (d m , / A -] n - m]) J < ~ j - i < ~ O , which is as required. The remaining
cases are left to the reader. |

From Corollary 1 it follows that in testing whether D(A, B)<~ t, the
evaluation of (d~/) can be limited to the diagonal band which is, i fp der~otes
t½(t/A - [n - m])_], between diagonals - p and n - m + p when m ~< n, and
between diagonals n - m - p and p when m > n. Figure 3 clarifies the num-
bering of the diagonals as well as shows the diagonal band for m ~< n.

So we obtain the following algorithm which assumes that all entries d o
initially have value ~ :

P R OC EDURE testl(t):
IF t/A < I n - m[T H E N reject
ELSE

p := h½((t/A) - [n - m[)J;
FOR i : = 0 UPTO m DO

IF n ~> m T H E N
FOR j := max(0, i - p) U P T O min(n, i + (n - m) + p) DO

evaluate dij from (3) E N D F O R
ELSE

F O R j :=max(0, i+ (n - m) - p) U P TO min(n, i + p) DO
evaluate di; from (3) ENDFO R

ENDIF;
ENDFOR;

ENDIF;
IF dmn <~ t T H E N accept ELSE reject ENDIF.

Algorithm testj evaluates (in the nontrivial case t/A >>. I n - m]) a band of
(d•) that consists of 1 + I n - m l +2p diagonals. Since each diagonal con-
tains at most rain(m, n) entries and since 1 + In - m] + 2p ~< 1 + t/A = O(t),
procedure test1 evaluates O(t. rain(m, n)) entries. Its time requirement is
therefore O(t .min(m, n)). Also the space requirement can be made to
O(t .min(m, n)) by storing only the entries in the band.

One immediately realizes, however, that to compute the next row of the

1 0 6 E S K 0 U K K O N E N

band, only the previous row is needed. Each row contains
1 + [n - m [+ 2p = O(t) elements, hence the space complexity reduces in this
way to O(t). We get the following algorithm test2 where array elements
ro, rl rln_ml+2 p are used to successively store the rows of the diagonal
band and r 1 and rln_ml +2p+1 are sentinels. Initially, r i= oo for all i. Also
assume 6(X--* Y)= ~ whenever Y= bh where h < 0 or h > n:

P R OC EDURE teStz(t):
IF t/A < hn- m[T H E N reject
ELSE

p := L½(t/A)- I n - m[)_J;
k ' : = k : = I F n / > m T H E N - p E L S E - p + (n - m) ;
FOR i : = 0 U P T O m DO

F O R j : = 0 U P T O [n - m [+ 2 p D O
rj : = I F i = j + k = O T H E N 0

ELSE min(rj + IF ai = bj+k TH EN 0 ELSE ~(ai--* b/+k),
r j + I + 6(ai ~ e),
rj 1 + 6(e ~ bj+k))

ENDFOR;
k : = k + l ;

ENFOR;
ENDIF;
IF rl. m] +2p+k ' ~ t T H E N accept ELSE reject ENDIF.

Instead of proceeding row-by-row in procedure test2, an analogous
columnwise evaluation of the diagonal band should be used when the
columns are shorter than the rows, that is, when m < n. This makes the
space requirement to O(min(t, m, n)).

Procedure test2 can further be improved by adding two pointers, Pl and
P2, that point to the first and to the last value rg which is ~<t; initially
Pl = 1 and P2 = In - m] + 2p + 1. Then it suffices that j gets values starting
from max(0, P l - 1) , and when the interval represented by Pl and P2
vanishes, the algorithm can be terminated with reject!on of t. This

do0

xx\ " ~ , , x n _ m

ON, ~'\%

dmn

FIG. 3. D i a g o n a l s - p , 0, n - m, a n d n - m + p w h e n m ~< n.

APPROXIMATE STRING MATCHING 107

modification does not improve the worst case complexity but is useful in
practice because the diagonal band reserved for the test can be too broad.

Summarizing, we have proved

THEOREM 1. There is an algorithm which, given strings a 1 " " a m and
b l " " b n and a number t, tests in time O (t .m in (m ,n)) and in space
O(min(t, m, n)) whether or not D(al "'" am, bj "" bn) <~ t. 1

It is also possible to determine the value of D (a l " ' a m , b~ ' "bn) with
algorithm test1 or with algorithm test2: When testl(t) or test2(t) accepts t,
we know that the value dmn = D(a~"" am, bl"'" bn) has been correctly com-
puted. Hence test1 or test2 must be called successively with increasing
values t, until t is accepted. Then dmn gives the edit distance
D(al . . . am, b 1 ...bn). For example, the following simple algorithm com-
putes D(al"'" am, b~ "'" bn) in this way to s:

1. t : = (] n - m] + l) . A ;

2. WHILE testz(t) rejects DO t := 2t ENDWHILE; (5)

3. s := r ln ml+Zp+k, whererln ml+Zp+k, is as in test2.

To analyze the time complexity of (5), let to= (I n - m l + 1)" A, t~ = 2 t 0,
t2 = 22to,..., tr = 2rlO be the values of t used as the parameters of test 2 on
line 2. Noting our analysis of test2, algorithm (5) needs time
O((52r=0 t i) 'min(m, n)), that is, time O(tr.min(m, n)). Since s > tr/2, we
get that the time complexity is, in fact, O(s.min(m, n)). The space
requirement is dominated by the space for test2, hence it is
O(min(tr, m, n)), that is, O(min(s, m, n)).

If the editing operation sequence that gives D(al " " a m, b 1 " "bn) is
needed, algorithm (5) must be modified such that testl is used instead of
test2. The time requirement remains O(s .min(m,n)) , but the space
requirement increases to O(s. min(m, n)) since test1 stores all entries in the
diagonal band of (do) . From the stored values the editing steps can be
recovered as explained in Section 1. So we have obtained

THEOREM 2. The edit distance s = D (a ~ ' . . a m , b~ ' "bn) as well as the
corresponding sequence of editing steps can be computed in time and space
O(s. min(m, n)). I f the editing sequence is not needed, the space requirement
can be reduced to O(min(s, m, n)). 1

3. SPECIAL CASES

In this section we assume that each editing operation has the same cost,
independently of the symbols involved. Without loss of generality, the con-

1 TO get correct upper bounds also when t = 0 or s = 0, one would prefer writing t + 1 and
s + 1 instead of t and s in all O-expressions of this paper.

108 ESKO UKKONEN

stant cost 6(a ~ b) can be scaled to be = 1. Then 6 satisfies condi t ion (1)
and (2), and therefore the edit distance can again be computed f rom (3)
which gets the form

doo = 0
(6)

d,~ = min(d i_ 1,j-- 1 -}- IF a i = bj T H E N 0 ELSE 1,

di 1,j + 1,

d i j _ l + 1), i > 0 or j > 0 .

N o w edit distance D(al""am, b1""bn) simply means the m i n i m u m num-
ber of editing steps that t ransform al""am into bl""b~.

It turns out that matr ix (do) can in this case be stored in a smaller space
than for a general 6. This is because the values dis on the same diagonal
form a non-decreasing sequence which increases in unit steps:

LEMMA 3. Let the cost of every editing operation be equal to 1. Then for
every du, d o=di 1,j 1 or d o .=di 1,j-l + l.

Proof Since d o is always an integer, it suffices to show that d 0 - 1 <~

di_ 1j- 1 <~ do.
The minimizat ion step in (6) directly implies that d o cannot be larger

t h a n d i _ l j _ l + l , i . e . , d o - l ~ < d i 1,s 1.
As regards the second inequality, it is trivially true for doo. We proceed

by induct ion on i + j. Assume first that the minimizing pa th to d o comes
f rom d i_ 1.s- 1. Then (6) implies that dij = d i_ ~,s- 1 or d o = d i_ 1 j - ~ + 1.
Hence d o ~> di_ 1,s-1, as required. Assume then that the minimizing pa th to
d o comes f rom di_ 1,j; the symmetr ic case where the pa th comes f rom d~,j
is similar. Then again by (6), d o = d ~ _ l j + l . By induct ion hypothesis
di 1,j) di 2,S- 1" Hence d o) d i_ 2,j 1 + 1. Since d~ 1,j 1 ~ di 2,j 1 "t- 1 by
(6), this implies that d 0/> d~ 1,j 1, as required. |

L e m m a 3 suggests an al ternative way of storing matr ix (dis): For each
diagonal of (do), it suffices to store informat ion which tells the points on
the diagonal where the value increases. Formal ly , denote

fkp = the largest index i

such that dij = p and d 0 is on diagonal k. Since all values on diagonal k are
~> [kl, values fkp are defined for p = Ikl, Ikl + 1 p where Pmax is the
largest value on diagonal k. In addition, it is convenient to define

fk.lkl 1 = [k [- - 1 , if k < 0 ;

= - 1, otherwise,

APPROXIMATE STRING MATCHING 109

FIG, 4.

x y x z y

0 1 2 3 4 5

1 1 1 2 3 4

2 1 2 1 2 3

3 2 2 2 2 3

4 3 3 3 2 3

Matrix (do) for strings yxxz and xyxzy.

and f,p = -oo for the remaining fkp possibly referred to in algorithms to be
presented.

An example matrix (d~/) for strings yxxz and xyxzy is shown in Fig. 4.
Since diagonal 1 of this matrix has values 1, 1, 1, 2, 3, we have that
L _ I = - o o , f j 0 = -1 , L~ = 2, f l 2 = 3, f ~ =4.

Recovering each value d u from (fkp) is simple: Find p such that
fk, p _ l < i ~ f k p , where k = j - i . Then du= p. In particular, din,=
D(at. . . am, b~ "b,) equals the unique p so that

fn_m,p=m. (7)

Clearly, storing matrix (du) as (fkp) does not increase space requirement.
Rather, considerable saving is sometimes possible. For example, if the
diagonal band evaluated by algorithm test1 of Section 2 is represented with
fkp's, the storage needed reduces to O(t.s), where s = D(al '"am, bl""bn).
This further implies that the version of algorithm (5) which computes also
the editing sequence can be made to work in space O(s2). More important
is, however, that by adopting representation (fkp) the edit distance can be
computed in time O(s. rain(m, n)) with a direct algorithm which avoids the
reduction in (5) to tests D (a l ' " a m, b l ' " b,,)<, t. This decreases the con-
stant factor in the time bound.

To develop this algorithm we need first an algorithm for computing (fkp)
directly without using du's as intermediate results. Assume that p/> Ik[and
that for all k', fk,,p 1 has been correctly computed. Then the following
algorithm (8) computes fkp:

1. t :=max(fk , p l + l , f k _ t , p _ l , f k + t , p 1 + 1) ;

2. WHILE a t + l = b , + l + k DO t : = t + l ENDWHILE; (8)

3. fkp : = I F t > m or t + k > n THEN undefined ELSE t.

To prove (8) correct, note that by the induction hypothesis, the block of

110 ESKO UKKONEN

entries with value p - 1 reaches in matrix (du) row f~,p_ 1 on diagonal k,
row f k - l ,p 1 on diagonal k - 1 , and row f~+l,p 1 on diagonal k + 1.
Denote by t' the value of t after step 1, that is, t' =max(fk, p 1+ 1,
f ~ - l , p - l , f k + l , p 1+ 1), and by t" the correct value of fk p. We show that
t' ~< t" and that

ac+l=bc+l+k,. . . ,a, , ,=br,+k, at, ,+l~br,+k+l. (9)

This will show (8) correct since these conditions imply that the value of t
equals t" after step 2.

Assume, for example, that t '=fk+l,p 1-}-1. Hence dr_i, r l+(k+1/=
p- -1 . Since t'>>.fk, p _ l + l and t'>~f, l,p 1, we havedc 1,r l+k>~P - 1
and dt, c+~k_l)>~p--1, and also dc,c+k>~p. Then by (6), dc.c+k=p, and
by Lemma 3, t'~< t", as required. To prove (9), notice first that from the
definition of t" it follows d,,r + k = P for r = t', t", and de, + 1.c, + 1 + k = P + 1
(or t " + l > m or t " + l + k > n) . Since t '=max(fk , p 1+1, fk-~,p-~,
fk+l,p ~+ 1), the elements above and to the left of dr, r+ k must be ~>p for
r = t ' + l t " + l , that is, dr_l,r+k>~p and d l+k~>p. Then, by (6),
dr,,+ k can be equal to p only if ar=br+k, for r= t' + l,..., t", and
d,.+Lc,+l+k can be equal to p + 1 only if a,.+lff:br,+l+k. So (9) is true
and the proof is complete.

To compute edit distance s = D(a~ "" a,,,, b~ "" b,), we must find p such
that (7) is true. This can be done with the next algorithm which calls
algorithm (8) to compute (fkp), column by column:

1. p := - 1 ;

2. WHILE f ,_m,p ~ m DO

3. p : = p + l ;

4. F O R k : = - p , - p + l p D O (10)

evaluate f~p with algorithm (8) ENDFOR;

ENDWHILE;

5. s :=p.

Although (10) correctly computes s, it asks algorithm (8) to evaluate many
entries fkp whose value is actually undefined, because the range of values
assigned for k in step 4 is too large. There are diagonals - m , - m + 1,..., n
in matrix (do.). Hence k can be restricted to - m ~<k~< n. Moreover, each
diagonal contains at most min(m, n) + 1 entries. This means, noting how
fkp is defined, that for a fixed k, fgp may have a nontrivial value only for
p = Ikl, Ikl + 1 Ikl + min(m, n). Therefore it suffices that for a fixed p, k
gets values such that [k I=p-min(m,n) , , p . Hence k must in s tep4
satisfy the conditions

- m ~ k ~ n

APPROXIMATE STRING MATCHING

and

(-p<~k<~ - p + min(m, n) or p - m i n (m , n)<~k<~p).

This can further be simplified such that we arrive at algorithm (11):

1. p : = --1;

2. r :=p- -min(m, n);

3. WHILE f n -- m,p ~ m DO

4. p : = p + l ;

5. r : = r + l ;

6. IF r ~< 0 THEN FOR k := -p , - p + 1,..., p DO
evaluate f~p with algorithm (8) ENDFOR

ELSE FOR k : = m a x (- m , -p),..., - r , r,..., rain(n, p) DO
evaluate fkp with algorithm (8) ENDFOR

ENDIF;
ENDWHILE;

7. s :=p .

111

(11)

To analyze the time requirement of algorithm (t l), let again
s= D(al "" am, bl "'" b,7). The values assigned for k in step 6 are in the
range - s s and each value can occur for at most min(m, n) + 1 different
values p, or actually, for at most min(s, m, n) + 1 different values p since
0 ~ p ~ s in step 6. Hence (11) evaluates O(s" min(s, m, n)) entries f~p and
therefore runs in time O(s.min(s, m, n)) without counting the time needed
by the calls of algorithm (8) in step 6. The running time of (8) is dominated
by the time of the while-loop in step 2. Obviously, test a~+~ =b,+~+k is
performed for a fixed k at most once for each t. Therefore, for a fixed k
again, the total time for step 2 during different calls of (8) is O(min(m, n)).
There are O(s) different values k, hence the total time for the calls of
algorithm (8) in algorithm (11)is O(s.min(m, n)). So (11) runs in total
time O(s. min(m, n)).

As regards space, the above analysis shows that algorithm (11) evaluates
O(s. min(s, m, n)) different entries fkp. Hence O(s.min(s, m, n)) space suf-
fices.

The editing operation sequence giving the edit distance s can be found
from the stored values fkp using a procedure that is analogous to the
method used with the basic algorithm. In light of algorithm (8), one must
now find a maximizing path leading to fn For example, the following
procedure computes the editing operation sequence in time O(s).

112 ESK0 UKKONEN

1. p : = s ;

2. k : = n - m ;

3. WHILE p > 0 DO

4. t := max(fk, p_ l + l, f k_ l,p_ l, fk + l,p_ l + l);

5. Let i, 1 ~< i ~< 3, be such that the/ th of expressions
fk, p-1 + 1, f k - l , p -1 , fk+l,p 1 + 1 has the largest value;

6. IF i = 1 THEN
announce edit operation "change a, to bt+ k"

7. ELSIF i = 2 THEN (12)
announce edit operation "insert bt+g between at and a,+ 1";
k : = k - 1

8. ELSE
announce edit operation "delete aT;
k : = k + l

ENDIF;

9. p : - - - p - l ;
ENDWHILE.

If the editing sequence is not needed, step 1 of algorithm (8) reveals that
only values fk .p- i for all k are needed to evaluate values fkp. Since Ikl ~< s,.
the space requirement of (11) reduces to O(s). This further reduces to
O(min(s, m, n)) since--as already noted--the same value p - 1 can appear
on at most 2. min(m, n) + 1 different diagonals of (do), which means that
values fk, p-1 are nontrivial and need to be stored for at most
2"min(m, n) + 1 different k. So we have completed a proof of the next
theorem.

THEOREM 3. Let the cost of each editing operation be equal to 1. Then
the edit distance s=D(a l ""am, b~'"bn) as well as the corresponding
sequence of editing steps can be computed in time O(s'min(m, n)) and in
space O(s. rain(s, m, n)). I f the editing sequence is not needed, the space
requirement can be reduced to O(min(s, m, n)).

The only explicit difference between Theorem 3 and Theorem 2 is the
smaller space bound O(s 'min(s ,m,n)) of Theorem3. It should be
emphasized, however, that algorithm (11) is simpler than algorithm (5).
Hence the constant factors in Theorem 3 are smaller than in Theoren5 2.

Also worth noting is that in the best case the running time of (11) can be
significantly smaller than O(s'min(m, n)). This is in contrast with the basic
algorithm of Section 1 which always needs time O(mn), and with algorithm
(5) which always needs time O(s.min(m, n)). At its best, algorithm (11)
needs time O(s 2 + min(m, n)). For example, the time requirement is of this

A P P R O X I M A T E S T R I N G M A T C H I N G 113

form for strings (xry)" and (xrz)" whose edit distance is s. Algorithm (11)
computes s in time O(s2+ sr).

Consider then the problem of testing for a given threshold value t,
whether the edit distance of two strings is at most t. Clearly, this can be
accomplished with a slightly modified algorithm (11): If p grows larger
than t, announce that the edit distance is larger than t. Otherwise it is at
most t. The method needs time O(t. min(m, n)) and space O(min(t, m, n)).

Observe that Lemma 3 and hence Theorem 3 (and also Theorem2)
remain true if we reduce the editing operation set. For example, if insertion
and deletion are the only operations, the correspondingly modified
algorithm is as (11) but in the maximization step of algorithm (8) it suffices
now to take the maximum of the second expression and the third
expression.

When the cost of each individual editing step equals 1, computing the
edit distance has an important application to finding the longest common
subsequence (LCS) of two strings, as noted by Wagner and Fischer (1974).
In fact, let s' be the edit distance of al "'" am and b 1 " " b n when the allowed
editing operations include only deletion and insertion. Then the length of
the LCS for these strings is r = (m+n-s ') /2 . As already explained, a
modified algorithm (11) computes s' from which we get r. The actual LCS
can be found by performing on a ~ ' " a m all deletions in the editing
sequence that gives s'. For strings of approximately equal lengths, this
method of computing the LCS seems as efficient as the recent method by
Nakatsu, Kambayashi, and Yajima (1982). For example, in the case m = n
their algorithm takes time O(m" (m-r)) . This equals the time bound
O(s'. m) of the modified algorithm (11), since s' = 2m - 2r.

Finally we consider possible generalizations of Lemma 3. One might sus-
pect that Lemma 3 could be generalized to say that for all cost functions 6
satisfying (1) and (2), the value of d~j monotonically increases on every
diagonal of (du). That this is not the case, can be seen by the following
example. Let the costs for the editing operations be

6(x, y) = 6 (y , x) = 1

b(o, x) = 6(x, o) = 3

b(O, y)=6(y , O)= 2.

Then for strings A = B = xy, we obtain the matrix in Fig. 5, where the
values on diagonals - 1 and 1 are not monotonically increasing.

Assume, however, that the cost function 6 satisfies (1) and (2), and that
all deletions have the same cost and all insertions have the same cost. Thus
for some constants cl and c 2 and for all a#e , 6(a-+e)=c I and
6(e ~ a) = c2. Then it is easy to modify the proof of Lemma 3 to show that

114 ESKO UKKONEN

x y

0 3 5

x 3 0 2

y 5 2 0

FIG. 5. M a t r i x (do.) for s t r ings A = B = xy.

di- a j - 1 ~< do for all i, j. Hence the value of d 0 increases along the diagonals
of (do), but the increments are not necessarily equal to 1. Representation
(fkp) cannot be used directly for (dij). However, denote by G(r) the rth dif-
ferent value (in increasing order) occurring on diagonal k and by fk(r) the
largest row index i such that d~,i+k = G(r). With these structures one can
encode (du) in algorithm (5). This complicates the procedure but improves
the space efficiency in some cases.

4. EXTENSIONS

The problem of computing the edit distance can be extended in several
directions. For example, editing operation sets that are larger than the set
considered so far may be relevant in some applications. To generally
analyze such extensions, we say that anedi l ing operation set is any finite set
E c N * x N * of ordered pairs (x , y) , usually written as x - * y , over
alphabet N such that x ¢ y. Element x--* y in E represents an editing
operation that replaces an occurrence of x in a string in S* by y. The
editing operation set of Section 1 can be represented as

Eo= {x--* y lx , y E S u {e}, x C y } .

A cost function f gives the cost 3(x ~ y) > 0 for each editing operation. We
want again to determine a sequence of editing operations in E that convert
a string A = a~ ... a,~ into a string B = b~--. bn so that the sum of individual
costs of editing operations is minimized. The minimum cost is denoted by
DE,~(A, B). Hence our previous notation D(A, B) is an abbreviation for
DE0,~(A, B). If it is not possible to transform A into B with the operations
in E, we set DE.~(A, B) = 0o.

For an arbitrary E, recurrence (3) defining matrix (d/j) gets the form

doo = 0 (13)

dg= min(IF a i = bj T H E N di_ 1,j- 1 ELSE oo,

d,_~,_r+,~(a~ k+l"'a~bj ,+l"'bjl
ai_ k + 1"'" ai -* bj_~ + 1 is in E).

APPROXIMATE STRING MATCHING 115

However, dmn computed from (13) is not equal to De,~(A, B) for all E and
6. As mentioned in Section 1, a sufficient condition for equality is that no
two steps are chained together in some sequence of editing steps giving
D E,6(A , B).

To make this precise we define restricted editing sequences from A to B
by specifying the active part for each intermediate string derived. At the
beginning the whole A is active. Suppose then that we have arrived at an
intermediate string uv with active part v. Let x ~ y in E be an editing
operation such that x occurs in the active part, that is, v can be written as
VlXV2 for some (possibly empty) strings v 1 and v 2. Then an editing step
that replaces x by y is an allowed operation, and v2 is the active part of the
new intermediate string uv~ yv2 obtained. If A produces B in this way, there
is a restricted editing sequence from A to B. The minimum total cost of such
sequences is denoted by D'e,~(A, B); if there are no restricted sequences
from A to B, we set D'e,~(A, B) = ~ . In some applications in error correc-
tion and in information retrieval, the restricted edit distance is a natural
measure of similarity between different strings.

Obviously, D'E,~(A, B) is always >~DE,~(A, B). Moreover, both distances
coincide for editing operation set E o when the cost function satisfies (1).
While De,6 is not effectively computable, D~:,6 can be evaluated from (13),
as can be easily shown by induction:

THEOREM 4. Let matrix (do) be defined by (13). Then do=
D'E,~(al "" " ai, bl "'" bj). In particular, dmn = D'e,~(a, "" am, bl "'" bn).

As in Section 2, recurrence (13) defines a dependency graph over (dij).
Lemma 1 is true also for this graph. To generalize Lemma 2, let

A e , ~ = m i n (6 (x ~ y) / [p [[x ~ y is in E, p = I x [- [y [:~0).

(Here [x[,]y[denote the length of strings x, y.) Then, as in the proof of
Lemma 2, one sees that if there is a directed path from d U to dcj, in the
dependency graph defined by (13), then diT, ~> d,7 + IJ' - i' - (j - i)[• AE, 6.
This is because a path from d~ to d~7, must cross at least] j ' - i ' - (j - i) [
diagonals, and the cost of crossing a diagonal is at least A E, 6. Hence
Lemma 2 as well as Corollary 1 are true with A replaced by A e, 6. Further-
more, procedures test1 and test2 of Section 2, with every occurrence of A
replaced by AE, 6 and every occurrence of (3) replaced by (13), correctly
decide whether D'E,6(A, B) <<, t, and algorithm (5), after the same
modification, correctly computes the restricted edit distance D'E,~(A, B).
The modification does not change the complexity analysis of the
algorithms. Hence the next generalization of Theorems 1 and 2 is true.

THEOREM 5. There is an algorithm which, given strings a l . . . a m and

116 ESKO UKKONEN

b l " ' b n and a number t, tests in time O (t ' m i n (m , n)) and in space
O(min(t, m, n)) whether or not restricted edit distance
s '=D'e ,~(a~ '"am, b ~ " ' b ~) is at most t. The value s' as well as the
corresponding sequence o f restricted editing steps can be computed in time
and space O(s" min(m, n)). I f the editing sequence is not needed, the space
requirement can be reduced to O(min(s', m, n)).

So D' e,~ can be evaluated efficiently while we do not consider algorithms
for evaluating DE~, • Note that the upper bound on DE~, given by D'e,e may
be useful in some applications. An interesting related question is to charac-
terize those E and 6 for which DE~ = D' , E , g "

Next we analyze a particular extension of Eo. Let E ~ = E o u
{(ab, ba)] a, b E X , a # b } , that is, E~ is the set of deletion, insertion, and
change operations extended with operations that transpose two adjacent
symbols. Transposition is useful in correcting, e.g., typing errors. A related
larger operation set was analyzed by Lowrance and Wagner (1975). We
give a quite natural condition on ~ which implies that De~,~ = D'e~,~.

THEOREM 6. Let the cost function ~ satisfy (1) and (2) and moreover, let
3(x --* y) >>, c~(x' -* y') for every editing operation x --* y, x' ~ y' in E 1 such
that Ixy I >]x'y']. Then DEI,~ = D'el,~.

Proof We show that for any editing sequence with operations in E1
there exists an equivalent but restricted sequence of at most the same cost.
A simple case analysis shows how to eliminate the first and hence all
editing steps that do not operate on the active part. We give here only one
example.

Let the first step x -* y to be eliminated be a transposition. Hence x = ab
and y = ba for some characters a, b. In addition, suppose that character a
in x has been produced by an earlier transposition ac---* ca. So the total
effect is to convert acb to cba. Now replace ac--* ca and ab ~ ba with
restricted steps a ~ e and e ~ a which have the same conversion effect but,
by the assumptions of Theorem 6, at most the same cost. |

Assume finally, as in Section 3, that the cost function is constant. So
6(x ~ y) = 1 for all x ~ y in El. Then the conditions of Theorem 6 are
satisfied and we could evaluate DEI,~ with a modified algorithm (5). But
also Lemma 3 is immediately seen true for E1 with constant cost function.
Hence a more efficient solution is possible using the algorithms of Sec-
tion 3. We briefly sketch the modifications necessary.

An expression that corresponds to transposition must be added to the
list of expressions in the maximization step of algorithm (8). Therefore the
following two steps replace step 1 of (8):

APPROXIMATE STRING MATCHING 117

la. t := fk, p 1+1;

lb. t:=max(t, fk_l ,p_l , fk+L p l + l , IFatat+l=bk+t+lbk+t
T H E N t + I ELSE - ~) .

Of course, algorithm (11) must now use (8), as just modified. In algorithm
(12), step 4 as well as the rest of the algorithm must be expanded to cope
with steps la and lb.

5. CONCLUSION

We developed two versions of an algorithm that in time and in space
O(s" min(m, n)) computes the edit distance s of two strings of length m and
n. Both algorithms are easy to implement with small constant factors in the
complexity bounds. The first algorithm works for arbitrary positive costs of
individual editing steps. The second algorithm assumes that all steps have
the constant cost equal to 1. Since s = O(max(m, n)), the algorithms are
asymptotically at least as efficient as the well known O(mn) method, while
for small s they are significantly faster. As a by-product, we derived
algorithms to test in time O(t" min(m, n)) and in space O(min(t, m, n)) for
a given threshold value t, whether s ~< t. This kind of a test with a relatively
small t is needed in applications where one wants to select from a larger set
of strings all strings whose distance from a given string is at most t. In fact,
the main stimulus to develops the methods of this paper came from certain
applications in molecular genetics, where the O(mn) algorithm is
unnecessarily inefficient since m and n are large and t is small, cf., Peltola et
al. (1983).

The derivation of the algorithm was based on a careful analysis of the
O(mn) method. Similar ideas can possibly be used in improving some other
dynamic programming or tabulating algorithms.

ACKNOWLEDGMENTS

The author is indebted to Hannu Peltola and Jorma Tarhio for useful remarks concerning
this reasearch. The referees made several comments helpful in sharpening the formulation of
the results.

REFERENCES

1. LEVENSHTEIN, V. I. (1966), Binary codes capable of correcting deletions, insertions, and
reversals, Soviet Phys. Dokl. 10, 707 710.

2. LOWRANCE, R., AND WAGNER, R. A. (1975), An extension of the string-to-string correc-
tion problem, J. Assoc. Comput. Mach. 22, 177 183.

118 ESK0 UKKONEN

3. NAKATSU, N., KAMBAYASI-II, Y., AND YAJIMA, S. (1982), A longest common subsequence
algorithm suitable for similar text strings, Acta Inform. 18, 171-179.

4. NEEDLEMAN, S. B., AND WUNSCH, C. D. (1970), A general method applicable to the search
for similarities in the amino acid sequence of two proteins, J. Molecular Biol. 48, 443-453.

5. PELTOLA, H., SODERLUND, H., TARH10, J., AND UKKONEN, E. (1983), Algorithms for some
string matching problems arising in molecular genertics, in "Information Processing 83"
(R. E. A. Mason, Ed.), pp. 59-64, North-Holland, Amsterdam.

6. SANKOEE, D. (1972), Matching sequences under deletion/insertion constraints, Proc. Nat.
Acad. Sci. U. S. A. 69, 4-6.

7. SELLERS, P. H. (1974), On the theory and computation of evolutionary distances, SIAM J.
Appl. Math. 26, 787-793.

8. SELLERS, P. H. (1980), The theory and computation of evolutionary distances: Pattern
recognition, J. Algorithms 1, 359-373.

9. VINTSVUK, T. K. (1968), Speech discrimination by dynamic programming, Kibernetika
(Kiev) 4, 81-88 [Russian]; Cybernetics 4, 52-58.

10. WAGNER, R., AND FISCHER, M. (1974), The string-to-string correction problem, J. Assoc.
Comput. Mach. 21, 168-178.

