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Although caffeine supplementation has a beneficial effect on people with neurological disorders, its
implications for oxidative damage related to seizures are not well documented. Thus the aim of this study
was to investigate the effects of two weeks caffeine supplementation (6 mg/kg; p.o.) on seizures and neu-
rochemical alterations induced by pentylenetetrazol (PTZ 60 mg/kg i.p.). Statistical analyses showed that
long-term rather than single dose caffeine administration decreased the duration of PTZ-induced seizures
in adult male Wistar rats as recorded by cortical electroencephalographic (EEG) and behavioral analysis.
The quantification of EEG recordings also revealed that caffeine supplementation protected against a
wave increase induced by PTZ. Neurochemical analyses revealed that caffeine supplementation increased
glutathione (GSH) content per se and protected against the increase in the levels of thiobarbituric acid
reactive substances (TBARS) and oxidized diclorofluoresceine diacetate (DCFH-DA). Also, caffeine prevent
the decrease in GSH content and Na+, K+-ATPase activity induced by PTZ. Our data also showed that the
infusion of L-buthionine sulfoximine (BSO; 3.2 lmol/site i.c.v), an inhibitor of GSH synthesis, two days
before injecting PTZ reversed the anticonvulsant effect caused by caffeine. BSO infusion also decreased
GSH content and Na+, K+-ATPase activity. However, it increased DCFH-DA oxidation and TBARS per se
and reversed the protective effect of caffeine. Results presented in this paper support the neuroprotective
effects of low long-term caffeine exposure to epileptic damage and suggest that the increase in the cere-
bral GSH content caused by caffeine supplementation may provide a new therapeutic approach to the
control of seizure.

� 2013 Elsevier Ltd. Open access under the Elsevier OA license.
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1. Introduction

Epilepsy is a neurological disorder characterized by recurrent
episodes of seizures due to an imbalance between cerebral excitabil-
ity and inhibition with a tendency towards uncontrolled excitability
(Papandreou et al., 2006). Currently, around 50 million people
worldwide have active epilepsy with continuing seizures that need
treatment. Despite the increasing number and variety of anti-
epileptic drugs, more than 30% of cases are medically intractable
(Fisher and Kettl, 2005). Animal models for seizures and epilepsy
have played a key role in advancing our comprehension of the
ictogenesis basic mechanisms underlying epileptogenesis (Loscher,
dos e Técnicas Desportivas.,
de Federal de Santa Maria,
8031.
oyes).

sevier OA license.
2011). More important than understanding the mechanism of
seizure is the possibility of devising novel strategies to treat
epilepsy, which may also offer some additional insights in key
mechanism processes. Alternative therapies such as caffeine, which
reduce seizures and related brain damage, also have been explored
(El Yacoubi et al., 2008; Rigoulot et al., 2003).

Caffeine (1,3,7-trimethylxanthine), which belongs to the group
of purine alkaloids, is the most commonly and widely ingested
psychoactive substance. Caffeine is found in beverages such as
coffee, tea, and many soft drinks as well as in chocolate products
and desiccated coconut (Butt and Sultan, 2011). Structurally, caf-
feine is similar to adenosine, an endogenous neuromodulator, and
binds to adenosine receptors to act as a nonselective antagonist
(Fredholm and Lindstrom, 1999). Experimental and clinical stud-
ies have indicated that chronic caffeine supplementation provides
neuroprotective effects against several neurological disorders,
including Alzheimer’s and Parkinson’s diseases by antagonism of
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adenosine receptors (Kalda et al., 2006; Maia and de Mendonca,
2002; Ross et al., 2000; Xu et al., 2006). In particular, the neuro-
protection afforded by chronic caffeine consumption is mediated
by the antagonism of adenosine A2A receptors (for review see
Cunha and Agostinho, 2010). This has been confirmed in the par-
ticular case of PTZ-induced seizures (El Yacoubi et al., 2008).
However, it has been shown that a high single dose of caffeine
can aggravate seizures (Boison, 2011) and cause damage to hip-
pocampal sectors and striatum in the brain (Enns et al., 1996).
The worsening effects of caffeine on seizures are thought to be
due to its antagonist properties at the A1 receptors (Dragunow,
1990). It was also demonstrated that acute versus chronic admin-
istration of an adenosine receptor ligand can result in opposite ef-
fects in a number of settings, including cognitive processes,
seizures and ischaemic damage (Jacobson et al., 1996). Taken to-
gether, these experimental studies suggest that acute caffeine
administration mainly targets adenosine A1 receptors, aggravating
seizures and amplifying excitotoxicity while chronic consumption
of moderate doses of caffeine mainly targets adenosine A2A recep-
tors, affording neuroprotection (for review see Boison, 2011;
Cunha and Agostinho, 2010).

The brain is one of the major organs that generates large
amounts of reactive oxygen species (ROS). Compared with other
organs, the brain is especially vulnerable to oxidative stress be-
cause of its lower antioxidant enzyme activities and high quanti-
ties of lipids with unsaturated fatty acids, which are targets of
lipid peroxidation (Milder and Patel, 2012). Under normal condi-
tions, the brain can equilibrate the generated ROS with its own
antioxidant defense. In this context, glutathione (GSH) is the most
abundant thiol-reducing agent that plays a critical role as a major
antioxidant in the CNS (Dringen, 2000). In line with this view, a
growing number of studies have demonstrated that oxidative
stress facilities the appearance and/or propagation of seizures
(Patsoukis et al., 2004; Shin et al., 2011). Accordingly, experimen-
tal findings from our group have demonstrated that the inhibition
of some selected target for oxidative stress such as Na+, K+-ATPase
may lead to neuronal excitability and appearance of convulsions
in the PTZ model of seizure (Rambo et al., 2009; Saraiva et al.,
2012; Souza et al., 2009). This is particularly important consider-
ing the fact that this ion pump plays a key role in regulating and
controlling nerve excitability (Vasilets and Schwarz, 1993). Based
on the hypothesis that oxidative stress is involved in epilepsy, ap-
proach’s aimed at reducing such stress would be the use of neu-
roprotective therapy to prevent or slow down seizure
progression.

Over the years, accumulating evidence has suggested a poten-
tial antioxidant role for caffeine (Aoyama et al., 2011; Noschang
et al., 2009; Rossowska and Nakamoto, 1994; Varma et al., 2010).
The suggestions are largely based on chemical studies showing it
to be able to scavenge ROS, particularly the hydroxyl radical
(OH�), known to be generated in the body by many physiologic
reactions involving oxygen utilization (Devasagayam et al., 1996;
Shi et al., 1991). Additionally, caffeine has been shown to prevent
Fenton’s reaction-induced oxidation of GSH (Shi et al., 1991), a ma-
jor antioxidant reserve in many tissues, including the CNS. How-
ever, the effect of caffeine against seizure inducing oxidative
stress has not been studied to date. Therefore, since it has been
proposed that at least part of the neuroprotective effects of caffeine
are due to antioxidant effects (Aoyama et al., 2011; Varma et al.,
2010) and that oxidative stress facilitates the appearance and
propagation of seizures in several experimental models (Shin
et al., 2011; Waldbaum and Patel, 2010), our goal was to evaluate
the effect of caffeine supplementation on electrographic and neu-
rochemical alterations (characterized here by GSH and TBARS con-
tent, DCFH-DA oxidation and Na+, K+-ATPase activity) induced by
PTZ in the cerebral cortex of rats.
2. Materials and methods

2.1. Animals and reagents

Adult male Wistar rats (270–300 g) were used in the present
study. Rats were housed four to a cage. Light and temperature were
controlled (12-h light/dark cycle, 22 ± 1 �C, 55% relative humidity)
and rats had free access to food (Guabi, Santa Maria, Brazil) and
water. All experimental protocols were designed to keep the num-
ber of animals used to a minimum as well as to keep them from
suffering. All experimental protocols were conducted in accor-
dance with national and international legislation (National Council
for Control of Animal Experimentation (CONCEA) and of U.S. Public
Health Service’s Policy on Human Care and Use of Laboratory Ani-
mals-PHS Policy), and approved by the Ethics Committee for ani-
mal research at the Federal University of Santa Maria. Behavioral
tests were conducted during the light phase of the cycle (between
10:00 AM and 4:00 PM). All reagents were purchased from Sigma
(St Louis, MO, U.S.A.). Caffeine anhydrous was dissolved in water
and L-buthionine sulfoximine (BSO) and PTZ were dissolved in
0.9% physiological saline.
2.2. Study design

The study design is summarized in Fig. 1 and consisted of two
experiments. The experiments were as follows.

Experiment 1: in order to determine the role of caffeine on the
electrographic, and neurochemical alterations in cerebral cortex of
rats induced by convulsive dose of PTZ (60 mg/kg, i.p), animals
were supplemented with caffeine (6 mg/kg) (Fredholm et al.,
1999) or its vehicle (water) by intragastric gavage (p.o) for 15 days.
In the present study, we also evaluated the participation of gluta-
thione pathway on electroencephalographic and neurochemical
alterations exerted by caffeine in this model of seizure. For this
propose, a subset of animals was supplemented with caffeine
(6 mg/kg p.o) for 15 days. On the days 14 and 15 of caffeine treat-
ment, another subset of animals received intracerebroventricular
infusion of L-buthionine sulfoximine (BSO; 3.2 lmol/site i.c.v), an
inhibitor of GSH synthesis. The present protocol of BSO injection
was choosen based on Abe et al., 2000. Twenty-four hours after
the last administration of BSO, animals were injected with a con-
vulsive dose of PTZ (60 mg/kg, i.p.) as described in Fig. 1.

Experiment 2: To evaluate if the acute caffeine administration
protects against PTZ-induced electrographic seizures and neuro-
chemical alterations, a subset of animals was treated with caffeine
(6 mg/kg p.o.) 60 min before the injection of a convulsive dose of
PTZ (60 mg/kg, i.p.). After a 20 min seizure evaluation, animals
were sacrificed and parietal cortex removed for biochemical
analyses.
2.3. Surgical procedure

For the electroencephalographic recordings (EEG), all animals
were subjected to surgery. In brief, animals were anesthetized with
Equithesin (1% phenobarbital, 2% magnesium sulfate, 4% chloral
hydrate, 42% propylene glycol, 11% ethanol; 3 mL/kg, i.p) and
placed in a rodent stereotaxic apparatus. For the EEG recordings,
two screw electrodes were placed bilaterally over the parietal cor-
tex along with a ground lead positioned over the nasal sinus. The
electrodes were connected to a multipin socket fixed to the skull
with acrylic cement. For intracerebroventricular infusion of BSO
(3.2 lmol/site i.c.v), a cannula was positioned on the right ventricle
(coordinates relative to bregma: AP 0 mm; ML 1.5 mm; 2.5 mm
from the dura) (Paxinos et al., 1980). Ceftriaxone (200 mg/kg, i.p)
was administered immediately before the surgical procedure. The



Fig. 1. Representation of experimental design. (A) Animals were treated with caffeine (6 mg/kg p.o) during 15 days. On the twenty day, the animals were submitted to a
surgery for electrodes and/or cannula implantments. In the experiment with BSO, animal received an i.c.v infusion (3.2 umol/5 ul) on 14th and 15th day. On the 16th day
animals were connected to EEG and injected with PTZ (60 mg/kg i.p) or saline 0.9% and 20 min after were killed to biochemical analyses. (B) Animals were submitted to a
surgery for electrodes implantments, on 4th day they were treated with caffeine (6 mg/kg p.o.) 60 min before the PTZ (60 mg/kg, i.p.) injection. After a 20 min seizure
evaluation, animals were sacrificed and parietal cortex removed for biochemical analyses.
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behavioral and EEG evaluation were performed 4 days after
surgery.
2.4. Seizure evaluation

Seizures were monitored in all animals by EEG recording. On
the day of the experiments, each animal was transferred to an ac-
rylic glass cage (25 � 25 � 40 cm) and allowed to adapt for 20 min
before EEG recording. The rat was then connected to the lead sock-
et in a swivel inside a Faraday’s cage, and the EEG was recorded
using a digital encephalographer (Neuromap EQSA260, Neuromap
LTDA, Itajaú, MG, Brazil). EEG signals were amplified, filtered (0.1–
70.0 Hz, band pass), digitalized (sampling rate 256 Hz), and stored
in a personal computer for off-line analysis. Routinely, a 10 min
baseline recording was obtained to establish an adequate control
period. After baseline recording animals received an injection of
saline (0.9% NaCl, 1 mL/kg, i.p) or PTZ (60 mg/kg, i.p). The animals
were observed for the appearance of clonic and generalized tonic–
clonic convulsive episodes for 20 min according to (Ferraro et al.,
1999), who describes clonic convulsions as episodes characterized
by typical partial clonic activity affecting the face, head, vibrissae,
and forelimbs. Generalized convulsive episodes were considered as
generalized whole-body clonus involving all four limbs and tail,
rearing, and wild running and jumping, followed by sudden loss
of upright posture and autonomic signs, such as hypersalivation
and defecation, respectively. During the 20 min observation period,
latencies for the first clonic and generalized tonic–clonic convul-
sions were measured. EEG recordings were visually analyzed for
seizure activity, which were defined by the occurrence of the fol-
lowing alterations in the recording leads (McColl et al., 2003): iso-
lated sharp waves (P1.5 � baseline); multiple sharp waves
(P2 � baseline) in brief spindle episodes (P1 s P 5 s); multiple
sharp waves (P2 � baseline) in long spindle episodes (P5 s);
spikes (P2 � baseline) plus slow waves; multispikes (P2 � base-
line, P3 spikes/complex) plus slow waves; and major seizure
(repetitive spikes plus slow waves obliterating background
rhythm, P5 s). For quantitative analysis of EEG amplitude, we
averaged EEG amplitude over the 20 min of observation.
2.5. Sample processing

Immediately after the seizure evaluation period, animals were
killed by decapitation and their brains were exposed by the
removal of the parietal bone. The parietal cerebral cortex (local
of EEG recordings) was quickly dissected on an inverted ice-cold
Petri dish and the material was stored at �80 �C for subsequent
biochemical analyses. Samples were prepared according to the
guidelines for each technique, as described below.

2.6. Measurement of TBARS content

Thiobarbituric Acid Reactive Substances (TBARS) content was
estimated in a medium containing 0.2 ml of cerebral cortex
homogenate, 0.1 mL of 8.1% SDS, 0.4 mL of acetic acid buffer
(500 mM, pH 3.4), and 0.75 mL of 0.81% (TBA). The mixture was fi-
nally made up to 2 mL with type I ultrapure water and heated at
95 �C for 90 min in a water bath using a glass ball as a condenser.
After cooling to room temperature, absorbance was measured in
the supernatant at 532 nm (Ohkawa et al., 1979).

2.7. Isolation of rat brain mitochondria for Oxidized
Diclorofluoresceine (DCFH) level determination

Rat cerebral cortex mitochondria were isolated as described by
(Bhattacharya et al., 1991) with some modifications. Firstly, the
cerebral cortex was quickly removed from the rat skull and
homogenized in a buffer containing (in mM): 100 sucrose, 10
EDTA, 100 Tris–HCl, and 46 KCl (pH 7.4). After homogenization,
the resulting suspension was centrifuged for 3 min at 2000g
(4 �C) to obtain a low speed supernatant fraction (S1). S1 was cen-
trifuged for 20 min at 12,000g (4 �C). The pellet was re-suspended
in a buffer containing (in mM): 100 sucrose, 10 EDTA, 100 Tris–HCl,
46 KCl and bovine serum albumin (BSA, 0.5%; pH 7.4) and re-cen-
trifuged for 10 min at 12,000g (4 �C). The supernatant was dec-
anted and the final pellet re-suspended in a buffer containing (in
mM): 70 sucrose, 0.02 EDTA, 20 Tris–HCl, 230 mannitol, 1
K2HPO4, to yield a protein concentration of 30–40 mg/mL.

2.8. Oxidized Diclorofluoresceine (DCFH) level determination

The levels of DCFH were determined as an index of the peroxide
production by the cellular components. This experimental method
of analysis is based on the deacetylation of the probe DCFH-DA and
its sub-sequent oxidation by reactive species to DCFH, a highly
fluorescent compound (Halliwell, 2007). Fractions of cerebral cor-
tex mitochondria (350 lg/ll) were added to a medium containing
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buffer III and DCFH-DA (1 mM). After DCFH-DA addition, the fluo-
rescence measurement procedure started (excitation at 488 nm
and emission at 525 nm, and both slit widths used were at
1.5 nm). DCFH oxidation was determined using a standard curve
of DCF and results were corrected by the protein content.

2.9. GSH levels

The levels of GSH were determined fluorometrically as de-
scribed by (Hissin and Hilf, 1976), using 0-phthaladehyde (OPA)
as fluorophore. Briefly, cortex was homogenized in 0.1 M HClO4.
Homogenates were centrifuged at 2500g for 10 min and the low-
speed supernatants were separated for measurement of GSH.
Supernatant (100 ll) was incubated with 100 ll of OPA (0.1% in
methanol) and 1.8 ml of 0.1 M phosphate buffer (pH 8.0) for
15 min at room temperature in the dark. Fluorescence was mea-
sured with a fluorescence spectrophotometer at excitation wave-
length of 350 nm and at emission wavelength of 420 nm. GSH
levels were expressed as nmol GSH/g of tissue.

2.10. Na+, K+-ATPase activity measurements

Assay of Na+, K+-ATPase activity was performed according to
(Wyse et al., 2000). Briefly, the reaction medium consisted of
30 mM Tris–HCl buffer (pH 7.4), 0.1 mM EDTA, 50 mM NaCl,
5 mM KCl, 6 mM MgCl2, and 50 lg of protein in the presence or ab-
sence of the Na+, K+-ATPase inhibitor ouabain (1 mM), in a final
volume of 320 lL.

The reaction was started by the addition of adenosine triphos-
phate (ATP) to a final concentration of 5 mM. After 30 min at
37 �C, the reaction was stopped by the addition of 70 lL of trichlo-
roacetic acid (TCA, 50%). Saturating substrate concentrations were
used and the reaction was linear with protein and time. The
amount of inorganic phosphate released was quantified by the col-
orimetric method described by (Fiske and Subbarow, 1927). The
Na+, K+-ATPase activity was calculated by subtracting the oua-
bain-sensitive activity from the overall activity (in the absence of
ouabain).

2.11. Protein determination

Protein content was measured colorimetrically by the method
of (Bradford, 1976) using bovine serum albumin (1 mg/mL) as
standard.

2.12. Statistical analysis

Data from ex-vivo total TBARS, GSH levels, DCFH and Na+, K+-
ATPase activity determinations were analyzed by three-way
ANOVA (analysis of variance) and were expressed as mean ± S.E.M.
Latency to first clonic and generalized tonic-clonic seizures were
analyzed by Scheirer–Ray–Hare test and expressed as
median ± interquartile range. A probability of p < 0.05 was consid-
ered significant.

3. Results

Fig. 2 shows the effect of a two week caffeine supplementation
(6 mg/kg) on behavioral seizures induced by PTZ (60 mg/kg). Sta-
tistical analyses revealed that the caffeine treatment did not alter
the latency periods for the first myoclonic jerk [U = 24; p > 0.05
Fig. 2A] or first generalized tonic-clonic seizures [U = 24; p > 0.05;
Fig. 2B]. However, it decreased the time spent in generalized to-
nic–clonic seizure [U = 10; p < 0.05; Fig. 2C] induced by the convul-
sive dose of PTZ. The behavior repertoire observed after PTZ
injection occurred concomitantly with electrographically recorded
seizures: myoclonic jerks were characterized by multiple sharp
waves in brief spindle episodes, whereas generalized seizures were
characterized by the appearance of 2–3 Hz high-amplitude activity
(Fig. 4A and B, E and F). The quantification of electroencephalo-
graphic wave amplitude revealed that all groups increased EEG
amplitude after PTZ administration [F(1,13) = 23,93; p < 0.05,
Fig. 2J]. However, caffeine atenuates the increase in wave ampli-
tude after the injection of PTZ (60 mg/kg; i.p) [F(1,13) = 5,98;
p < 0.05].

Considering that the oxidative stress facilitates the appearance
and/or propagation of seizures in several models of epilepsy
(Rambo et al., 2009; Souza et al., 2009) and that caffeine has been
shown antioxidant effects (Aoyama et al., 2011; Varma et al.,
2010), we decided to investigate the effects of caffeine supplemen-
tation on oxidative stress induced by PTZ, characterized here by
DCFH-DA oxidation, TBARS content, and GSH levels in cerebral
cortex of rats. The results presented in this report revealed that caf-
feine supplementation increased GSH content [F(1,27) = 5.54;
p < 0.05; Fig. 3A] per se and protected against PTZ-induced GSH de-
crease [F(1,27) = 5.54; p < 0.05; Fig. 3A]. In addition, statistical
analyses revealed that caffeine supplementation prevented against
PTZ-induced DCFH-DA oxidation [F(1,827) = 4.28; p < 0.05 Fig. 3B]
and TBARS content increase [F(1,27) = 4.56; p < 0.05 Fig. 3C]. The
caffeine supplementation also protected against PTZ-induced Na+,
K+-ATPase activity inhibition [F(1,27) = 8.76; p < 0.01].

In the present study, we also evaluated the participation of glu-
tathione pathway on electroencephalographic and neurochemical
alterations exerted by caffeine in this model of seizure. Behavioral
and EEG recordings revealed that caffeine supplementation de-
creased the time spent in generalized tonic–clonic seizures in-
duced by PTZ (U = 8,15; p < 0.05, Fig. 4E) and that infusion of BSO
(3.2 lmol/5 ll i.c.v) 2 days before PTZ injection reverted the anti-
convulsant effect elicited by caffeine (U = 8,15; p < 0,05, Fig. 4E).
The quantification of electroencephalographic wave amplitude re-
vealed that the infusion of BSO altered the effect exerted by caf-
feine supplementation characterized here by EEG wave
amplitude increase after PTZ injection (F(1,26)=4.52; p < 0.05
Fig. 4L). Neurochemical analyses also revealed that the BSO
(3.2 lmol/5 ll i.c.v) infusion decreased GSH content [F(1,54) =
26.73; p < 0.01 Fig. 5A] and Na+, K+-ATPase activity [F(1,54) =
9.15; p < 0.01 Fig. 5D], whereas DCFH-DA oxidation [F(1,54) = 5.18;
p < 0.01] and TBARS content per se [F(1,54) = 18,85; p < 0.01
Fig. 5D] were increased. In addition, BSO reverted the protective
effect exerted by caffeine against PTZ-induced GSH decrease
[F(1,54) = 11.54; p < 0.05], Na+, K+-ATPase activity inhibition
[F(1,54) = 13.43; p < 0.05], as well as DCFH-DA oxidation
[F(1,54) = 13.03; p < 0.05] and TBARS increase [F(1,54) = 16.93;
p < 0,05].

In the present study we investigated the role of the acute caf-
feine administration on PTZ-induced electrographic seizures as
well as neurochemical alterations. Fig. 6 shows that the acute caf-
feine administration one hour before PTZ administration (6 mg/kg)
had no effect on the latency periods for the first myoclonic jerk
[U = 10.5; p > 0.05], the first generalized tonic-clonic seizure
[U = 9.5; p > 0.05] or the time spent in generalized tonic–clonic sei-
zure [U = 11; p > 0.05]. Behavioral seizures were accompanied by
EEG recording observed after PTZ injection. EEG recordings
revealed that PTZ treatment increase EEG amplitude
[F(1,11) = 21,48; p < 0.05] the acute caffeine administration had
no effect on wave amplitude increase elicited by PTZ (Fig. 6J).
Accordingly, neurochemical analyses revealed that the acute caf-
feine administration did not protect against the increase of
DCFH-DA oxidation [F(1,25) = 0.14; p > 0.05 Fig. 7B], TBARS con-
tent [F(1,25) = 0.05; p > 0.05, Fig. 7C], as well as Na+, K+-ATPase
activity inhibition [F(1,25) = 0.38; p > 0.05 Fig. 7D] and GSH level



Fig. 2. Effect of long-term caffeine administration (6 mg/kg, p.o.) on the convulsive behavior induced by PTZ (60 mg/kg, i.p.). (A) Latency for first clonic seizure; (B) latency for
generalized tonic-clonic seizure; (C) time spent in generalized tonic-clonic seizure; (D) wave amplitude quantification. Data are presented as median and interquartile range
Mann–Whitney test (A–C) and data are presented as the mean ± S.E.M One-Way Anova⁄p < 0.05 compared with PTZ-treated group, #p < 0.05 compared with basal period
(n = 7–8).

Fig. 3. Effect of long-term caffeine administration (6 mg/kg, p.o.) on the oxidative damage induced by PTZ (60 mg/kg, i.p.). The effect of caffeine and PTZ on GSH content (A),
DCFH oxidation (B), TBARS content (C) and Na+, K+, ATPase activity. Data are presented as the mean ± S.E.M Two-Way Anova ⁄p < 0.05 compared with vehicle-treated group,
⁄⁄p < 0.01 compared with vehicle-treated group, #p < 0.05 compared with PTZ-treated group (n = 7–8).
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decrease [F(1,25) = 0.46; p > 0.05, Fig. 7A] induced by the injection
of convulsive dose of PTZ.
4. Discussion

The results presented in this report revealed that long-term caf-
feine administration (6 mg/kg) attenuates EEG alterations and de-
creases generalized tonic–clonic seizures induced by PTZ.
Furthermore, our data revealed that caffeine supplementation in-
creases GSH content per se and the infusion of BSO (an inhibitor
of GSH synthesis) reverts the protective effect of caffeine against
toxicity elicited by PTZ characterized here by EEG seizures, Na+,
K+-ATPase activity inhibition, GSH decrease, increased lipid perox-
idation, and DCFH-DA oxidation.

The results presented in this paper also showed that acute caf-
feine administration (6 mg/kg) had no effect on seizures and did
not protect against the increase of oxidative stress and Na+,
K+-ATPase activity inhibition induced by injection of PTZ. These
experimental data reinforce the idea that adaptive long-lasting
neurochemical and behavioral responses are usually different from
the acute drug effect (Hughes and Beveridge, 1990; Lopez et al.,
1989; Tchekalarova et al., 2009). Furthermore, the protection ex-
erted by caffeine supplementation on the epileptic activity and
neurochemical alterations induced by PTZ is of particular interest
because PTZ-induced seizure is an important model of myoclonic
and generalized tonic–clonic seizures, which is used in routine
testing for screening anticonvulsants (Swinyard et al., 1987).

Caffeine is one of the most favorable psycho stimulant in bever-
ages or foods for motor activation, mood changes, information pro-
cessing, and cognitive performance (Fredholm et al., 1999).
Considering that caffeine is structurally similar to adenosine, an
endogenous inhibitory neuromodulator, most of the studies have
suggested that caffeine has neuroprotective effects as an adenosine
receptor antagonist (Chen et al., 2001; Dall’Igna et al., 2003;
Nakaso et al., 2008). Although epidemiological studies have indi-
cated that caffeine consumption is negatively correlated with the
incidence of some neurological diseases (Ascherio et al., 2001;
Lindsay et al., 2002; Maia and de Mendonca, 2002), anecdotally,
caffeinated beverages are ‘‘known’’ to lower seizure thresholds in
patients with epilepsy (Kaufmann et al., 2003). However, due to
the lack of well-designed, randomized, and placebo-controlled



Fig. 4. Effect of BSO on the neuroprotective effect of long-term caffeine administration (6 mg/kg p.o) against behavioral and electroencephalographic seizures induced by PTZ
(60 mg/kg, i.p.). Representative electroencephalographic recordings of animals treated with Vehicle (A and B), BSO (C and D) caffeine (E and F) and caffeine plus BSO (G and H)
after PTZ injection (B–D – F and H). Arrows indicate PTZ injection; arrowheads indicate the first clonic seizure. Data from (I) Latency for first clonic seizure; (J) latency for
generalized tonic-clonic seizure; (K) time spent in generalized tonic-clonic seizure are presented as median and interquartile range. Data from (L) wave amplitude
quantification are presented as the mean ± S.E.M. ⁄p < 0.05 compared with PTZ-treated group #p < 0.05 compared with basal period (Scheirer–ray–hare and Three-way Anova
test, n = 7 = 8).
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clinical trials, this concept has been challenged (Asadi-Pooya et al.,
2008). While clinical trials have demonstrated that higher doses of
rolofylline, the antagonist of adenosine receptor (A1R) induces sei-
zures in patients with renal failure (Cotter et al., 2008), another
study with 116,363 women revealed that caffeine ingestion, in
doses without evident benefit (mean 437 mg/d), was not associ-
ated with an increased risk of epilepsy (Dworetzky et al., 2010).
It is important to note that the pro and/or anticonvulsant effect
elicited by methylxanthines are based on the antagonism of the
brain’s endogenous adenosine-based seizure control system.
Whereas inhibition of A1Rs by methylxanthines can directly con-
tribute to ictogenesis and seizure spread, under certain conditions
methylxanthines can also contribute to seizure suppression (Boi-
son, 2011). In this context, the understanding of the mechanisms
involved in the caffeine-related control of seizure is important
since caffeine holds the second position in consumption among
all beverages followed by water, and people from all over the world
consume approximately 500 billion cups of coffee annually (Butt
and Sultan, 2011).

In experimental animals the caffeine administration at doses of
0.3 g/L per day over a period of two weeks (resulting in plasma
levels of caffeine in the range of 6 to 14 lM corresponding to
chronic caffeine usage in humans) reduced NMDA, bicucculine
and PTZ-induced seizures in mice in the absence of changes in
A1, A2A, or GABAA receptors (Georgiev et al., 1993). Considering
that chronic but not acute caffeine administration attenuates
EEG seizures elicited by PTZ, we suggest that this effect could
be modulated by A2A antagonism since there are studies showing
that A2A antagonism attenuates ROS related cell damage (Behan
and Stone, 2002; Leite et al., 2011). In agreement with this view
previous studies have showed that both caffeine (Prasanthi
et al., 2010) and especially adenosine receptors can control the
formation of free radicals (Ribé et al., 2008; Gołembiowska and
Dziubina, 2012), namely mitochondria dysfunction leading to
the formation of free radicals (Yang et al., 2011; Tamura et al.,
2012), as well as impact of free radicals on brain function
(Agostinho et al., 2000; Rego et al., 2000; Behan and Stone,
2002; Almeida et al., 2003; Fatokun et al., 2007). Additionally, pre-
vious studies have shown that caffeine and adenosine receptors
can control glutathione metabolism (e.g. Zhang et al., 2005; Conte
et al., 2009; Aoyama et al., 2011). It is important to note that, re-
cent observations have demonstrated that caffeine also acts as an
antioxidant (Leon-Carmona and Galano, 2011). This idea is largely
based on chemical studies showing it to be able to scavenge ROS,
particularly the hydroxyl radical (OH�) in vitro (Devasagayam
et al., 1996; Gomez-Ruiz et al., 2007). The interaction of OH� with
caffeine results in its oxidative de-methylation generating par-
tially N-methylated xanthines such as theobromine, paraxanthine,
and theophylline (Chung and Cha, 1997; Stadler et al., 1996). In
addition, studies have shown that the antioxidant effect of



Fig. 5. Effect of BSO on the neuroprotective effect of long-term caffeine administration (6 mg/kg p.o) against oxidative damage induced by PTZ (60 mg/kg, i.p.). The effect of
caffeine and PTZ on GSH content (A), DCFH oxidation (B), TBARS content (C) and Na+, K+, ATPase activity. Data are presented as the mean ± S.E.M Three-Way Anova ⁄p < 0.05
compared with vehicle treated group ⁄⁄p < 0.05 compared with BSO treated group, #p < 0.05 compared with PTZ-treated group (n = 6–8).

Fig. 6. Effect of acute caffeine administration (6 mg/kg, p.o.) against behavioral and electroencephalographic seizures induced by PTZ (60 mg/kg, i.p.). Representative
electroencephalographic recordings of animals treated with Vehicle (A–C) or caffeine after PTZ injection (C and F), (A and D) basal period (B and E) vehicle or caffeine
treatment before PTZ administration. Arrows indicate PTZ injection; arrowheads indicate the first clonic seizure. Data from (G) Latency for first clonic seizure; (H) latency for
generalized tonic-clonic seizure; (I) time spent in generalized tonic-clonic seizure are presented as median and interquartile range. Data from (J) wave amplitude
quantification are presented as the mean ± S.E.M. ⁄p < 0.05 compared with PTZ-treated group #p < 0.05 compared with caffeine-treated group (Mann–Whitney test and One-
way Anova test, n = 7 = 8).
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Fig. 7. Effect of acute caffeine administration (6 mg/kg, p.o.) on the oxidative damage induced by PTZ (60 mg/kg, i.p.). The effect of caffeine and PTZ on GSH content (A), DCFH
oxidation (B), TBARS content (C) and Na+, K+, ATPase activity. Data are presented as the mean ± S.E.M Two-Way Anova ⁄p < 0.05 compared with vehicle-treated group (n = 7–
8).
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caffeine is similar to that of glutathione and higher than that of
ascorbic acid (Devasagayam et al., 1996).

Studies clearly show that the effect of neuroprotection afforded
by chronic caffeine consumption in animal models of health disor-
ders associated with ROS generation such as Alzheimer’s disease
(Dall’Igna et al., 2003; Canas et al., 2009) and Parkinson’s disease
(Chen et al., 2001; Pierri et al., 2005) is mediated by adenosine
A2A receptors controlling synaptic dysfunction and neuroinflam-
mation. Whether it involves a control of the formation of free rad-
icals needs to be better clarified (Prasanthi et al., 2010; Rosso et al.,
2008).

In the present study, the occurrence of DCFH-DA oxidation,
TBARS increase, decrease in GSH content, and Na+, K+-ATPase activ-
ity inhibition after PTZ injection suggests that epileptic seizures
elicited by this convulsant agent were accompanied by an increase
of oxidative stress. In addition, the increase of ROS production at-
tacks the unsaturated bonds of membrane fatty acids leading to an
autocatalytic process called membrane lipid peroxidation, which
may impair the function of several membrane transport proteins
including Na+, K+-ATP-ase (Marnett, 2002). Thus, the alteration in
the redox state of regulatory sulfhydryl groups in selected targets
such as Na+, K+-ATPase activity might increase cellular excitability
(Boldyrev et al., 2003; Franzon et al., 2003; Morelli et al., 2005).
GSH is the major determinant of the cellular redox state (Haddad
and Harb, 2005), in fact, the depletion of GSH results in the inhibi-
tion of the Na+, K+-ATPase activity (Petrushanko et al., 2006) and
increase of lipid peroxidation in models of seizures induced by
PTZ (Kumar and Gandhimathi, 2010). Furthermore, it has been
demonstrated that the intracerebroventricularly administered
GSH inhibited PTZ induced convulsions in mice (Abe et al., 2000)
and protected against seizure episodes induced by diphenyl disel-
enide in rat pups by reducing oxidative stress (Prigol et al., 2011).

In line with this view, results presented in this report also re-
vealed that caffeine supplementation increased GSH content per
se. Considering that caffeine supplementation leads to the develop-
ment of compensatory responses to oxidative stress induced by the
experimental model of Alzheimer’s and Parkinson’s diseases
(Nobre et al., 2010; Rosso et al., 2008) and GSH protects against
free radical-induced Na+, K+-ATPase inhibition (Tsakiris et al.,
2000), we suggest that the increase of antioxidant defenses
(GSH) in this protocol of caffeine supplementation may protect
against Na+, K+-ATPase inhibition induced by PTZ. In fact, the infu-
sion of BSO (a GSH inhibitor synthesis) decreased GSH content,
Na+, K+-ATPase activity and increased DCFH-DA oxidation per se
as well as reverted the protective effect exerted by caffeine against
PTZ-induced EEG seizures.

In conclusion, the present study reports that increased GSH lev-
els and control of oxidative damage could be the putative effects by
which the chronic consumption of caffeine affords its neuroprotec-
tive effects against convulsive behavior and excitotoxic damage in-
duced by PTZ in vivo. Although further studies are necessary to
determine the mechanisms involved in this protective action ex-
erted by caffeine, these experimental findings suggest that the
administration of low doses of caffeine may be a new therapeutic
approach to control acute and chronic excitotoxicity including
seizure activity.
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