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The primary objective of the present work is to make further connections between variational methods
on the one hand and reversible and irreversible thermodynamics on the other. This begins with the devel-
opment of a new stationary principle, involving mixed field variables, for continuum problems in infin-
itesimal dynamic thermoelasticity. By defining Lagrangian and dissipation functions in terms of
physically-relevant contributions and invoking the Rayleigh formalism for damped systems, we are able
to recover the governing equations of thermoelasticity as the Euler–Lagrange equations. This includes the
balance laws of linear momentum and entropy-energy, the constitutive models for elastic response and
heat conduction, and the natural boundary conditions. By including energy contributions associated with
second sound phenomena, one eliminates the paradox of infinite thermal propagation speeds and the
resulting set of governing equations has an elegant symmetry, which is most easily seen in the Fourier
wave number domain. A related formulation for dynamic poroelasticity yields two new stationary mixed
variational principles. Depending upon the selection of primary field variables, these governing equations
can also exhibit an elegant structure, which can deepen our understanding of the underlying phenomena
and the thermoelastic–poroelastic analogy. In addition to the theoretical significance, the variational for-
mulations developed here can provide the basis for a class of optimization-based methods for computa-
tional mechanics.

� 2012 Published by Elsevier Ltd.
1. Introduction

The original variational formulations for dynamical systems by
Fermat, Lagrange and Hamilton dealt with conservative phenom-
ena of discrete particle systems. For cases involving known forces
derivable from a potential, this approach leads to a principle of
least action, while in more general situations, the variational for-
mulations result in only stationary principles. The development
of a variational framework for such reversible mechanical systems
is now standard with the formulations given in many classical
monographs, including those by Lanczos (1949), Goldstein (1950)
and Gelfand and Fomin (1963). Meanwhile, the extension to elas-
todynamic problems of continua is also well established and may
be found in Goldstein (1950) and Dym and Shames (1973), among
others. On the other hand, the connection of variational ap-
proaches to the thermodynamics of reversible and irreversible pro-
cesses remains under development. In the current paper, we
consider that connection within the context of thermoelasticity
and poroelasticity and present several mixed variational principles.
Elsevier Ltd.

: +1 716 645 2883.
akis), gdargush@ buffalo.edu
Reversible thermodynamics deals with problems that are in
thermodynamic equilibrium states. This limits the theory to sys-
tems that do not exchange energy with the surroundings, or, in
other words, systems isolated from the environment. In a reversible
process, the total entropy of the system is unchanged. Of course,
many phenomena are associated with energy flow and non-equilib-
rium processes, including heat diffusion, chemical diffusion, electri-
cal current flows and mass flows. The theory of irreversible or, more
appropriately, non-equilibrium thermodynamics was developed to
study these dissipative processes. Following the seminal work of
Onsager (1931a,b), the theory is limited to non-equilibrium pro-
cesses that are microscopically reversible (local equilibrium). In
these papers, Onsager stated the principle of the least dissipation
of energy, which plays an important role in the modern develop-
ments of non-equilibrium thermodynamics. Onsager, through sta-
tistical mechanics considerations, postulated his fundamental
theorem stating that the relationships between effects (fluxes)
and causes (forces) must be symmetric. Many examples of such
phenomenological laws describing non-equilibrium phenomena
and processes exist: Newton’s law between force and velocity gra-
dient, Fourier’s law between heat flux and temperature gradient,
Ohm’s law between electrical current and potential gradient; Fick’s
law between matter flow in a mixture and concentration gradient
(Casimir, 1945; de Groot, 1951; Prigogine, 1967). Following the
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approach originally proposed by Rayleigh for mechanical damping
of a viscous nature, these phenomena can be brought into a varia-
tional formulation by introducing a quadratic dissipation function
(Rayleigh, 1877; Marsden and Ratiu, 1994). As an alternative ap-
proach, generalized bracket formalisms also have been developed
to address a broad range of dissipative processes (Kaufman, 1984;
Morrison, 1984; Grmela, 1984; Beris and Edwards, 1994; Grmela
and Ottinger, 1997; Ottinger and Grmela, 1997).

Significant contributions to relate the fields of thermoelasticity
and irreversible thermodynamics have been made by Biot. In partic-
ular, Biot (1954) discusses viscoelastic dissipative processes within
the Lagrangian framework by introducing positive definite potential
and dissipation functions. He also notes that other dissipative pro-
cesses governed by the theorem of Onsager (1931a,b) will follow
similarly. However, he then introduces operator notation and aban-
dons a direct time-domain extension of Lagrangian dynamics and
Hamilton’s principle. In Biot (1955), he derives a principle of mini-
mum rate of entropy production, which assumes that the disequilib-
rium forces are constant. From one perspective, this can be viewed as
the dissipative counterpart of the principle of least action. After-
ward, Biot (1956a) presents a complete theory of thermoelasticity
and irreversible thermodynamics from a Lagrangian viewpoint.
However, he then introduces generalized coordinates and, conse-
quently, never actually deals with tractions and heat fluxes within
the Lagrangian framework. Two decades later, Biot (1973) provides
a more complete presentation of the variational formulation for
thermoelasticity with displacement and heat vector as primary vari-
ables. However, even in this framework, Biot introduces generalized
coordinates to realize the Euler–Lagrange equations. Of course, Biot
also made seminal contributions in the analogous field of poroelas-
ticity. This includes his work on the dynamics of porous media (Biot,
1956 b,c; 1962 a,b), which is directly relevant here.

Many other attempts to propose a unified theory for dissipative
and non-dissipative systems have been made. For example, Morse
and Feshbach (1953) proposed the simultaneous consideration of a
mirror-image of the governing equation. For dissipative systems,
such as the diffusion and the heat conduction equation, with the
mirror-image they defined a mirror-image system that gains the
same amount of energy as the real system dissipates. Nevertheless,
the calculated momentum densities had nothing to do with the
physical phenomena. Vujanovic and Djukic (1972) presented a var-
iational approach based on Hamilton’s principle for nonlinear heat
transfer problems. The authors assumed a Lagrangian function
that, in addition to the field variables and their first derivatives,
was also a function of some arbitrary functions that were not sub-
ject to variation. From the Lagrangian function, after applying the
Euler–Lagrange equations, the one-dimensional heat conduction
equation was derived by taking into account finite velocity of heat
propagation. Kotowski (1992) reported that application of the Noe-
ther theorem to the proposed Lagrangian by Vujanovic and Djukic
gave results for internal energy density, internal energy flux and
stress that contradicted known theories and experiments.

In a series of papers, Anthony presented theories by means of a
Lagrangian formalism for irreversible processes in dislocation
dynamics (Anthony and Azirhi, 1995), in thermodynamics of irre-
versible processes for kinetic equations, such as the Fokker–Planck
and Boltzmann equations (Sievers and Anthony, 1996), and thermo-
dynamics of reversible and irreversible processes (Anthony, 2001).
The main notion in the Anthony theory is the introduction of com-
plex-valued fields, with which he presented an example of how to
construct new fields that describe cross-effects and dissipation. In
his most recent paper mentioned above (Anthony, 2001), Anthony
stated his opinion that the irreversible thermodynamics can be
brought within the framework of a Lagrangian formalism, even
though one is faced with the dogma that this is not possible (e.g.,
Bauer, 1931). In particular, Anthony (2001) presented a unified
theory for reversible and irreversible processes by introducing
complex-valued fundamental field variables instead of the
traditional variables, such as temperature, mass densities and veloc-
ities. For irreversible thermodynamics, he introduced the complex-
valued field of thermal excitation, or thermion field, and the
complex-valued matter field. He proposed that it is possible to con-
tain all the information for the physical irreversible process in one
function, the Lagrangian function. Anthony presented one example
of reversible material flow, and two examples of irreversible ther-
modynamical processes that were described as pure phenomena
without mutual coupling. With the introduction of non-traditional
complex field variables, the full significance of this approach
remains unclear.

More recently, Maugin and Kalpakides (2002) presented a Ham-
iltonian formulation for elasticity and thermoelasticity. They stud-
ied a Lagrangian formulation for the Green and Naghdi (1993)
dissipation-less thermoelasticity. In contrast to classical thermo-
elasticity, where heat flow is characterized by the Fourier law, in
Green-Naghdi thermoelasticity, the heat flow does not include en-
ergy dissipation and the propagation of heat is assumed as thermal
waves, traveling at finite speed. However, this dissipation-less
model is appropriate only in very special physical circumstances.

The present work focuses on the development of several new
mixed variational statements for dynamical continuum problems
of thermoelasticity and poroelasticity. It is well-known that dissi-
pative processes cannot be expressed in a Lagrangian function in
the time-domain. Instead, in the present paper the irreversible
phenomena associated with the above problems are incorporated
through the use of dissipation functions, following the approach
first introduced by Rayleigh (1877). Although the Rayleigh ap-
proach is not strictly a pure variational statement, the resulting
formulations offer additional insight into these types of coupled
problems and also will provide the basis for the subsequent devel-
opment of novel optimization-based computational methods. The
remainder of the paper is organized as follows. In Section 2, we
present the mixed thermoelastic variational formulation by intro-
ducing the primary field variables, defining the Lagrangian and dis-
sipation functions, establishing the first variation of the action and
extracting the Euler–Lagrange equations. Afterward, we transform
the governing equations to the Fourier wave number domain to ex-
plore the character from a different perspective. The corresponding
mixed variational statement for poroelasticity is the focus of Sec-
tion 3. Here two different forms are considered, with the second
version elucidating further symmetries. This latter form also leads
to closer analogies with the thermoelastic formulation, which is
discussed more fully in Section 4. Finally, several overall conclu-
sions are provided in Section 5.

2. Mixed Lagrangian Formalism (MLF) for thermoelasticity

2.1. Primary variables

For a general mixed formulation of infinitesimal thermoelastic-
ity, let the mechanical response be represented by the displace-
ment ui and the impulse of the elastic stresses Jij. Meanwhile, the
thermal field is described in terms of h, the impulse of the temper-
ature T and the heat vector Hi. For consistency, one can view dis-
placement ui as the impulse of the velocity v i and the heat
vector Hi as the impulse of the heat flux qi. Thus, in integral form,
we may write

uiðtÞ ¼
Z t

0
v iðtÞdt ð1aÞ

JijðtÞ ¼
Z t

0
ðrijðtÞ þ bijTðtÞÞdt ¼

Z t

0
re

ijðtÞdt ¼
Z t

0
CijkleklðtÞdt ð1bÞ
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hðtÞ ¼
Z t

0
TðtÞdt ð1cÞ

HiðtÞ ¼
Z t

0
qiðtÞdt ð1dÞ

or in rate form

_ui ¼ v i ð2aÞ

_Jij ¼ ðrij þ bijTÞ ¼ re
ij ¼ Cijklekl ð2bÞ

_h ¼ T ð2cÞ

_Hi ¼ qi ð2dÞ

where rij and eij represent the total stress and strain tensors, while
Cijkl and bij are the usual constitutive tensors for anisotropic thermo-
elastic media. Additionally, in (1b) and (2b), re

ij are the purely elastic
stresses associated with the total strains. By selecting the primary
variables in this manner, we shall find that an elegant symmetry ob-
tains in the governing equations of thermoelasticity. We focus next
on the formulation of a mixed variational statement.

2.2. Lagrangian, applied load potential and dissipation functions

In order to extend the mixed variational formulation for
mechanical systems by Sivaselvan and Reinhorn (2006) and
Sivaselvan et al. (2009) to coupled dynamic thermoelasticity, we
must define Lagrangian L, applied load potential V and dissipation
F functions. The objective here is to describe these functions in
terms of physically meaningful contributions representing the
non-dissipative and dissipative processes associated with thermo-
elastic response. Let LX represent the volumetric Lagrangian.
Meanwhile, let VX denote the potential of the applied body forces
and heat sources, with VCs and VCq as the surface potentials due to
applied natural boundary conditions of traction and heat flux,
respectively. On the other hand, the dissipative processes are as-
sumed to be described exclusively by volumetric contributions
defined in FX, although more generally some dissipative surface
terms also could be postulated. The specific mixed forms adopted
in the present work can be written as follows:

LX ¼
1
2
qo _uk _uk þ

1
2

Aijkl
_Jij

_Jkl þ ðJij � bijhÞBijk _uk þ
1
2

qoce

To

_h2

þ 1
2

kijso
1
To

_Hi
_Hj �

1
To

HiDi
_h in X ð3Þ

VX ¼ f
_

kuk þ
1
To

W
_

h in X ð4aÞ

VCs ¼ s
_

kuk on Cs ð4bÞ

VCq ¼ �
1
To

q
_ðnÞh on Cq ð4cÞ

FX ¼
1
2

kij
1
To

_Hi
_Hj in X ð5Þ

Here, To is the initial temperature at the free stress state, while T be-
comes the temperature change from that state. Additionally, qo is
the mass density, f

_

k represents a specified body force density, ce

is the specific heat coefficient, W
_

is a specified heat source, and so

is a relaxation time for the extended Fourier’s heat conduction
law. Furthermore, s

_

k are the tractions specified on the portion of
the surface Cs, while q

_ðnÞ represent the specified normal heat fluxes
on Cq. The constitutive tensors Aijkl and kij are the inverses of Cijkl
and the conductivity jij, respectively. Finally, Di and Bijk are differ-
ential operators. The former represents the spatial gradient opera-
tor, while the latter third order tensor operator extracts strain
rates from the velocity field. Thus, we have

_eij ¼ Bijk _uk ð6Þ

with

Bijk ¼
1
2
ðdikdjq þ diqdjkÞ

@

@xq
ð7Þ

where xq represent the spatial coordinates.

2.3. Action functional and the first variation

With these definitions, the action functionals IL and IV associ-
ated with the Lagrangian and potential contributions become

IL ¼ �
Z tf

0

Z
X

LX dXdt ð8Þ

IV ¼ IVX
þ IVC

¼ �
Z tf

0

Z
X

VX dXdt �
Z tf

0

Z
Cs

VCs dCdt �
Z tf

0

Z
Cq

VCq dCdt ð9Þ

where IVX
represents the action due to volumetric applied forces

and sources, while IVC is the portion of the action corresponding
to applied surface mechanical and thermal loading.

Although the action functional I F corresponding to the dissipa-
tion function cannot be written in explicit form, following the ap-
proach originally adopted by Rayleigh (1877), and subsequently by
Biot (1954, 1955) within the context of thermoelasticity, the first
variation of the total action may be written:

dI ¼ dIL þ dIV þ dIF ð10Þ

or by considering (5), (8), and (9)

dI ¼ �d
Z tf

0

Z
X

LX dXdt � d
Z tf

0

Z
X

VX dXdt

þ
Z tf

0

Z
X

@FX

@ _Hi

dHi dXdt � d
Z tf

0

Z
Cs

VCs dCdt

� d
Z tf

0

Z
Cq

VCq dCdt ð11Þ

Then, after substituting the detailed expressions in (4a-c) and
(5), this becomes

dI ¼ �d
Z tf

0

Z
X

LX dXdt �
Z tf

0

Z
X

f
_

kduk dXdt

�
Z tf

0

Z
X

1
To

W
_

dhdXdt þ
Z tf

0

Z
X

kij
1
To

_HjdHi dXdt

�
Z tf

0

Z
Cs

s
_

kduk dCdt þ
Z tf

0

Z
Cq

1
To

q
_ðnÞdhdCdt ð12Þ

Now all that remains is to address the specific terms in the first
integral on the right-hand side of (12). After substituting (3) into
this integrand, we may write

� d
Z tf

0

Z
X

LX dXdt ¼ �d
Z tf

0

Z
X

1
2
qo _uk _uk þ

1
2

Aijkl
_Jij

_Jkl

�

þðJij � bijhÞBijk _uk

�
dXdt � d

Z tf

0

Z
X

1
2

qoce

To

_h2 þ 1
2

kijso
1
To

_Hi
_Hj

�

� 1
To

HiDi
_h

�
dXdt ð13Þ
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The integral on the right-hand side of (13) has six terms. The
treatment of two representative terms is presented below in detail,
while the derivation of the other terms follows in a straight for-
ward manner.

Term 1: By applying integration by parts, we find

�d
Z tf

0

Z
X

1
2
qo _uk _ukdXdt ¼ �

Z tf

0

Z
X
qo _ukd _ukdXdt

¼ �
Z

X
qo _ukdukdXjtf

0 �
Z tf

0

Z
X
qo€ukdukdXdt

� �

¼
Z tf

0

Z
X
qo€ukdukdXdt

ð14Þ

where the final form is obtained by assuming duk is zero at the two
ends of the time interval, as is usually done in Hamilton’s principle.

Term 3: This third term is first separated into two contributions.
Thus, we let

�d
Z tf

0

Z
X
ðJij � bijhÞBijk _ukdXdt ¼ �d

Z tf

0

Z
X

JijBijk _ukdXdt

þ d
Z tf

0

Z
X

bijhBijk _ukdXdt ð15Þ

From (6) and the symmetry condition Jij ¼ Jji, we have

JijBijk _uk ¼ Jij _ui;j ð16Þ

and the first integral on the right-hand side of (15) can be rewritten

�d
Z tf

0

Z
X

JijBijk _ukdXdt ¼ �
Z tf

0

Z
X

dJijBijk _ukdXdt

�
Z tf

0

Z
X

Jijd _ui;jdXdt ð17Þ

Then, applying integration by parts and the divergence theorem
to operate on the spatial derivative in the last term in (17), we
find

�
Z tf

0

Z
X

Jijd _ui;jdXdt ¼ �
Z tf

0

Z
X
ðJijd _uiÞ;jdXdt þ

Z tf

0

Z
X

Jij;jd _uidXdt

¼ �
Z tf

0

Z
C

Jijnjd _uidCdt þ
Z tf

0

Z
X

Jij;jd _uidXdt ð18Þ

Since this still involves temporal derivatives of the displace-
ment variations (i.e., d _uk), we use another integration by parts,
but now over time, to produce

�
Z tf

0

Z
X

Jijd _ui;jdXdt ¼ �
Z

C
JijnjduidC

����
tf

0
þ
Z tf

0

Z
C

_JijnjduidCdt

þ
Z

X
Jij;jduidX

����
tf

0
�
Z tf

0

Z
X

_Jij;jduidXdt ð19Þ

After letting the variations of duk equal zero at the beginning
and end of the time interval and then substituting into (17), we
have

�d
Z tf

0

Z
X

JijBijk _ukdXdt ¼ �
Z tf

0

Z
X

Bijk _ukdJijdXdt

þ
Z tf

0

Z
C

_JijnjduidCdt �
Z tf

0

Z
X

_Jij;jduidXdt

ð20Þ

A similar manipulation for the second integral on the right-
hand side of (15), with symmetric bij, eventually leads to
d
Z tf

0

Z
X

bijhBijk _ukdXdt ¼
Z tf

0

Z
X

bijBijk _ukdhdXdt

�
Z tf

0

Z
C

bij
_hnjduidCdt

þ
Z tf

0

Z
X

bij
_h;jduidXdt ð21Þ

Substituting the expressions of all the derived terms above into
(13) and then (12) provides the statement for the first variation of
the action dI. After grouping terms containing the variations of the
primary mixed variables duk, dJij, dHi, and dh, we may write:

dI ¼
Z tf

0

Z
X

qo€uk � _Jkj;j þ bkj
_h;j � f

_

k

� �
dukdXdt

þ
Z tf

0

Z
X

Aijkl
€Jkl � Bijk _uk

� 	
dJijdXdt

þ
Z tf

0

Z
X

bijBijk _uk þ
qoce

To

€hþ 1
To

_Hi;i �
1
To

W
_

� �
dhdXdt

þ
Z tf

0

Z
X

1
To

_h;i þ kijso
1
To

€Hj þ kij
1
To

_Hj

� �
dHi dXdt

þ
Z tf

0

Z
C

_Jkjnj � bkj
_hnj

� 	
dukdCdt �

Z tf

0

Z
Cs

s
_

kdukdCdt

�
Z tf

0

Z
C

1
To

_HinidhdCdt þ
Z tf

0

Z
Cq

1
To

q
_ðnÞdhdCdt ð22Þ

Recall that Cs and Cq are the portions of the surface on which
tractions and heat flux boundary conditions are specified. Next, de-
fine Cu and Ch as the portions of the surface with prescribed dis-
placements and temperatures, respectively. More generally, one
also could have compliant or convection boundary conditions.
Although, this extension is not difficult to accommodate within
the proposed framework, for simplicity we take

Cs [ Cu ¼ C ð23aÞ

Cs \ Cu ¼ ; ð23bÞ

Cq [ Ch ¼ C ð24aÞ

Cq \ Ch ¼ ; ð24bÞ
2.4. Principle of stationary action

Now we seek the conditions required for stationarity of the
thermoelastic action, such that

dI ¼ 0 ð25Þ

along with arbitrary variations of the elastic stress impulse dJij and
the heat vector dHi, and kinematically-compatible displacement
variations duk and thermally-compatible temperature variations
dh. Enforcing these conditions on (22) yields the following Euler–
Lagrange equations governing thermoelasticity over the domain X

qo€uk � Bijkð_Jij � bij
_hÞ ¼ f

_

k ð26aÞ

Aijkl
€Jkl � Bijk _uk ¼ 0 ð26bÞ

qoce

To

€hþ 1
To

Di
_Hi þ bijBijk _uk ¼

1
To

W
_

ð26cÞ

kijso
1
To

€Hi þ kij
1
To

_Hi þ
1
To

Dj
_h ¼ 0 ð26dÞ
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and on the boundary

_Jkjnj � bkj
_hnj ¼ s

_

k ) rijnj ¼ s
_

k on Cs ð27aÞ

duk ¼ 0 on Cu ð27bÞ

1
To

_Hini ¼
1
To

q
_ðnÞ on Cq ð27cÞ

dh ¼ 0 on Ch ð27dÞ

Equation (26a) represents linear momentum balance, (26b) is
the linear elastic constitutive relation in rate form and (26c) is
the entropy-energy balance equation with

_S ¼ � 1
To

_Hi;i þ
1
To

W
_

ð28Þ

as the entropy density rate. The fourth governing equation, (26d)
represents the extended Fourier’s law of heat conduction (Chester,
1963).

We also should note that the symmetry of _Jij and bij have per-
mitted the reintroduction of the differential tensor operator Bijk

in (26a). Similarly, the gradient operator Di is used to denote spa-
tial derivatives in (26b) and (26d). Additionally, we should men-
tion that due to the presence of these differential operators in
the Lagrangian definition, the usual simplified formulas cannot
be invoked to construct the Euler–Lagrange equations. Instead,
spatial integration by parts operations are needed to create the
governing equations and boundary conditions, as was demon-
strated above.

To summarize, in this section, we have developed a mixed vari-
ational principle for thermoelasticity, which recovers all of the gov-
erning equations and natural boundary conditions of the
extended theory. In the absence of heat conduction, all internal
processes are conservative and a true stationary principle for the
action IL þ IV can be developed. When energy dissipation associ-
ated with heat conduction is included, we follow the approach of
Rayleigh to construct the first variation of the action, even though
the action itself cannot be defined in explicit form.

Using the ideas presented in Apostolakis and Dargush (2012),
this new stationary principle for thermoelasticity can lead to the
development of a minimum principle in discrete form with the
proper selection of state variables and temporal action sum opera-
tors. Details on this and the corresponding mixed finite element
method will be presented elsewhere.

2.5. Fourier domain and symplectic form

An interesting aspect of the character of thermoelasticity can be
seen by writing the governing differential equations (26a-d) in
terms of the rate variables v j, re

mn, T , qs and then transforming into
Fourier wave number space. The resulting equations can be ex-
pressed in the following form:

qodij 0 0 0

0 Aklmn 0 0

0 0 qo�ce 0

0 0 0 s0
�krs

2
666664

3
777775

_~v j

_~re
mn

_~T

_~qs

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 i~Bmni �i~Bpqibpq 0

i~Bklj 0 0 0

�i~Bpqjbpq 0 0 �i~Ds

0 0 �i~Dr ��krs

2
6666664

3
7777775

~v j

~re
mn

~T

~qs

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ

~f j

0

~W

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð29Þ
where

~Bijk ¼
1
2
ðdikkj þ djkkiÞ ð30aÞ

~Di ¼
ki

To
ð30bÞ

�ce ¼
ce

To
ð30cÞ

�krs ¼
krs

To
ð30dÞ

with ki as the Fourier wave number vector. By introducing Voigt
notation for stress quantities, the left-hand side coefficients in
(29) can be formatted as a symmetric, block diagonal matrix. Mean-
while, on the right-hand side, the corresponding matrix of coeffi-
cients can be decomposed into two sets of components to
produce the following set of equations:

qoI 0 0 0

0 A 0 0

0 0 q0�ceI 0

0 0 0 s0
�k

2
66664

3
77775

_~v
_~re

_~T
_~q

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0 i~BT �ib~B 0

i~B 0 0 0

�i~BTbT 0 0 �i~DT

0 0 �i~D 0

2
66664

3
77775

~v
~re

~T
~q

8>>>><
>>>>:

9>>>>=
>>>>;

þ

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ��k

2
66664

3
77775

~v
~re

~T
~q

8>>>><
>>>>:

9>>>>=
>>>>;
þ

~f

0
~W

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð31Þ

Now in (31), the first set of terms on the right-hand side in-
cludes all of the conservative thermoelastic processes represented
through a skew-Hermitian coefficient matrix, which portrays the
symplectic nature of these contributions. Meanwhile, the first set
of terms on the second line contains the contribution from the
non-conservative process of heat conduction. Notice that this latter
process is represented by a negative definite Hermitian matrix that
provides the energy dissipation.

3. Mixed Lagrangian Formalism (MLF) for poroelasticity

3.1. Primary variables

For a poroelastic continuum under infinitesimal poroelasticity,
let v i and �rij represent the velocity and effective stress of the solid
skeleton, respectively. Meanwhile, for the pore fluid, let p and qi

denote the pore pressure and the average velocity relative to the
solid skeleton, respectively. Then, the impulses of these four quan-
tities are defined as ui, Jij, p and wi, respectively, where

uiðtÞ ¼
Z t

0
v iðtÞdt ð32aÞ

JijðtÞ ¼
Z t

0
�rijðtÞdt ¼

Z t

0
CijkleklðtÞdt ð32bÞ

pðtÞ ¼
Z t

0
pðtÞdt ð32cÞ

wiðtÞ ¼
Z t

0
qiðtÞdt ð32dÞ

For example, ui is the solid skeleton displacement and wi rep-
resents the average pore fluid displacement relative to the solid
skeleton. A number of dynamic poroelastic formulations are writ-
ten in terms of ui and wi as primary variables (e.g., Biot, 1962b;
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Predeleanu, 1984; Manolis and Beskos, 1989). Here, we consider
mixed formulations written in terms of all four variables. Further-
more, in rate form, we have for these variables

_ui ¼ v i ð33aÞ

_Jij ¼ �rij ¼ Cijklekl ð33bÞ

_p ¼ p ð33cÞ

_wi ¼ qi ð33dÞ

where eij represents the total strain tensor, while Cijkl is the linear
elastic constitutive tensor for the solid skeleton in terms of drained
properties. In addition, the total stress rij can be written in terms of
the effective stress and pore pressure as

rij ¼ �rij � bijp ð34Þ

with bij representing a constitutive tensor for anisotropic poroelas-
tic media relating to compressibility of the two-phase mixture. For
the isotropic case, bij ¼ bdij .

3.2. Principle of stationary action

Following an approach similar to that taken for thermoelastici-
ty, we begin by adopting the Lagrangian, potential and dissipation
functions in the form:

LX ¼
1
2
ð1� nÞqs _uk _uk þ

1
2

Aijkl
_Jij

_Jkl þ ðJij � bijpÞBijk _uk þ
1
2

1
Q

_p2

þ 1
2

nqf _uk þ
_wk

n

� �
_uk þ

_wk

n

� �
�wiDi _p in X ð35Þ

VX ¼ f
_

kuk þ C
_

p in X ð36aÞ

VCs ¼ s
_

kuk on Cs ð36bÞ

VCq ¼ �q
_ðnÞp on Cq ð36cÞ

FX ¼
1
2

kij _wi _wj in X ð37Þ

where qs and qf represent the mass density of the solid and fluid,
respectively, while n is the porosity and Q is the Biot parameter
to account for compressibility of the two-phase mixture. Addition-
ally, in (36), f

_

k represents a specified body force density, C
_

is a spec-
ified volumetric body source rate, s

_

k are the tractions specified on
the portion of the surface Cs, while q

_ðnÞ represents the specified nor-
mal relative fluid volume discharge on Cq. The constitutive tensors
Aijkl in (39) and kij in (37) are the inverses of the elastic moduli of the
solid skeleton Cijkl and the permeability jij, respectively. The perme-
ability, in turn, can be written as jij ¼ kij=g, where kij and g repre-
sent the specific permeability and pore fluid viscosity,
respectively. Finally, Di and Bijk represent the same differential oper-
ators that were defined previously for thermoelasticity.

Proceeding as in thermoelasticity, the action functionals IL and
IV associated with the Lagrangian and potential contributions can
be written

IL ¼ �
Z tf

0

Z
X

LXdXdt ð38Þ

IV ¼ IVX
þ IVC ¼ �

Z tf

0

Z
X

VXdXdt �
Z tf

0

Z
Cs

VCs dCdt

�
Z tf

0

Z
Cq

VCq dCdt ð39Þ
where IVX represents the action due to volumetric applied forces
and sources, while IVC is the portion of the action corresponding
to applied surface traction and normal fluid discharge loading. As
a result, the first variation of the total action may be written:

dI ¼ dIL þ dIV þ dIF ð40Þ

with dIF representing the variation associated with the dissipation
function F X in (37). By considering (35), (36a–c), (37)–(39), we
have

dI ¼ �d
Z tf

0

Z
X

LXdXdt � d
Z tf

0

Z
X

VXdXdt þ
Z tf

0

Z
X

@FX

@ _wi
dwidXdt

� d
Z tf

0

Z
Cs

VCs dCdt � d
Z tf

0

Z
Cq

VCq dCdt ð41Þ

Then, we seek the conditions required for stationarity of the
poroelastic action, such that

dI ¼ 0 ð42Þ

First, we substitute (35), (36a–c), (37) into (41) and apply
integration by parts and the divergence theorem, where appropri-
ate, as in the thermoelastic case. Then, we assume arbitrary varia-
tions of the elastic stress impulse dJij and the average relative
pore fluid displacement dwi, along with kinematically-compatible
displacement variations duk and hydraulically-compatible pore
pressure impulse variations dp. As a result, we obtain the Euler–
Lagrange equations governing poroelasticity over the domain X
in the following form:

qo€uk þ qf €wk � Bijkð_Jij � bij _pÞ ¼ f
_

k ð43aÞ

Aijkl
€Jkl � Bijk _uk ¼ 0 ð43bÞ

1
Q

€pþ Di _wi þ bijBijk _uk ¼ C
_

ð43cÞ

qf

n
€wj þ qf €uj þ kij _wi þ Dj _p ¼ 0 ð43dÞ

and over the surface as the conditions:

duk ¼ 0 on Cu ð44aÞ

_Jkjnj � bkj _pnj ¼ rijnj ¼ s
_

k on Cs
_ ð44bÞ

dp ¼ 0 on Cp ð44cÞ

_wini ¼ q
_ðnÞ on C

q
_ ð44dÞ

where all quantities have been previously defined, except qo which
represents the mass density of the solid–fluid mixture. Thus,

qo ¼ ð1� nÞqs þ nqf ð45Þ

Notice that equation (43a) represents linear momentum bal-
ance, (43b) is the linear elastic constitutive relation in rate form
and (43c) is the pore fluid balance equation with
_f ¼ � _wi;i þ C

_

ð46Þ

as the fluid content rate. The remaining governing equation (43d)
represents an extended Darcy’s law for pore fluid flow.

Thus, we have developed a mixed variational principle for poro-
elasticity, which recovers all of the governing differential equations
and natural boundary conditions of the dynamical theory. In the
absence of pore fluid viscosity, all internal processes are conserva-
tive and a true stationary principle for the action IL þ IV can be
developed. When viscosity is included, energy dissipation occurs
and the first variation of the action is developed, based upon the
approach due to Rayleigh.
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We should note, however, that (43a) and (43d) involve second
order derivatives with respect to both the solid skeleton displace-
ment ui and the average relative displacement of the pore fluid wi.
This is unlike the thermoelastic result in (26a-d), in which each
equation contains second derivatives of only a single variable. In
order to seek a similar formulation in poroelasticity, let us rewrite
the action in terms of the average (total) fluid displacement Wi,
where

Wi ¼ ui þ
wi

n
ð47Þ

Then, we may introduce Qi as the average pore fluid velocity,
such that

WiðtÞ ¼
Z t

0
Q iðtÞdt ð48aÞ

_Wi ¼ Qi ð48bÞ

The Lagrangian, potential and dissipation functions now
become

LX ¼
1
2
ð1� nÞqs _uk _uk þ

1
2

Aijkl
_Jij

_Jkl þ ðJij � bijpÞBijk _uk þ
1
2

1
Q

_p2

þ 1
2

nqf
_Wk

_Wk � nðWi � uiÞDi _p in X ð49Þ

VX ¼ f
_

kuk þ C
_

p in X ð50aÞ

VCs ¼ s
_

kuk on Cs ð50bÞ

VCq ¼ �Q
_
ðnÞp on Cq ð50cÞ

FX ¼
1
2

kijn2ð _Wi � _uiÞð _Wj � _ujÞ in X ð51Þ

with Q
_
ðnÞ as the known specific discharge vector across the

boundary.
After following what is now a standard procedure, we have an

alternative set of Euler–Lagrange equations in the volume

ð1� nÞqs€uk � Bijkð_Jij � bij _pÞ � nDk _p� kkjn2ð _Wj � _ujÞ ¼ f
_

k ð52aÞ

Aijkl
€Jkl � Bijk _uk ¼ 0 ð52bÞ

1
Q

€pþ Dið _Wi � _uiÞ þ bijBijk _uk ¼ C
_

ð52cÞ

nqf
€Wj þ kijn2ð _Wi � _uiÞ þ nDj _p ¼ 0 ð52dÞ

and over the boundary

duk ¼ 0 on Cu ð53aÞ

_Jkjnj � bkj _pnj ¼ rkjnj ¼ s
_

k on Cs ð53bÞ

dp ¼ 0 on Cp ð53cÞ

_Wini ¼ Q
_
ðnÞ on Cq ð53dÞ

Thus, we have another form of a mixed variational principle for
poroelasticity. Notice, however, that the governing differential
equations now have a more elegant structure, which can be recog-
nized easily by transforming to the Fourier wave number domain.
The final result can be written in matrix form as
ð1� nÞqsI 0 0 0
0 A 0 0
0 0 I=Q 0
0 0 0 nqf I

2
6664

3
7775

_~v
_~re

_~p
_~Q

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0 i~BT �iðb~B� ~DÞ 0

i~B 0 0 0
�ið~BTbT � ~DTÞ 0 0 �i~DT

0 0 �i~D 0

2
66664

3
77775

~v
~re

~p
~Q

8>>><
>>>:

9>>>=
>>>;

þ

�n2k 0 0 n2k

0 0 0 0
0 0 0 0

n2k 0 0 �n2k

2
6664

3
7775

~v
~re

~p
~Q

8>>><
>>>:

9>>>=
>>>;
þ

~f
0
~C

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð54Þ

where ~Bijk is defined by (30a) and

~Di ¼ nki ð55Þ

with ki as the Fourier wave number vector. The skew-Hermitian
matrix on the first line of the right-hand side of (54) embodies all
of the conservative poroelastic processes, while the effect of pore
fluid viscosity leads to the negative semi-definite Hermitian matrix
on the second line that embodies the energy dissipation. On the
other hand, for inviscid pore fluids, the representation can be re-
duced to symplectic form, which is the characteristic of conserva-
tive systems.

4. Discussion

In the previous two sections, we have developed several new
mixed variational principles for dynamical problems in thermo-
elasticity and poroelasticity. As would be expected from the origi-
nal work of Biot (1956a) and the generalized theories presented in
Cheng et al. (1991) and Chen and Dargush (1995), we find that
there is a beautiful analogy between the Euler–Lagrange differen-
tial equations resulting from these variational principles. By exam-
ining the systems of equations more deeply, we can categorize the
analogy into mathematical and physical aspects. As noted above,
the thermoelastic differential equations (26a-d) have an identical
mathematical structure to the poroelastic differential equations
(52a-d) written in terms of the average fluid displacement Wi. In
the above equations, an extended Fourier’s heat conduction law
and an extended Darcy’s law are used for the thermoelastic and
poroelastic systems, respectively. For the thermoelastic formula-
tion, the extended Fourier’s heat conduction law includes the term
kijso

1
To

€Hi, while Darcy’s extended law incorporates the term nqf
€Wi

within the poroelastic formulation. Notice the mathematical anal-
ogy of these terms, since both appear in the constitutive equations
and are expressed in terms of second order derivatives. Further-
more, if one eliminates the above terms, the result is thermoelastic
and poroelastic formulations assuming infinite wave propagation.
However, the physical analogy is not complete, since the term
kijso

1
To

€Hi represents ballistic transport within the thermal system,
while the term nqf

€Wi involves an expression of the inertia of the
poro system. Notice that the thermoelastic term involves the resis-
tivity kij of the medium and is therefore affected by the anisotropy
of the system, while the poroelastic term involves the mass density
qf of the fluid and is therefore independent of the anisotropy of the
system.

The above situation is similar to the case of the mixed formula-
tions for the purely mechanical system, written in terms of either a
Kelvin-Voigt or Maxwell model. The mixed formulation for a
mechanical continuum with a Kelvin-Voigt model is governed by
the differential equations:
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qo€uk þ Cjk _uj � Bijk
_Jij ¼ f̂ k ð56aÞ

Aijkl
€Jkl � Bijk _uk ¼ 0 ð56bÞ

Meanwhile, the governing differential equations for the Maxwell
model in mixed variables is written:

qo€uk � Bijk
_Jij ¼ f̂ k ð57aÞ

Aijkl
€Jkl þKijkl

_Jkl � Bijk _uk ¼ 0 ð57bÞ

Both sets of equations above are hyperbolic in nature. If one
wants to eliminate the terms that make these governing equations
hyperbolic, then the term qo€uk in the Kelvin-Voigt mechanical sys-
tem and the term Aijkl

€Jkl in the Maxwell mechanical system should
be eliminated. Physically, there is no analogy, since the term qo€uk

captures the inertia effect, while the term Aijkl
€Jkl expresses the solid

skeletal flexibility. In addition, notice that the Maxwell model in-
volves the flexibility Aijkl of the medium and is therefore affected
by the anisotropy of the system, as with the thermoelastic term
identified above. On the other hand, the Kelvin-Voigt term involves
the mass density qo of the medium and is therefore independent of
the anisotropy of the system, as with the poroelastic term dis-
cussed above. Further study of the physical phenomena is needed
to examine carefully these subtle differences in the thermoelastic
and poroelastic models.

Rather than adopting a Mixed Lagrangian Formalism (MLF), as
we have done here, one could develop a generalized bracket for-
malism following the ideas detailed in Beris and Edwards (1994)
or the general equation for the non-equilibrium reversible-irre-
versible coupling (GENERIC) approach (Grmela and Ottinger,
1997; Ottinger and Grmela, 1997). Both of these alternative ap-
proaches involve the definition of the reversible kinematics repre-
sented through a symplectic Poisson operator and the irreversible
contributions captured by a Ginzburg–Landau dissipative operator.
Both of these operators have certain characteristics that provide a
common structure to the evolution of a broad range of physical
processes. As might be expected, this form is also present in the Eu-
ler–Lagrange equations developed here through our Mixed
Lagrangian Formalism and is especially evident in the Fourier wave
number domain relations of (31) for thermoelasticity and (54) for
poroelasticity. However, we favor the MLF approach written in
term of impulsive variables, because it also provides underlying
scalar potentials to represent the conservative and dissipative as-
pects of the problem, as well as a weak form that can be an effec-
tive starting point for computational algorithms. Furthermore, MLF
extensions to plasticity, fracture, contact and softening already
have been demonstrated (Sivaselvan and Reinhorn, 2006; Sivasel-
van et al., 2009; Lavan et al., 2009; Lavan, 2010; Sivaselvan, 2011).

5. Conclusions

We show that it is possible to incorporate continuum thermo-
elasticity within the framework of the Lagrangian formalism. A
unified Hamiltonian approach that considers both the conservative
and dissipative characteristic of thermoelasticity is presented in
terms of mixed variables. The weak formulation starts with an
appropriate set of primary variables and the selection of the corre-
sponding Lagrangian, potential and dissipation functions, which
contain all the information for the reversible and irreversible phys-
ical processes. The action integral is introduced and, by applying
Hamilton’s action principle, as extended by Rayleigh for dissipative
systems, one arrives at the Euler–Lagrange equations, which are
the coupled thermal–mechanical equations for the continuum.
These equations include the dynamic equilibrium equation, the
thermoelastic constitutive equation, the entropy-energy balance
equation, and the extended Fourier law of heat conduction. As a re-
sult, we have a new mixed variational principle for thermoelastic-
ity of general two- or three-dimensional media under infinitesimal
theory.

By exploiting the analogy between thermoelastic and poroelas-
tic theories first identified by Biot, we then develop corresponding
mixed variational principles for fluid-infiltrated porous bodies. In
particular, using the solid skeleton displacement, impulse of the
effective stress, impulse of pore pressure and average total fluid
displacement, we construct a poroelastic formulation in close
mathematical analogy with the thermoelastic system. However,
the physical analogy is not complete, as the contributions from
the extended Fourier and Darcy laws are shown to be of a different
character.

While the results presented here are of theoretical interest, per-
haps more importantly these formulations for thermoelasticity and
poroelasticity set the stage for the development of new computa-
tional approaches in both problem domains. This will be the sub-
ject of future work.
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