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a b s t r a c t

This paper describes a novel measure called Modulated Specific Energy (SEM) which has been developed
for the purpose of characterizing drilled material in open-pit coal mining. In Monitor-While-Drilling
(MWD), the information available for coal detection are limited to a small set of drilling parameters that
can be measured on a rotary drill rig. Despite this constraint, our analysis shows that MWD can still
detect the top of the coal seam consistently without relying on geophysical data — such as bulk density
and natural gamma — by using the SEM measure. The proposal utilizes a hypothesized link between a
derived drill performance indicator (the rotation-to-thrust power ratio) and geomechanical properties of
sedimentary rock strata (shear and compressive strengths) to increase the coal discriminative power of
SEM relative to Teale's specific energy measure. Its efficacy is demonstrated using mutual information, a
simple threshold strategy and an artificial neural network. The results show the SEM can detect the coal
seam interface consistently with a greater margin for error, and overcome the problems of low specificity
and high variability observed in existing MWD approaches. By reducing the detection uncertainty, the
SEM is able to provide consistent feedback while drilling and eliminate trial-and-error. This makes coal
mining processes more integrated and reliable, which in turn improves operational effectiveness and
efficiency in coal recovery.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper presents new research and development in real-
time strata identification, where in particular, only signals mea-
sured on a rotary drill may be exploited and geophysical data are
not used. The basic premise is that these measures reflect either
directly or indirectly the mechanical responses of the rock to
forces imparted by the drill. A specific area of interest is the
application of rock mechanics principles and pattern recognition
techniques to identify boundaries between coal and non-coal
layers in a sedimentary rock mass for open-pit coal mining. An
underlying theme is the plausible connection of drill performance
indicators with geotechnical parameters such as shearing resis-
tance and compressive strength. This work shows how the Mohr–
Coulomb equation inspires the design of a robust feature that is
useful for coal seam detection.

It should be noted that successful classification of the major rock
layers (such as sandstone, siltstone and coal) depends not only on a

strong correlation between these rock types and the drill perfor-
mance indicators. To achieve consistent results, the devised mea-
sures must exhibit a high degree of invariance to changes in
operating conditions. Existing Monitor-While-Drilling (MWD)
approaches for boundary detection often exploit such correlation
[1,2], but they generally exhibit large intra-class variation. For coal
seam detectors that rely solely on raw MWD signals such as torque
and penetration rate, they are known to be highly sensitive to noise.
These attributes (low specificity and high volatility) render them
unsuitable for use in the field. Using the same MWD signals, this
work demonstrates that it is in fact possible to design a new feature
which improves noise tolerance and achieves high specificity in coal
seam detection through appropriate signal transformation.

In strip coal mining, a lot of time and energy are devoted to
removing the overburden (soil and rock material) that lie above
the coal seam. A common method for excavating this waste
material in an open-cut coal mine is the drill-blast cycle. A key
step in this process involves drilling blast holes to a specified
depth, then loading them with explosives. Currently, this is mainly
a manual-driven process. It involves trial-and-error as operators
tend to judge by feel. If the coal seam location is poorly estimated,
subsequent detonation will likely cause blast damage and con-
tamination to the coal; both outcomes are counter-productive.

To minimize blast damage, drilling needs to stop at a “stand-
off” distance from the top of the coal seam, or at least, before the
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seam is substantially penetrated. The flow chart in Fig. 1 shows
that extraneous processes are introduced when mistakes are
made. If drilling is stopped too early (a long way above the actual
coal seam), then the “resume-drill-stop-check” steps may need to
be repeated. If drilling penetrates deep into the seam, the hole
may need to be back-filled to insulate the damaging effects of
subsequent blasting. These serial dependencies compromise
operational effectiveness and mining efficiency.

Automation can increase operational effectiveness and improve
coal recovery, by eliminating the unnecessary steps and making
processes more reliable. The challenge is to detect the top of the
coal seam consistently, using only four mechanical signals pro-
vided by the rotary drills currently deployed in the field. These
include the penetration rate, rotary speed, weight on bit and
torque, which are all monitored while drilling (MWD). This
expressly forbids the use of geophysical measurements such as
bulk density and natural gamma radiation which are widely
regarded as gold standards in coal seam detection.

The objective of automated coal seam detection then is to
accurately locate the top of the coal seam — given the MWD
constraints— to minimize the amount of debris that ends up in the
coal, and volume of coal discarded as waste. This is equivalent to
finding the transition from a non-coal rock layer to a coal layer
where such an interface exists. With the objective now formally
stated, several works will be briefly reviewed to provide an
engineering context, explaining how accurate coal seam detection
might be achieved. A working hypothesis will be presented in
Section 1.2 to relate the proposed features (derived from MWD
signals) to material properties of the underlying geology.

1.1. Rock recognition using monitor-while-drilling signals

The works of Teale [3] and Scoble [4,5] are amongst the most
influential on this subject. Through empirical analysis, they
demonstrated the feasibility of using MWD signals for rock
recognition. However, this potential had not been transformed
into large scale industrial application to the best of our knowledge.
Part of the difficulties may be attributed to low data fidelity, noisy
and variable operating conditions. A robust solution that fully
integrates with systems in the field has thus far proven elusive.
The chief reason, in our view, is that few physical attributes
studied-to-date (such as torque, thrust, rotary drilling speed, and
penetration rate) possess sufficient discriminative power per se to
differentiate coal and non-coal samples on a consistent basis.
Although radiometric density measurement can reliably detect
coal seams, its operation principle [6] is currently not compatible
with monitor-while-drilling.

In the literature, Martin Gonzalez has applied supervised and
unsupervised learning techniques such as Back-Propagation Artifi-
cial Neural Networks [7,8] and Self Organizing Maps to classify
sedimentary rocks [9]. The results pertaining to coal reveal a critical
dependence of rock recognition performance on the availability of

bulk density (non-MWD) data. Using density, the detection rates
(TP and TN) range between 92% and 99%. Without density, false
positive and false negative rates (FP and FN) rise to 23.6% (see
Tables 6.2 and 7.6 in [9]). Based on these findings, a reasonable
conjecture is that deficiencies in the design of coal-sensitive
measures in the MWD feature space might be responsible for the
performance bottleneck. It is worth noting that neither Martin [9]
nor LaBelle [2] proposed any new feature which has been tested
on field data.

Feature extraction from rotary drill data has received little
attention in the literature. The proposed SEM (Modulated Specific
Energy) measure addresses this with a view of improving the
robustness of boundary detection via drilling in an MWD context.
The SEM exploits two observed properties: (P-1) the mechanical
energy required to fracture a rock mass reflects the type of rock
being drilled; and (P-2) the rotational power to thrust power ratio
(RTPR) has the ability to distinguish coal and non-coal material.

1.2. Geomechanical foundation

The first property (P-1) is exploited using the Specific Energy
for Drilling (SED) described in Section 2.1. In [10], Özgen Karacan
provided a comprehensive analysis of several mechanical proper-
ties of sedimentary rocks using sonic, density and gamma logs,
and showed the highest Young's and shear moduli are associated
with limestone and competent sandstone layers. When the layer is
shale, or coal, these values decrease abruptly. This demonstrates
that weaker rock units (such as coal) will be deformed easily when
subjected to the high stress and strain conditions that prevail
during mining. The findings reinforce Scoble's interpretation in [5]
that the SED relates directly to the strength of rocks under a given
set of operating conditions. This connection explains one of the
motivation for using the SED in our coal seam detection measure.

In rock mechanics, the Mohr–Coulomb criterion provides a
basis for understanding rock failure in terms of the rotational and
pull-down pressures exerted by the drill

τf ¼ bþ tanϕ � σn ð1Þ
Eq. (1) expresses shear stress τf as a linear function of the normal
compressive stress σn. It describes the combined forces required to
induce rock breakage. In rotary drilling, when the shearing force is
applied parallel to the bedding plane, these material properties (τf
and σn) correspond to the rotational power and thrust power
respectively. If the rotation-to-thrust power ratio (RTPR) is able to
discern coal and other rock types, then the ratio τf=σn ought to be
different for different rock types. Indeed, several works [11–13]
have shown relative differences in shear resistance exist between
different sedimentary rocks. Typical values of the internal friction
angle ϕ (also known as angle of shear resistance) are shown in
Table 1.

As a side note, the values shown in Table 1 are meant to be
indicative and not absolute. In practice, τf and σn both vary
depending on porosity, moisture content and other micro-defects,
as have been pointed out by Chang [14] and Schöpfer et al. [15].
Interestingly, Poulsen and Adhikary have shown in [16] that
despite the wide variation in strength commonly observed in
laboratories (see [17]), at large scales, the mass strength of coal is
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Fig. 1. Main processes in the drill-blast cycle. A contrast between the reactive and
proactive approach. (Top) Human operators decide when drilling should stop.
Incorrect decisions incur time/energy penalty. (Bottom) Automated coal seam
detection via MWD eliminates unnecessary tasks, and streamlines the mining
process when done well.

Table 1
Typical cohesion and friction angle for different rock mass.

Rock type UCS (MPa) Cohesion b (MPa) Friction angle ϕ

Sandstone 37 1.7070.2 3772
Siltstone 25 0.5570.2 2572
Black Shale 18 0.0570.04 1973
Coal 6.5 0.017 1679
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remarkably uniform between coal producing basins and even
between continents. At a given mine site, sub-surface local varia-
tion might be even less, since the formation process for the
sedimentary rock mass should be similar within the same domain.
For this work, relative invariance is sufficient. The assumption
behind (P-2) is that the shear strength and compressive strength
of coal and non-coal rock strata may be inferred from the RTPR.
These results render that hypothesis plausible.

1.3. Overview

The remaining paper will demonstrate the effectiveness of the
proposed SEM, which combines both the SED and rotation-to-
thrust power ratio (RTPR). Section 2 formulates the SEM coal
seam detection measure. Section 3 presents the core experimental
results: mutual information and a linear classifier are used to
assess the utility and detection performance of SEM. Section 4
revisits the problem from the perspective of machine learning and
optimization. A neural network implementation is used to validate
the SEM approach. Section 5 provides a visual summary, high-
lighting the differences between the proposed SEM and existing
approaches. Discussion and concluding remarks are given in
Sections 6 and 7.

2. Formulation

2.1. Specific energy of drilling (SED)

The specific energy of drilling (SED) measures the energy
required to fracture rocks. It is defined as the mechanical work
done by the drill bit, divided by a unit volume of excavated
material [3]. From first principle,

SED¼ ðW tþWnÞ=V
¼ ðFt; FnÞ; ðvt; vnÞδt
� � ðπr2vnδtÞ

�
¼ ðτωþFnvnÞ ðπr2vnÞ

� ð2Þ
where τ (N m) is the torque, ω (rad s�1) is the rotary speed, Fn
(N) is the weight on bit, vn (m s�1) is the penetration rate, and r
(m) is the radius of the rotary drill string. These quantities are
depicted in the drill string free body diagram in the inset of Fig. 3.

In the second line, work is related to force via the inner product
W ¼ 〈F; s〉¼ JFJ JsJ cosθ. The linear approximation for the dis-
placement, sffiv � δt holds when the time element δt is infinite-
simally small. In the denominator, the volume is represented by
a cylinder with a drill-string radius of r and a height (vertical
distance) of sn ¼ vnδt.

In the last line of (2), the denominator represents the volu-
metric flow rate of the material being excavated. This may be
interpreted as the Rate of Excavation (RoE). By convention, vn is
positive when the drill is moving downward, as it fractures rocks
and penetrates into new ground. When the drill retracts, it is not
doing useful work, so the SED is set to zero for vnr0. The
numerator in (2) represents mechanical power. Its tangential and
normal components are identified in (3):

Pt ¼ τω - Rotational Power
Pn ¼ Fnvn - Thrust Power ð3Þ

Although there exists a strong correlation between a low SED
and the presence of coal (this was demonstrated in [5]), using only
the SED is insufficient for achieving reliable top of coal seam
detection. In Fig. 2, SED can be seen to have low specificity.
Normally, a coal band is associated with a trough in the SED
signal. However, these troughs can also appear outside the coal
band. In particular, two SED false positives are highlighted with
concentric circles in Fig. 2.

2.2. Rotation-to-thrust power ratio (RTPR)

Segui and Higgins have pointed out in [18] both the torque and
inverse penetration rate relate to the hardness of rock material.
One further observation we make is the penetration rate vn
generally increases and the torque τ simultaneously decreases as
a rotary drill enters the coal seam. This behavior, illustrated in
Fig. 3, may be modeled by τ=vn.

Although a diminishing ratio (τ=vn) captures the right dynamics,
numerically, it is sensitive to changes in vn when jvn j is small. In
practice, this situation arises often in the field, especially when the
drill stalls (drill bit is jammed by rock fragments), but also when
drilling is interrupted at regular intervals to facilitate “rod change”
(to extend the reach of the drill). These events usually generate
noise and transients in τ and vn. Thus, a slight modification is
necessary to increase its immunity to noise.
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When the hydraulic system is properly regulated, both the
weight on bit Fn and rotation speed ω tend to be stable. Thus,
ðτ=vnÞ � ðω=FnÞ [which is equivalent to Pt=Pn via (3)] reacts
similarly to τ=vn. The new expression Pt=Pn represents the
rotation-to-thrust power ratio (RTPR) mentioned in the introduc-
tion. To make this more robust, it is normalized to ensure it is
bounded. In this paper, the resultant quantity is referred as
rotational work fraction, and it is defined as

RWF¼ W t

W tþWn
¼ Pt

PtþPn
� δt
δt

¼ τω
τωþFnvn

ð4Þ

One remarkable discovery is the tendency of Pt=Pn dropping
below a pivot value, as the drill transitions from non-coal material
(e.g., mudstone, siltstone, or sandstone) into coal. In this study, the
observed rotation-to-thrust power ratio Pt: Pn is approximately
2:1 in the harder material above the coal seam. This ratio shrinks
to about 1:1 in the softer material as the drill enters into the coal
seam. This means more work is devoted to crushing than shearing
the rock. This shift in power balance is depicted in Fig. 4.

The power ratio also has an interesting interpretation. In signal
analysis and control systems design, orthogonal projections such
as Fourier and Laplace transforms are widely used. From that
viewpoint, the components Pt and Pn are analogous to the real and
imaginary parts of a phasor JpJeiψ , where p¼ ½Pn; Pt�T and
ψ ¼ tan �1ðPt=PnÞ. It follows the treatment of Pt=Pn is equivalent
to studying the phase response. In the area of surface mining and
rock recognition using real-time measurements, this perspective
provides a way of thinking about the mechanics of rotary drilling,
and its connection with the geotechnical properties of a rock mass.
It elevates drill energy from a 1D scalar (magnitude only realm) to
a 2D vector field (magnitude þ phase) even before spatial and
temporal variations are considered.

From Fig. 5, two distinct clusters can be seen from the
distribution of RWF. This adds credence to the hypothesis that
coal and non-coal strata are distinguishable by MWD measures
based on differences in shear strength.

Typically, the RWF decreases from 0.70 to about 0.52 as the
drill penetrates the coal layer (moving from harder into softer
material). Although the specific energy SED in (2) has low
specificity, its utility can be boosted by modulating it with a
likelihood function. The main reason for combining the SED with
RWF is that working in isolation, SED and RWF each has low bias,
but high variance. This variance is significantly reduced when both
SED and RWF are combined in SEM — this in turn makes the coal
seam detector more reliable. The evidence for this will be
presented in Section 4.4. Before engaging in detailed analysis, it
would be appropriate to complete the description of SEM.

2.3. Modulated specific energy (SEM)

The proposed SEM is defined as the product of SED and a
logistic function of the RWF, denoted Lð�Þ. Computationally,

SEM¼ log e s� Lðw; c; aÞ� �þC

where s¼minfSED=kSED; e2g; kSED ¼ 108

wn ¼ α RWFnþð1�αÞwn�1 ð5Þ

The intermediate variables s and w encode the dependence on SED
and RWF, respectively. The expression of s in (5) indicates that the
SEM is range limited. Furthermore, exponential filtering is applied
to RWF to alleviate noise in the sequence wn. In this paper,
α¼ 0:5625 is used throughout. The constant C is set to 2, this
changes the interpretation, but not the intrinsic behavior of the
SEM. It merely lifts the SEM curve, such that a zero crossing
corresponds to the detection of coal. The offset shifts the detection
threshold to a more convenient location (0 by default) instead of
some arbitrary location like �2 (0.135) in log (linear) scale.

Since the SEM uses an inverted logic (i.e., coal detection occurs
closer to 0 than 1), the logistic function in (6) serves as a
complementary coal likelihood function:

Lðw; c; aÞ ¼ 1
1þexpð�aðw�cÞÞ; a¼ log eð1�εÞ=ε

minfc;1�cg ð6Þ

Fixing ε at 0.01, SEM is left with only one free parameter c which
represents the characteristic value of RWF as the drill approaches
the coal band. The parameter c specifies the transition point in the
logistic function and has a MAP estimated value of c0 ¼ 0:65 for
the data used in this study. The parameter a controls the width of
the sigmoid transition. The natural logarithm included in (5) helps
amplify weak signals in the proposed SEM. This nonlinearity is
advantageous as it sharpens the high-to-low transition at the coal
interface — bearing in mind SEM works like an active low logic
circuit in top of coal detection.

2.4. Condition adaptive threshold

To increase the resilience of the SEM against changes in
operating conditions, it is instructive to consider the impact on
the RWF in (4) when the MWD signals are perturbed.

A motivation for doing this is the baseline value c0 ¼ 0:65 for coal
transition in Lðw; c0; aÞ strictly holds only when the rotary drill
operates at ωmax (typically 4100 rpm). As the rotation speed drops,
cðωÞ declines in a quasi-deterministic manner. As illustrated in Fig. 6,
without speed compensation, one consequence of overestimating c
[using a baseline value that exceeds the actual value] is the logistic

Fig. 4. Shifting power balance between the tangential and normal components
illustrated in a 2D vector field. To emphasize the phase relationship, the vectors
pðzÞ ¼ ½PnðzÞ; PtðzÞ�T are normalized such that PnþPt ¼ 1.
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membership function relaxes its admission requirement, this causes
the SEM coal seam detector to return more False Positives (FP).

In general, RWF(τ;ω; Fn; vn) depends on four variables τ;ω; Fn
and vn. Thus, perturbing these variables in (4),

RWF0 ¼ ðτþΔτÞðωþΔωÞ
ðτþΔτÞðωþΔωÞþðFnþΔFnÞðvnþΔvnÞ

¼ kττ � kωω
kττ � kωωþkFFn � kvvn

ð7Þ

Through sensitivity analysis, variation in ω was found to have a
dominant effect. On average, Δτ=τ cancels with Δvn=vn, and
ΔFn=Fn ¼Δω=ω . For the purpose of cðωÞ adjustment, Table 2
shows that changes in RWF are approximately conditionally
independent of Δτ, Δvn and ΔFn given Δω. Under this hypothesis
(kτ � kv, kF � 1), evaluating RWF0 at Pt ¼ 2Pn gives a robust
estimate of the coal-specific value

ĉðωÞ ¼ kττ � kωω
kττ � kωωþkFFn � kvvn

����
kτ � kv ;kF ¼ 1;τω ¼ 2Fnvn

¼ 2kω=ð2kωþ1Þ ð8Þ
which is stable and dependent only on the scale factor
kω ¼ ðωmaxþΔωÞ=ωmaxA ½0;1�, where �ωmaxoΔω≤0. To preserve
continuity, ĉðωÞ is multiplied by κ ¼ c0=ð2=3Þ to ensure cðωÞ ¼ c0
when Δω¼ 0 in (8).

Statistically, using ĉðωÞ in place of c0 reduces the false positive
rate from 15% to 4%. Fig. 7 demonstrates one of many instances
where a false alarm (incorrect detection) is averted using an
adaptive ĉðωÞ. As a background note, fluctuation in rotary speed
often indicates that the operator is experiencing difficulty drilling

the rock mass and is trying different drilling regimes to get back to
nominal.

2.5. Adjusted penetration rate (APR)

The adjusted penetration rate is an alternate MWD measure of
rock hardness. Defined in (9), it is inversely proportional to the
rotation-to-thrust power ratio. One regrettable feature about the
APR is that it uses a normalization factor that is strongly data
dependent. This generally makes the detector more susceptible to
level shifts in the signals.

APR¼ kapr � vn
Fn

ffiffiffiffiffiffiffi
τω

p ;

kapr ¼medianðFnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðτÞ �ωmax

p
ð9Þ

In [19], the APR was shown to be effective in differentiating iron
ore from shale and BIF (Banded Iron Formation) in a GP (Gaussian
Processes) framework [20]. Thus, it would be worthwhile investi-
gating its efficacy for coal seam detection.

3. Experiments

Two experiments were conducted to assess the potential and
actual performance of SEM. The first uses mutual information (MI)
to assess the utility of different features, viz., how well a sample
may be deduced as “coal” or “not coal” using a given measure,
such as SED or SEM. The second uses statistical analysis to
compare SEM and APR coal seam detection errors on a 35 blast
hole drill bench. This bench has referenced geophysics (bulk
density) data which serves as the ground truth.

The MWD data was collected from an open-cut coal mine
located in Australia, which produces both thermal and semi-soft
metallurgical coal [21].

3.1. Mutual information assessment

Mutual information (MI) is defined as IðX;YÞ ¼HðYÞ�HðY jXÞ,
where H(Y) represents the entropy of a random process Y
associated with the coal label of samples and the conditional
entropy HðYjXÞ measures the residual uncertainty about Y when
the values of some feature X are known [22]. The first experiment
uses mutual information to assess the utility of the primary and
derived MWD features, viz., how effectively a candidate feature
works toward minimizing the uncertainty of the coal labels.
Formally, this utility is measured as a reduction in the entropy of
Y given X.

The results presented in Table 3 reaffirms the hypothesis that
none of the primary MWD signals on their own can effectively
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Table 2
Experimental evidence that cðωÞ is approximately conditionally independent of Δτ,
Δvn and ΔFn given Δω.

Hole Relative change (%) Change
factor

Specific value Prediction
error (%)

Actual Predict

Δτ Δω ΔFn Δvn kω cactual ĉðωÞ Δc

1 �15.4 �44.4 1.5 �14.0 0.556 0.545 0.526 �3.5
2 �17.9 �36.0 �0.9 �18.7 0.640 0.597 0.562 �6.0
3 �12.1 �36.9 5.0 �21.5 0.631 0.561 0.558 �0.6
4 �2.9 �13.1 7.0 �1.9 0.869 0.604 0.635 5.1
5 �11.4 �35.2 7.9 �11.6 0.648 0.537 0.564 5.1
6 �12.8 �30.3 0.2 �9.3 0.697 0.611 0.582 �4.7
7 �13.3 �43.5 8.1 �12.8 0.565 0.503 0.530 5.4
8 �27.3 �64.2 1.2 �12.9 0.358 0.412 0.417 1.2
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reduce the uncertainty of Y (the coal label) in an information-
theoretic sense. However, when one or more variables (especially,
the torque and penetration rate) are jointly exploited, they capture
about 87.5% (0.5255/0.6006) of the information in Y . A second
point to note is the derived MWD features are more effective
than the primary MWD signals at capturing information about Y .
In particular, for SEM, IðX;YÞ¼0.5658 approaches 94.2% of the
entropy bound H(Y). This demonstrates that the SEM has good
potential of being an effective coal seam detection measure.
Although the natural gamma cannot be used in a MWD context,
its MI value (0.5452) has been computed to show that in the
absence of geophysics information, the SEM can potentially detect
coal just as effectively as measuring natural gamma radiation.

3.2. Coal seam detection performance

The second experiment uses coal seam detection error statistics
to contrast the consistency of SEM with its nearest competitor,
the APR.

For each drill hole h, the samples fshðzÞg are sorted in order of
decreasing elevation z. The features SEMðzÞ and APRðzÞ are com-
puted using (5)–(9). For SEM, the top of the coal seam is detected
using a simple threshold strategy

ẑtop ¼maxfzjSEMðzÞrTsemg ð10Þ

For APR, a fuzzy set of rules were recommended by the first author of
[19]. These detection policies, denoted π, are specified in Table 4, using
the short-hand notation ½#ðT þ

aprÞZnjΠm� which denotes “the number
of samples satisfying APRðzÞZTapr in the m-sample neighborhood
centered at z must be at least n.” The policies πA to πD range from
prudent to spontaneous. For instance, πA uses multiple thresholds, and
each acceptance criterion (the observation count n) is set inversely

proportional to the threshold Tapr, to maximize the precision and
recall rate.

In Table 5, the error statistics for top of coal seam detection
using SEM and APR are reported. These correspond to the stem
plot shown in Fig. 8. A negative error indicates coal detection at a
shallower depth relative to the ground truth. For SEM, the bias
(mean error) is close to zero. Furthermore, SEM is consistent. Its
error standard deviation is not very sensitive to changes in the
detection threshold.

For the APR, its best performance is comparable to the SEM, but
this is achieved using fairly ad hoc and complex detection rules. A
major weakness is the APR response must be high enough, and
sustained enough, to enable coal seam detection. Although a case
can be made to further optimize the APR detection rules, our
investigation suggests this is not promising. Significant variation
was observed in the signature of APR near the coal seam and its
performance did not generalize well to a different test bench. In
fact, the movement in error s.d. with respect to detection policies
in Table 5 strongly suggests over-fitting.

In Fig. 9, the holes are sorted in order of increasing SEM
detection error. The correlation between the error sequences for
APR and SEM is ρ¼0.4383 (p¼0.0084). This shows the detection
errors for APR are weakly correlated with those for SEM, and
there is a significant difference in behavior between the two coal
seam detection measures, even though their error statistics
(Tsem ¼ 0:125 vs. πA) are similar on the test sets. In particular,
APR detection errors do not increase monotonically with the
sorted SEM errors. Large fluctuation in APR errors is observed
where the SEM errors are small.

The analysis presented in Section 4 will demonstrate the effe-
ctiveness of SEM from a complementary, optimization/machine
learning standpoint. An artificial neural network is used to examine
the utility of the derived features, to reflect on the optimality of the

Table 3
Mutual information assessment of feature utility.

X IðX;YÞ X IðX;YÞ

Primary MWD Signals Derived Features
Rotary Speed 0.1548 SED 0.3820
Weight on Bit 0.2586 SEM 0.5658
Torque 0.1727 APR 0.5493
Penetration Rate 0.3234 PFn 0.4601
(Torque, Penetration Rate) 0.5255 RWF 0.5350
(Rotary Speed, WoB, Torque, Penetration Rate) 0.5562 Geophysics

Natural Gamma 0.5452

Spatial Y H(Y)
Elevation 0.4245 Entropy
(North, East) 0.4036 Coal Label 0.6006

PF denotes “power factor”. It is defined as cos θ¼ 〈F; v〉=JFJ JvJ in (2).

Table 4
APR coal detection rules.

Policy Requirement

πA ½#ð240þ ÞZ7jΠ7� OR ½#ð310þ ÞZ2jΠ5� OR
½#ð290þ ÞZ3jΠ5 AND #ð260þ ÞZ5jΠ5�

πB #310þ≥2jΠ5
	 


OR

#290þ≥3jΠ5 AND #260þ≥5jΠ5
	 


πC ½#ð310þ ÞZ2jΠ5�
πD ½#ð290þ ÞZ1jΠ1�

Table 5
Top of coal seam detection errors.

Detection policy Median (m) MAE (m) Mean (m) S.D. (m)

SEM
SEM, Tsem ¼ 0 0.19 0.34 0.17 0.45
SEM, Tsem ¼ 0.125 0.22 0.31 0.019 0.43
SEM, Tsem ¼ 0.25 0.28 0.39 �0.12 0.51

APR
APR πA 0.28 0.37 �0.02 0.49
APR πB 0.46 0.60 0.39 0.64
APR πC 0.70 0.87 0.69 0.94
APR πD 0.57 0.57 0.26 0.66

Median¼ Median Absolute Error, MAE¼ Mean Absolute Error.
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SEM thresholds, and to test whether non-linear hypotheses lead to
improved outcomes.

4. Empirical evaluation using an artificial neural network

The input to the neural network are feature vectors
x¼ ðx1;…; xMÞT . Each sample xðnÞ is associated with a drill hole,
this is implicitly encoded in the first three components x1 to x3
which represent the spatial coordinates (north, east, elevation). In
our model, the NN has ml sigmoid activation nodes in the hidden
layer ðl¼ 2Þ. The input and output layers are represented by l¼1
and l¼3, respectively. In general, there is an mlþ1 � ðmlþ1Þ
weights matrix ΘðlÞ associated with each layer l. Element ΘðlÞ

j;k
denotes the weight of the connection between node k in layer l
and node j in layer lþ1. Thus, the value of an activation node aðlÞj is
computed as

aðlÞj ¼ g
Xml

k ¼ 0

Θðl�1Þ
j;k aðl�1Þ

k

 !
with að1Þk ¼ xk ð11Þ

where gðzÞ ¼ 1=½1þexpð�zÞ� and x0 is set to 1 by convention as a
provision for the bias term. For binary classification, the final

hypothesis is given by

hΘðxÞ ¼ aðlþ1Þ
1 j l ¼ 2 ¼ g

Xm2

k ¼ 0

Θð2Þ
j;k a

ð2Þ
k

 !
ð12Þ

hΘðxÞ40 predicts y¼1, viz., the sample at location ðx1; x2; x3Þ
contains “coal” whereas hΘðxÞr0 predicts “not coal”.

Neural network training seeks to minimize the cost function
JðΘÞ in (13). The fmincg optimizer [23] was used to solve this via
the Polak–Ribière conjugate gradient method:

JðΘÞ ¼ λ
2

Xm2

j ¼ 1

Xm1

k ¼ 1

Θð1Þ
j;k

� �2
þ
Xm2

k ¼ 1

Θð2Þ
1;k

� �22
4

3
5

þ
XN
n ¼ 1

�yðnÞlog ðhΘðxðnÞÞÞ�ð1�yðnÞÞlog ð1�hΘðxðnÞÞ	 
 ð13Þ

The first term in JðΘÞ is a regularization expression. The second
term is summed over all samples n for a given training set T ,
where each xðnÞ is a feature vector of length m1 ¼M at the
input layer.

It should be stressed, the decision to use a neural network for
analysis does not presuppose that it is the best technique in its
class. Its purpose is to provide a common framework for perfor-
mance evaluation whereby the same detection rules are used
irrespective of the chosen features. The neural network is used
purely as a vehicle to examine, firstly, the utility of the derived
features relative to the primary MWD features such as torque; and
secondly, consider the effectiveness and simplicity of using fixed
SEM thresholds, as opposed to the cost (and potential benefit) of
employing more complex classification techniques.

4.1. Neural network configuration

The neural network structure contained one hidden layer with
ten nodes ðm2 ¼ 10Þ. The maximum number of iterations allowed
during training was limited to 15. The regularization parameter
λ in (13) was set to 1, given that all features were normalized as
ðX�μÞ=σ.

In subsequent sections, the K-fold cross-validation procedure
always divides the data which consists of H holes into two sets for
training and testing purpose. For each kA 1;…;Kf g, the training set
Tk contains data from H�ðH=KÞ drill holes, and the remaining
holes all enter into a complementary test set Vk. However, the
sample size N will not be identical for each Tk, as the holes are
drilled to slightly different depths. In the experiments, H¼35, K¼5
and N� 7000. Each hole hAf1;…;Hg must contribute once to one
of K test sets. Results were gathered using 32 random initializa-
tions of the NN parameters.

4.2. Features utility from a machine learning perspective

Let wk½j� be a realization of the random variable Wk ¼ jΘð1Þ
�;k j .

Table 6 reports the 95% confidence interval for normalized NN
weights, calculated as the expectation of Wk w.r.t. node j in the
hidden layer, over all training sets and randomized initialization of
the NN parameters. This provides an alternate view of utility in
terms of what features a learning algorithm regards as important
for minimizing the classification error. The main observations are
as follows.

SEM is the most important feature from both the NN and
information-theoretic standpoints, in terms of minimizing the classi-
fication error and uncertainty. With the exception of the torque, the
primary MWD features (rotary speed, weight on bit, and penetration
rate) carry much less weight than the derived features (SED, SEM and
RWF). These results suggest that the SEM and RWF have greater
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influence on coal seam classification performance than the primary
MWD signals (features 4–7). This is consistent with the utility
predicted by relative mutual information.

4.3. Optimal SEM threshold

In Section 3.2 Table 5, APR performance was shown to be highly
sensitive to variation in detection policy. In contrast, SEM has a
relatively large region of stability. As a rule of thumb, good coal
seam detection performance can be obtained using a static thresh-
old TSEM in the range ½0;0:25�. This section contemplates how far
this heuristic strays from the optimal point, where the error is
minimized by adopting a variable SEM threshold.

The same NN setup is used to facilitate this study. The main
step involves looking up the SEM value at the point where the NN
first detects the coal seam for each drill hole h, given the samples
xðnÞ;n¼ 1; :::;N are sorted by holes and processed in order of
increasing depth. Using cross-validation, the optimal SEM thresh-
old statistics were computed. The mean and standard deviation,
μTSEM

and σTSEM , are 0.023 and 0.236 respectively. The results show
the fixed SEM thresholds chosen in Table 5 (0 and 0.125) are
close to the optimal value (0.023); and the suggested range
R¼ Tmax

SEM�Tmin
SEM ¼ 0:25 is smaller than the variability observed in

the SEM threshold when it is allowed to vary (since Ro2σTSEM ).

4.4. Statistical analysis and discussion of SEM performance

NN classification and coal seam detection performances are
reported in Tables 7 and 8. Specific attention is drawn to the utility
of SED, SEM and APR, relative to the primary MWD signals. For
SEM, a comparison is made between NN and the simple thresh-
olding approach given in (10).

The distinction between coal detection and classification is as
follows. In detection, the NN seeks to find the elevation corre-
sponding to the top of the coal seam. It searches for the point
where the NN classifier first emits a ‘coal’ label ðy¼ 1Þ for a given
drill hole. In classification, the NN makes dense predictions. It tests
the hypothesis “is this sample coal” repeatedly, on a sequence of
feature vectors computed from samples acquired at increasing
depth for a given drill hole. The performance metrics for classifica-
tion are defined below.

Accuracy — In pattern recognition, accuracy is commonly
defined as ½nðTrue PositiveÞþnðTrue NegativeÞ�=nðTotalÞ, viz., the
number of correct detections and omissions, as a percentage of the
total number of test samples.

Precision — Precision is defined as ½nðTrue PositiveÞ�= ½nðTrue
PositiveÞþnðFalse PositiveÞ�, the number of correct detections as a
percentage of both correct and incorrect detections.

Recall Rate — Recall is defined as ½nðTrue PositiveÞ�=½nðTrue
PositiveÞþnðFalse NegativeÞ�, the number of correct detections as a
percentage of the actual number (both hits and misses) that ought to
be detected.

For coal and non-coal classification, Table 7 shows SEM is more
effective than all four primary MWD signals combined. Using
ablative analysis, the last three rows suggest the precision and
recall rates are mostly influenced by bulk density. Not surprisingly,
density is the most preferred type of geophysical data that
geophysicists rely upon in determining the ground truth. These
results demonstrate two things.

Firstly, using a NN for coal classification, the performance of
SEM is superior to APR. SEM has higher precision and recall. It is
also competitive with natural gamma.

Secondly, MWD signals are often presumed to be strongly
correlated with geophysics density. Whilst this is true to a large
extent, the correspondence is not exactly one-to-one. Using SEM,
the recall rate for ‘coal/non-coal’ sample classification peaks
around 81%.

This imperfect correspondence may be explained by two
observations. First, the average sampling interval of MWD signals
is 0.1 m. This represents one tenth the resolution of geophysical
data, so it may not be possible to detect finer structures indicated
in the ground truth. Second, the mechanical response measured
by each MWD signal may exhibit variable time delay — these

Table 6
Features utility from the classification and information-theoretic viewpoints.

k Feature, Xk Normalized NN
weights

Normalized mutual
informationb

0 Bias term 0.513170.0245 –

1 North 0.475470.0120 0.0031
2 East 0.345970.0134 0.0028
3 Elevation 1.221670.0309 0.7068
4 Rotary Speed 0.339170.0129 0.2578
5 Weight on Bit 0.435670.0246 0.4305
6 Torque 0.851870.0229 0.2875
7 Penetration

Rate
0.344970.0136 0.5385

8 SED 0.662270.0368 0.6360
9 SEM 1.000070.0257 0.9420

10 APR 0.767470.0148 0.9145
11 PF 0.503670.0134 0.7661
12 RWF 1.036970.0156 0.8907
13 Natural

Gammaa
1.994970.0604 0.9260

a Natural gamma radiation cannot be readily measured while drilling.
b Defined as IðXk;YÞ=HðYÞ, H(Y)¼entropy of coal classification label.

Table 7
Coal classification performance using NN.

Augmented featuresa Accuracy % Precision % Recall %

(Rotary Speed, WoB, Torque, Penetration Rate) 91.2871.51 71.0176.16 78.2577.96

APR 91.8471.36 72.4875.03 76.4977.43
SED 90.0071.17 67.4574.95 74.17710.5
SEM 92.1870.87 72.6272.64 81.0176.73
RWF 91.5870.90 71.0773.42 79.81710.5

Natural Gammab 92.3572.16 72.0275.64 84.4178.05

RWF, SEM 92.2971.16 73.1973.24 81.3677.77
RWF, SEM, Gammab 94.0570.93 78.9973.75 85.2075.78
(RWF, SEM, Gamma, Rock Densityb 99.1670.02 98.3071.02 96.4270.98

a In addition to the spatial coordinates (North, East, Elevation).
b Natural gamma and long-spaced bulk density are not MWD signals.
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transients are of a physical origin. A manifestation of different time
constants may contribute to a loss of synchronicity between the
MWD signals.

Although the precision of SEM (72.6%) is rather low, its
precision uncertainty (72:6%) is superior to using raw MWD
signals (76:1%) or natural gamma (75:6%) with all things being
equal. The precision of SEM also needs to be interpreted with care,
since most of the sample classification errors actually occur at
depths beyond the coal seam. Importantly, top of coal detection
performance should not be affected by a loss of precision within
(or below) the coal seam, since the objective is to prevent drilling
through a coal seam during excavation in the first place. The
precision and recall rates can certainly be improved by properly
excluding samples below the coal seam. However, the true litmus
test is whether the first detection error occurs in the interburden
(some distance above or below the coal seam). Table 8 shows the
magnitude and variability of this error in top of coal detection. This
gives better insight into the actual cost of misdetections.

In Table 8, the results demonstrate that high precision top of
coal seam detection is possible using SEM. The SEM error is only
�0:0370:44 m. This is as good as the performance achievable
with natural gamma, if geophysics (non-MWD) data had been
allowed. If instead, primary MWD signals were used, the error
would have risen to 0:8271:78 m. This statistic confirms that
using primary MWD signals for coal seam detection is not viable.

Although the SED and RWF each reduces the mean error, they
exhibit high variance. Working in synergy, however, the SEM is
able to significantly reduce the error s.d. by combining the SED
and RWF. Emphatically, the performances for SEM and APR are
consistent with (but not better than) those reported in Table 5.
This indicates that the SEM coal seam detection performance
obtained using a simple adjustable threshold (trivial linear classi-
fier) is nearly optimal without learning a non-linear classifier. The
final observation is that fusing SEM with gamma or density can
further reduce the error standard deviation (from 0.47 to 0.29 m).
This might be useful for constructing a coal-seam surface model. A
detailed survey of related topics is beyond the scope of this paper.
To investigate further, interested readers are referred to [24,25] on
the application of geophysics techniques to coal mining, including
the use of seismic reflection and electromagnetic measurements;
and [26] on using probabilistic graphical models to learn 3D geo-
logical structures from drill data.

5. Visualization

Following the numerical analysis, a visual summary will now
be presented to capture the key merits of the SEM approach.
Fig. 10 shows a cross-sectional view of the sub-surface modeled
using various measures referenced in the main text. The y-axis

represents the elevation while the x-axis is aligned with a row of
blast holes. The top two panels (A and B) show the ‘Torque/RoP’
response and SED, respectively. These represent existing techni-
ques which use raw or energy-based features deriving from MWD
data. In panel B, several sedimentary rock types are identified to
provide a geological context. Furthermore, the top of coal, top split
and bottom of the coal seam are demarcated by lines in white, gray
and pink. These lines represent the interpolated ground truth as
determined by an experienced geophysicist using the available
bulk density data.

5.1. Cross-sectional views

The cross-section images in Fig. 10 show the specificity of each
measure to coal. A key observation is the lack of clear definition
(blurriness) around the coal seam in panels A and B, which makes
these measures unreliable and difficult to use. The middle panels
(C and D) show that the RWF response is far more selective to the
coal band. This clear separation (sharp transition from light to dark
blue at around 10 m) makes SEM an excellent candidate for coal
interface detection as it has high specificity. The bottom panels
(E and F) show the results which would have been obtained if
natural gamma and bulk density (non-MWD, geophysical data)
had been used.

5.2. Cumulative distribution of the error

Collectively, the coal seam detection errors for all 35 holes in
the bench — from which the statistics in Table 8 were based — are
shown in Fig. 11. To facilitate a worst case analysis, these results
are converted into a cumulative error distribution, which is
displayed in Fig. 12. Looking at the errors at the 5th and 95th
percentile, the strength of the SEM becomes apparent.

SEM has a coal seam detection error bounded by �1.18 m and
0.973 m. Its performance curve is closest to the geophysics bench-
mark, viz., the curve corresponding to bulk density (tightly
clustered around 0). Although APR has similar average perfor-
mance as SEM, its error already exceeds 2 m at the 90th percentile
band, thus its error is practically not upper-bounded. The worst
performances are associated with existing MWD measures, such as
Torque and RoP, which for 30% of the holes, they exhibit an error of
1 m or more.

The results thus far have demonstrated the superior perfor-
mance of SEM relative to other measures without explaining why
it is. To appreciate how these differences arise, the responses of
MWD measures will now be examined at the critical junction
where the non-coal to coal transition takes place. The overarching
objective is to highlight the behavior of MWD signals as drilling
moves across lithological boundaries, to fully appreciate the
reliability and localization properties of various MWD measures.

Table 8
Neural network top of coal seam detection errors.

Augmented features Median MAE Mean S.D.(m)

(Rotary Speed, WoB, Torque, Penetration Rate) 0.54 0.99 0.82 1.78

APR 0.42 0.48 0.14 0.58
SED 0.68 0.96 0.09 1.14
SEM 0.29 0.35 �0.03 0.44
RWF 0.38 0.59 �0.03 0.94

Natural Gamma 0.15 0.31 �0.02 0.55

RWF, SEM 0.29 0.38 �0.03 0.47
RWF, SEM, Gamma 0.14 0.25 0.02 0.36
(RWF, SEM, Gamma, Rock Density) 0.08 0.23 0.16 0.29

Median¼Median Absolute Error, MAE¼Mean Absolute Error.
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Fig. 10. Cross-sectional view of the sub-surface based on various measures. Top: Existing methods (A) Torque/RoP, (B) SED. Middle: Proposed methods (C) RWF, (D) SEM.
Bottom: Geophysics reference (E) Natural Gamma, (F) Bulk Density. Black dots show the coal seam position estimated by the neural network (for 5 blast holes) using the
designated measure. The white line marks the ground truth for the top of coal. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this paper.)
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5.3. MWD responses across coal seam boundary

This section examines the behavior of several MWD measures
as the rotary drills approach the coal band. Of special interest are
the mechanical responses in the critical region, which refers to a
72 m buffer centered about the coal seam interface. This region
encompasses both the overburden and coal seam. By design, the
coal seam top boundary is aligned with the midpoint of the
horizontal axis (d¼0) to ensure the relatively hard (sandstone–
siltstone layers) and relatively soft (carbonaceous–coal) material
occupy the left and right half planes, respectively.

In Fig. 13, the MWD measures (RoP, SED, RWF and SEM) are
shown from top to bottom. The left panels show the amount of
variation in the MWD response as a function of the distance from
the top-of-coal-seam interface. Each color strand represents one
set of measurements down a blast hole.

For RoP and SED, as the coal boundary is approached from the
left, the erratic criss-crossing pattern suggests a simple threshold-
ing strategy will perform poorly and be highly susceptible to noise.
Indeed, the level of coherence observed in the MWD signals
provides confirmation for the statistics reported in Table 8 where

for instance, the error standard deviations for SED and SEM
detection are 1.14 m and 0.44 m, respectively.

The middle panels show the one standard deviation envelop
about the mean response for each MWD measure. One constant
feature is that both RWF and SEM exhibit lower variability
compared to SED. Graphically, drawing a horizontal line about
the mean at d¼0 provides a good indication of the spatial
uncertainty. Consider the line segment formed by the intersecting
points of the horizontal line with the envelop. The span of this line
segment (see black arrow) is an indication of how well the coal
seam can be localized. When the segment is very long, there is
large variability. This means, the coal seam boundary will often be
detected too early or too late.

The right panels show the density estimates for each measure
in the transition region. The diffused point clouds (the area enclo-
sed by the dark blue contour bands) highlight the vulnerability of
the RoP and SED measures with respect to noisy observations. For
a graphical proof, one may draw a horizontal line along the bottom
edge of the SEM image, then gradually move this line up toward
zero (the SEM detection threshold), without hitting any points to
the left of the coal seam boundary. Repeating this for SED, the
contrary is true. Each point encountered actually results in a false
positive.

The tight clustering of the SEM and RWF responses in Fig. 13
(right) demonstrates greater consistency and a higher margin for
error relative to SED and RoP. Furthermore, the arrows that
represent the 90% confidence interval is shortest for SEM and
longest for RoP.

6. Discussion

This paper has shown that reliable coal seam detection can be
achieved in a monitor-while-drilling context even without geo-
physical data. Using the rotation-to-thrust power ratio, the pro-
posed SEM measure is able to detect the top of coal consistently
with high specificity. Two avenues for implementing the detection
logic were considered: one involves thresholding the SEM, the
other uses an artificial neural network. Crucially, a neural network
is not required to achieve near optimal coal seam detection
performance. This finding is very encouraging, as the end-users
need not be concerned with the complexity of training a neural
network, or re-learning its parameters. Also, the thresholding
policy in (10) is trivial to implement.

In terms of technology readiness, the authors are of the opinion
that the hardware and software infrastructures that currently exist
are already mature enough to support SEM integration. The main
challenges actually pertain to the reliability of the MWD derived
measure which the SEM has substantially dealt with. Today, MWD
signals are routinely collected from sensors and monitored by drill
operators in real-time. However, the level of analysis does vary
from the simple to the sophisticated. The system and associated
interface for sending commands to the actuators (drilling equip-
ment) already exists on many integrated platforms. Typically, the
MWD data is logged by an automated drill monitoring system and
the analytic results (such as SEM graphics) are displayed while
drilling takes place in the operator's cabin. To bridge the input and
output paths, the computational unit needs only implement the
SEM algorithm at the client's front-end. Neither this nor the
decision-control feedback loop introduces a significant delay that
impacts on real-time instrumentation. The SEM coal seam detec-
tion logic is envisaged as a plug-in module in an otherwise
complete system. The middleware required to support data
streaming and communication presumably already exists and thus
allows MWD signals to be processed while drilling, and a “stop
drilling” command to be issued using a software generated trigger.
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One of the assumptions behind this work is that the drilling
dynamics are invariant with depth. For this study, this is a reason-
able assumption, since the rotary drill rigs are equipped with a PID
controller which regulates drilling dynamics. In [27], a mechanism
is described for compensating certain disturbances to maintain the
torque at an operator configured set point. The embedded sensors
can detect, for instance, mast vibration and changes in bit air
pressure, and use the error signal to drive the control valve to

modulate the pull-down pressure to provide a substantially con-
stant torque. Whilst this may not cover all bases, it at least provides
a steady platform for taking MWD measurements, and may explain
the absence of linear variations in torque with depth. In spite of
frictional energy loss and bit wear, such variations were not
observed for depths of up to 40 m.

In relation to how the reported performance may translate to
other drills in general, it is important to establish the operating
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conditions encountered in this study. These nominal drill operat-
ing parameters are reported in Table 9. Based on results gathered
from additional field trials conducted outside this study, the
authors observed no deterioration in SEM performance when the
MWD parameters (rotary speed, WoB, etc.) vary by up to 3 sigma
(standard deviations). Even when the nominal conditions are not
strictly satisfied, there is still scope for adjusting the sigmoid pivot
value (c0 in (6)) and SED gain (kSED in (5)) to compensate for small
level shifts in the signals to keep the SEM threshold invariant.

6.1. Final observations

Fig. 14 shows some additional SEM results obtained from a field
trial. On this occasion, blast holes were drilled along two perpen-
dicular rows. The ‘L-shape’ configuration allows two separate but
related cross-sectional views to be joined together. The image
clearly reveals multiple coal seams below the drilled bench.
Significantly, this involved using a different drill at a different site,
without any calibration of the default parameters. This illustrates
the resilience of the SEM algorithm.

7. Conclusion

This paper proposed a coal-seam detection measure called SEM
(modulated specific energy) which utilizes a hypothesized link
between geomechanics and drill performance to detect the top of
coal. Even though a direct relationship to the shear strength of
rock strata had not been proven, the results demonstrated that
accurate coal seam detection can be achieved using only MWD
(monitor-while-drilling) data, without geophysical measurements

such as bulk density. This is a significant step forward given the
MWD constraints.

In rotary drilling, SEM can distinguish coal and non-coal rock
layers with remarkable consistency by exploiting differences in the
rotation-to-thrust power ratio. Its efficacy was demonstrated using
mutual information, linear and nonlinear classifiers via a simple
threshold strategy and artificial neural network. Importantly, the
thresholding strategy may be used in place of the neural network
without sacrificing detection performance.
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