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SUMMARY
The specific roles of mutant p53’s dominant-negative (DN) or gain-of-function (GOF) properties in regulating
acute response and long-term tumorigenesis is unclear. Using ‘‘knockin’’ mouse strains expressing varying
R246S mutant levels, we show that the DN effect on transactivation is universally observed after acute
p53 activation, whereas the effect on cellular outcome is cell-type specific. Reducing mutant p53 levels
abrogated the DN effect. Mutant p53’s DN effect protected against radiation-induced death but did not
accentuate tumorigenesis. Furthermore, the R246S mutant did not promote tumorigenesis compared to
p53�/� mice in various models, even when MDM2 is absent, unlike the R172H mutant. Together, these
data demonstrate that mutant p53’s DN property only affects acute responses, whereas GOF is not universal,
being mutation-type specific.
INTRODUCTION

Mutations in p53 occur in over 50% of all human cancers, and

in the other cases, alterations in the p53 pathway have been

observed, indicating that the functional inactivation of the p53

pathway is a critical step in tumor formation (Robles and Harris,

2010; Zilfou and Lowe, 2009). Most of the mutations are

missense mutations—often in the DNA-binding domain—and

therefore lead to loss of target gene transactivation (Olivier

et al., 2010). Mutations in p53 often occur during the course of

tumorigenesis, and hence, the mutant allele coexists with the

wild-type allele in the cell for a time period until the latter is lost

because of loss-of-heterozygozity (LOH), leaving behind the

mutant allele in some cancers (Levine et al., 1991; Robles and

Harris, 2010). Mutant p53 is also found in the germline in the

case of Li-Fraumeni syndrome (LFS) patients, resulting in higher
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rate of tumorigenesis. Interestingly, LOH is not observed in all

LFS patients, suggesting that mutant p53 may exhibit domi-

nant-negative (DN) activities or reduced p53 activity per se

may be sufficient to drive carcinogenesis (haploid insufficiency)

(Palmero et al., 2010; Varley et al., 1997). Regardless of the

sporadic or familial nature of cancers, the observation of LOH

of the wild-type allele in some cancers indicates that complete

loss of wild-type p53 further promotes turmorigenesis, and cells

expressing only mutant p53 may have additional advantages

through acquired gain-of-functions (GOF) (Brosh and Rotter,

2009; Oren and Rotter, 2010).

A large body of in vitro work using overexpressed mutant

p53 has demonstrated mutant p53’s ability to bind and inhibit

wild-type p53 activity when both coexist, in a phenomenon

termed as the DN effect (Kern et al., 1992; Milner and Medcalf,

1991; Petitjean et al., 2007). However, the relevance of DN
effects and gain-of-function (GOF) properties in vitro, though
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activity in vivo in the context of tumor formation has been ques-

tionable. The initial generation of knockin mice and cells ex-

pressing mutant p53 has indicated that DN activity is displayed

in some tissues, such as embryonic stem cells, breast and

lung epithelium, but not in others, such as the skin epithelium,

unless UV irradiated, indicating a contextual setting in which

such activity can be manifested (Jackson et al., 2005; Lee

and Sabapathy, 2008; Wijnhoven et al., 2005, 2007). However,

detailed characterization of mutant p53’s DN activity in multiple

tissues after p53 activation and in the context of concomitant

tumorigeneis has not been performed, and its significance is

not well understood. Given that tumors would generally retain

the wild-type allele in mutant p53 expressing cells in the early

phases—during which chemo- and radiotherapies may be

administered—the impact of mutant p53’s DN effect can be ex-

pected to be a crucial factor in determining successful thera-

peutic and hence survival outcome. Studies on human follicular

lymphoma have shown that heterozygote status with the pres-

ence of one mutant p53 allele leads to poor overall survival and

shortened time of disease progression (O’Shea et al., 2008), sup-

porting this hypothesis.

Similarly, a substantial amount of evidence exists for the

oncogenic GOF of mutant p53, which has been shown to be

capable of transactivating novel noncanonical target genes

that confer additional growth advantage, migratory potential,

and drug resistance (Muller et al., 2009; Weisz et al., 2007, Yeu-

dall et al., 2012). We and others have also demonstrated that

cancer cells become addicted to mutant p53 expression,

abrogation of which leads to cell death and reduced tumor

formation in scid mice (Bossi et al., 2006; Vikhanskaya et al.,

2007). Moreover, mutant p53 interacts with a variety of cellular

proteins, such as p63, p73, and NF-Y, thereby altering the

activities of these proteins to prevent proliferation or interfere

with apoptosis (Oren and Rotter, 2010). Consistently, analysis

of two strains of knockin mice expressing hot spot mutants

R172H and R270H revealed that these mutants were capable

of inhibiting p63/73 function, supporting the case for GOF

(Lang et al., 2004; Olive et al., 2004). Subsequent experiments

with other cancer models using these knockin mice confirmed

this phenomenon (Jackson et al., 2005; Morton et al., 2010),

elevating enthusiasm that all p53 mutants may generally exhibit

GOF that could be amenable to therapeutic targeting. However,

it remains unclear whether GOF is a universal property of all

hot spot p53 mutants. Furthermore, the manifestation of GOF

has been correlated to conditions in which mutant p53 is

‘‘hyperstable,’’ such as in the ‘‘cancer-cell context’’ or in the

absence of Mdm2, where basal mutant p53 levels are elevated,

leading to enhanced spontaneous tumor formation (Terzian

et al., 2008), suggesting a requirement for increased stability

for phenotypic manifestation of GOF. However, current data

are not conclusive enough to confirm the universality of this

requirement.

Hence, we have embarked on addressing the role of DN and

GOF in detail, through the use of knockinmice strains expressing

different levels of the R246S mutant, equivalent of the hot spot

human R249S mutant, to understand the effect of its presence

in various tissues upon pathological and nonpathological p53

activating conditions, some of which lead to tumorigenesis

over time.
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RESULTS

Mutant p53 Exhibits Dominant Negative Effect on
Cellular Viability in a Cell-type-Dependent Manner
To determine the effects of mutant p53 over its wild-type coun-

terpart in an endogenous setting in various tissues, we gener-

ated a knockin mouse strain that carries the R246S mutation

(human R249S equivalent) through germline targeting (Fig-

ure S1A available online) and analyzed a variety of cell types after

exposure to g-irradiation (IR) or treatment with the p53-activat-

ing agent nutlin (Vassilev et al., 2004). Whole-body irradiation

showed that thymocytes were expectedly highly sensitive to IR

in vivo and die in a p53-dependent manner, as p53�/� thymo-

cytes were almost completely resistant to cell death (Figure 1A;

Figure S1B). p53+/� thymocytes were also very sensitive, though

less than p53+/+ cells. By contrast, p53+/R246S thymocytes were

significantly more resistant to death than p53+/� cells, being

almost similar to p53�/� cells, indicating DN activity of the

mutant protein over the wild-type protein (percentage of cell

viability- p53+/R246S versus p53+/�: 90.17 ± 4.22 versus 62.47 ±

1.76; p < 0.001) (Figure 1A). To confirm the cell-autonomous

nature of this effect, we isolated thymocytes from various

genotypes of mice and irradiated or treated them with nutlin

ex vivo. Irradiation with 5 Gy and analysis over time indicated

that p53+/R246S thymocytes were indeed more resistant than

p53+/� (percentage of cell viability at 15 hr- p53+/R246S versus

p53+/�: 66.37 ± 3.11 versus 36.84 ± 1.45; p < 0.001) (Figure 1B).

Similar results were obtained with various doses of irradiation

(percentage of cell viability at 5 Gy- p53+/R246S versus p53+/�:
62.70 ± 2.24 versus 33.86 ± 1.33; p < 0.001) (Figure 1C). More-

over, treatment with nutlin also led to the exhibition of DN effect

of the mutant p53, as thymocytes from p53+/R246S mice were

more resistant than p53+/� cells (percentage of cell viability at

15 hr- p53+/R246S versus p53+/�: 45.52 ± 3.77 versus 19.50 ±

1.63; p < 0.001) (Figure 1D).

Detailed analysis of several lymphoid organs revealed that cell

death was less pronounced in thymus, spleen, and lymph nodes

of p53+/R246S mice compared to p53+/� mice after whole-body

irradiation (Figure 1E). However, cell death was similar in bone

marrow (BM) cells from these two genotypes. To confirm that

DN effect is lacking in BM cells, we purified and used Lin-ve

progenitor cells from BM, which confirmed the lack of DN effect

in this cell type (percentage of cell viability- p53+/R246S versus

p53+/�: 31.65 ± 3.34 versus 22.40 ± 2.40; p > 0.05) (Figure 1F).

Thus, to determine if the DN effect seen in the other organs is

attributable to specialized cell types, we analyzed T and B cells

from lymph nodes and spleen after staining with anti-CD3 and

anti-B220 antibodies, respectively. Ex vivo irradiation led to a

significant DN effect in p53+/R246S CD3+ve cells from both spleen

and lymph nodes (p < 0.05) (Figure 1G). Similarly, nutlin treatment

also led to DN effect in p53+/R246S CD3+ve cells, in which cell

death was less compared to their p53+/� counterparts (per-

centage of cell viability- p53+/R246S versus p53+/�: 61.45 ± 3.38

versus 42.69 ± 2.46 for 10 mM nutlin; p < 0.001 and 53.73 ±

1.63 versus 33.69 ± 0.77 at 5 Gy, p < 0.001) (Figures 1H, S1C,

and S1D). B220+ve cells from p53+/R246S mice were also signifi-

cantly more resistant to cell death than p53+/� cells upon nutlin

treatment and irradiation, though the difference was less pro-

nounced at a higher dose of irradiation (percentage of cell
.



Figure 1. DN Effect of Mutant p53 on Cell Death Is Cell-type Specific

(A) Thymocytes of whole-body irradiated (5 Gy) 5-week-old mice were harvested 12 hr later for flow cytometric determination of viability after annexin-V/pro-

pidium iodide (PI) staining. Mean viability for each genotype (–) and thymocyte viability of each individual mouse (C) are shown.

(B–D) Thymocytes were irradiated ex vivo (5 Gy or otherwise indicated) (B and C) or treated with 10 mM nutlin (D) for 15 hr (or otherwise indicated), and cellular

viability was determined by normalizing against unirradiated samples for each time point. Data represents mean ± SEM with 2–8 mice/genotype.

(E–H) Thymocytes, splenocytes, lymph node (LN), and bone marrow (BM) cells were irradiated (5 Gy) ex vivo (E–G) or treated with nutlin (H), and viability was

determined 12–15 hr later. Lineage negative (Lin-ve) cells were purified fromBMand assayed similarly (F). Viability of CD3+ve and B220+ve cells were determined by

staining with FITC-annexin-V and PE-conjugated CD3 or B220 antibody double staining, respectively, followed by flow cytometric analysis (G, CD3+ cells only)

and (H, CD3+ or B220+ cells). Mean viability (–) for each genotype and the viability of cells from each individual mouse (C) are represented by dots (G). Data

represents mean ± SEM with three mice/genotype.

See also Figure S1.
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viability- p53+/R246S versus p53+/�: for nutlin, 61.24 ± 6.33 versus

41.73 ± 2.00 at 5 mM, p < 0.001; and 42.52 ± 4.01 versus 25.06 ±

2.37 at 10 mM, p < 0.01 and 47.54 ± 0.89 versus 29.53 ± 1.61 at
Can
2 Gy, p < 0.01; and 17.84 ± 0.21 versus 10.61 ± 0.17 at 5 Gy)

(Figures 1H and S1C). Collectively, these results demonstrate

the cell-type-specific exhibition of DN effect of mutant p53.
cer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc. 753



Figure 2. Cellular Predisposition to Cell

Death or Cell-Cycle Arrest Does Not Dictate

Mutant p53’s DN Effect

(A) Primary MEFs (same passage) of different p53

genotypes were g-irradiated or nutlin treated and

pulsed with 10 mM BrdU 24 hr after treatment for

1 hr. BrdU+ cells were detected by flow cytometric

analysis.

(B) Growth potential of primary MEFs was deter-

mined by population doubling in culture over

seven passages. Data represents mean ± SEM

with 3–4 clones of MEFs/genotype.

(C and D) Early passage E1A/Ras-transformed

MEFs were g-irradiated (5 Gy) or nutlin treated

(10 mM), and the proportion of BrdU+ cells was

determined (C). Cell death of E1A/Ras-trans-

formed MEFs was determined by annexin-V/PI

staining (D). Data representsmean ± SEMwith 3–4

mice/genotype.

(E) Spontaneous transformation/replicative se-

nescence of primary MEFs was determined by

growing cells in accordance with the 3T3 protocol.

Data represents mean ± SEM with two clones of

MEFs/genotype.

(F) Primary MEFs were transduced with onco-

genic mutant Ras-V12-expressing retrovirus and

selected for 2 weeks with puromycin. Viable cell

colonies were stained with crystal violet, and

representative data of three independent repli-

cates are shown.
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Lack of DN Effect Is Not due to Cellular Predisposition to
Cell Death or Cellular Senescence
As the DN effect on cellular survival appears to be only seen in

some cell types, we utilized primary mouse embryonic fibro-

blasts (MEFs) to determine DN effects on cellular proliferation

and senescence. Treatment with nutlin or irradiation led to a

reduction in BrdU incorporation in a p53-dependent manner

(Figure 2A). However, p53+/R246S fibroblasts were as sensitive

as the p53+/+ and p53+/� cells, suggesting that the mutant p53

does not have a negative effect of the remaining wild-type

protein (percentage of Brdu incorporation- p53+/R246S versus

p53+/�: 14.33 ± 0.22 versus 12.63 ± 0.24; p > 0.05 at 10 Gy

and 15.53 ± 0.56 versus 11.75 ± 0.09; p > 0.05 at 10 mM nutlin).
754 Cancer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc.
Moreover, growth rates were similar

between p53+/R246S fibroblasts and

p53+/� cells and lower than the p53�/�

cells (Figure 2B). As primary fibroblasts

generally undergo cell-cycle arrest upon

irradiation, we utilized MEFs that have

been transformed by the expression

of E1A+Ras oncogenes, which have

been shown to sensitize MEFs to cell

death (Lowe et al., 1993). E1A/Ras-trans-

formed p53+/R246S fibroblasts did not

also exhibit any significant DN effects

upon irradiation on cellular prolifera-

tion (percentage of BrdU incorporation-

p53+/R246S versus p53+/�: 19.40 ± 4.00

versus 12.24 ± 4.36; p > 0.05) (Fig-

ure 2C) or cell death (percentage of
cell viability- p53+/R246S versus p53+/�: 70.38 ± 2.59 versus

60.52 ± 3.86; p > 0.05) (Figure 2D). Basal BrdU incorporation for

primary and E1A/Ras-transformed MEFs were also not signifi-

cantly different (p53+/R246S versus p53+/�: primary - 30.70 ±

1.21 versus 30.93 ± 0.43; p > 0.05 and E1A/Ras - 38.00 ±

2.43 versus 36.95 ± 1.25; p > 0.05) (Figures 2A and 2C). These

data indicate that lack of DN effect in MEFs is regardless of

their predisposition to cell-cycle arrest (primary MEFs) or death

(transformed cells).

We next explored the DN potential during cellular senescence

and transformation in MEFs. Primary MEFs were grown in the

3T3 protocol and development of spontaneous transformation

was assayed. As shown in Figure 2E, p53�/� and p53R246S/- cells



Figure 3. DN Effect of Mutant p53 on Transactivation of p53-Target Genes

(A) Various tissues fromwhole-body irradiated (10 Gy) mice were harvested at the times indicated for determination of p53 target gene expression by quantitative

real-time RT-PCR (normalized against actin). Data represents mean ± s.e.m. with 4-8 mice/genotype, except where only 2 p53�/� mice were used.

(B) Thymocytes were irradiated (5Gy) ex vivo prior to analysis of p53 target genes. Fold induction was calculated based on unirradiated samples. Data represents

mean ± s.e.m. with 4-8 mice/genotype, except where only 2 p53246/- mice were used.

(C) CD3+ and B220+ cells from spleens of 6-8 week old mice were purified and irradiated (5Gy) prior to determination of expression of p53 target genes. Data

represents mean ± SEM with 2–3 mice/genotype.

(D) Early passage (<passage 4) MEFs of different p53 genotypes were irradiated (10 Gy), and p53 target gene expression was determined. Data represents

mean ± SEM with 3–4 mice/genotype.
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readily transformed spontaneously in culture without undergoing

replicative senescence, whereas p53+/+, p53+/�, and p53+/R246S

MEFs did not, suggesting that the R246S mutant is incapable of

exhibiting DN effects to overcome barriers of transformation.

In addition, we utilized oncogenic Ras to induce oncogene-

induced senescence, which again revealed the lack of DN effect,

as only p53�/� and p53R246S/- cells were transformed, unlike the

others (Figure 2F), demonstrating the absence of a DN effect

during both spontaneous and Ras-induced senescence/trans-

formation of MEFs in culture.

These data together demonstrate that the coexistence of

endogenous mutant p53 and wild-type p53 leads to a DN effect

on p53-mediated cell survival only in some cell types upon p53

activation.
Can
Mutant p53 Exhibits DN Effect on p53-Mediated
Transactivation in Both Sensitive and Insensitive Cell
Types
We next examined if p53-mediated target gene transactivation is

sensitive to DN effects of mutant p53 in various cell types by per-

forming quantitative real-time PCR analysis. Whole-body irradi-

ation led to maximal p53 target gene activation around 2 hr in

spleen and 5 hr in thymus (Figure 3A). Mdm2, p21, and Noxa

levels were highest at these time points, respectively, in the

p53+/+ case, whereas it was slightly reduced in p53+/� cells.

However, target gene activation was significantly reduced in

tissues from the p53+/R246S mice, almost similar to the p53�/�

case (Figure 3A). It is noteworthy that the difference between

p53+/� and p53+/R246S cases were maximal and significant at
cer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc. 755
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the highest point of activation (normalized Mdm2 expression -

p53+/� versus p53+/R246S: 1.512 ± 0.094 versus 0.776 ± 0.050

for spleen, p < 0.001 and 1.814 ± 0.041 versus 1.148 ± 0.108

for thymus, p < 0.01; p21 expression - 1.534 ± 0.085 versus

0.741 ± 0.077 for spleen, p < 0.05 and 3.466 ± 0.219 versus

1.781 ± 0.166 for thymus, p < 0.05; Noxa expression - 1.590 ±

0.136 versus 0.799 ± 0.050 for spleen, p < 0.01 and 3.073 ±

0.027 versus 1.324 ± 0.178 for thymus, p < 0.001).

p53 target gene activation in thymocytes and purified T and

B cells from spleen after irradiation ex vivo was also examined.

Similar to the in vivo case, p53-dependent p21 and Noxa activa-

tion was maximal around 6 hr after irradiation in thymocytes, at

which point the difference between p53+/� and p53+/R246S was

most obvious and significant (normalized Noxa expression -

p53+/� versus p53+/R246S: 2.088 ± 0.313 versus 0.982 ± 0.205,

p < 0.001; p21 expression - 2.787 ± 0.468 versus 1.110 ±

0.135, p < 0.01) (Figure 3B). Importantly, these targets were

minimally activated in p53+/R246S cells. Purified T and B cells

also showed a similar trend, where the Mdm2 activation was

markedly reduced in p53+/R246S cells compared to p53+/� cells

(normalized Mdm2 expression - p53+/� versus p53+/R246S:

1.288 ± 0.116 versus 0.450 ± 0.053, p < 0.001 for B220+ cells;

0.739 ± 0.068 versus 0.369 ± 0.032, p < 0.001 for CD3+ cells

at 5 hr) (Figure 3C), highlighting that the presence of mutant

p53 was indeed affecting the wild-type p53-dependent target

gene activation in sensitive cells.

Because we noted the absence of a DN effect on cell death

and proliferation in MEFs, we evaluated if p53-dependent target

gene activation is at all affected by the presence of mutant p53.

Whereas p21 activation was not compromised in p53+/R246S

MEFs, indicating the lack of a DN effect, Noxa andMdm2 activa-

tion was significantly compromised (normalized Mdm2 expres-

sion - p53+/� versus p53+/R246S: 3.808 ± 0.344 versus 1.934 ±

0.267, p < 0.001; Noxa expression – 2.044 ± 0.224 versus

1.280 ± 0.210, p < 0.01; p21 expression – 2.341 ± 0.215 versus

1.858 ± 0.009, p > 0.05 at 3 hr) (Figure 3D).Mdm2 andNoxa acti-

vation in p53+/R246S MEFs was minimal and significantly lower

than in p53+/� cells. These data indicate that the DN effect on

transactivation can indeed be observed in MEFs on some target

genes, despite the lack of effect on the biological outcome (Fig-

ure 2). Altogether, the data highlight that the DN effect of mutant

p53 on wild-type p53-mediated transactivation is observed in

both sensitive tissues, such as thymus and lymphoid cells,

and selectively on some target genes in insensitive cells, like

the MEFs.

Threshold Level of Mutant p53 Is Required for DN Effect
In Vivo
Another knockin mouse strain that carries the same R246S

mutation but which also retains the neomycin resistance cas-

sette in intron 6 of the p53 locus, therefore making it a potential

hypomorphic allele (p53+/R246SNeo) (Figure S2), was generated.

Analyzing transcript levels revealed that the mutant p53 levels

were considerably lower in p53+/R246SNeo thymocytes compared

to p53+/R246S thymocytes (Figure 4A). Irradiation of thymocytes

and splenocytes led to an increase in total p53 levels in cells

from all p53 genotypes but was maximal in the p53+/R246S case

(Figure 4B). By contrast, p53 levels were lower in p53+/R246SNeo

cells, confirming that the mutant p53 is indeed expressed at
756 Cancer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc
a higher steady-state level and that the presence of the

neomycin cassette leads to a hypomorphic state, resulting in

reduced expression (Figure 4B).

Irradiation of thymocytes revealed that the cells from

p53+/R246SNeo mice were as sensitive as the p53+/� cells and

not as resistant as the p53+/R246S cells, suggesting a lack of

the DN effect in the p53+/R246SNeo case (percentage of cell

viability at 5 Gy- p53+/R246S versus p53+/R246Sneo: 62.50 ± 3.03

versus 45.71 ± 1.75, p < 0.001) (Figure 4C). To confirm if this

loss of the DN effect on cell viability is also observed on p53-

target gene transactivation, p21 and Noxa induction was

analyzed. As shown in Figure 4D, both the target genes were

induced to a greater extent in the p53+/R246SNeo cells, com-

pared to the p53+/R246S cells that showed minimal activation.

Importantly, the level of induction was comparable between

p53+/R246SNeo cells and p53+/� cells, thereby confirming the

lack of a DN effect in the former cells (normalized p21 expres-

sion - p53+/� versus p53+/R246SNeo versus p53+/R246S 3.042 ±

0.188 versus 3.168 ± 0.114 versus 1.666 ± 0.124, p > 0.05 for

p53+/� versus p53+/R246SNeo and p < 0.001 for p53+/� versus

p53+/R246S; Noxa expression – 4.757 ± 0.35 versus 4.203 ±

0.465 versus 0.712 ± 0.21, p > 0.05 for p53+/� versus

p53+/R246SNeo and p < 0.001 for p53+/� versus p53+/R246S, at

5 hr). Similar results were obtained using splenocytes on

cellular viability (percentage of cell viability at 5 Gy- p53+/R246S

versus p53+/R246SNeo: 71.439 ± 4.104 versus 43.591 ± 1.545,

p < 0.001) (Figure 4E) and target gene activation (normalized

Mdm2 expression - p53+/� versus p53+/R246SNeo versus

p53+/R246S 1.608 ± 0.307 versus 1.618 ± 0.329 versus 0.891 ±

0.074, p > 0.05 for p53+/� versus p53+/R246SNeo and p < 0.01

for p53+/� versus p53+/R246S; p21 expression – 1.883 ± 0.244

versus 1.832 ± 0.237 versus 0.790 ± 0.082, p > 0.05 for

p53+/� versus p53+/R246SNeo and p < 0.001 for p53+/� versus

p53+/R246S, at 5 hr) (Figure 4F). These data together demonstrate

that a threshold level of mutant p53 expression is required for the

manifestation of DN effects, belowwhich the effect is abrogated.

Mutant p53’s DN Effect Affects Acute Response but
Does Not Accentuate Tumor Formation
Low-dose (%5 Gy) whole-body irradiation sensitizes p53 hetero-

zygous mice to tumor formation (lymphomas and thymomas)

(Kemp et al., 1994). Hence, we investigated if the DN effect on

cellular survival seen in thymocytes and lymphocytes can lead

to accentuation of tumor formation after low-dose whole-body

irradiation. Analysis of CD3+ve cell count from peripheral blood

a day after irradiation showed a reduction inmice of all p53 geno-

types, although the decrease appeared to be less pronounced in

p53+/R246Smice and almost negligible in p53�/�mice (Figure 5A).

To analyze this effect in detail, we performed a time-course anal-

ysis of CD3+ve cell numbers, which showed a dramatic decrease

in cell numbers following the first day after irradiation, but which

recovered starting from about day 4 onward (Figure 5A). The

decrease was most significant in p53+/+ mice, followed by the

p53+/� mice. However, the decrease was less pronounced in

p53+/R246S and p53�/� mice, indicative of DN activity during

the acute response phase of radiosensitivity (for 24 hr after

whole-body irradiation, absolute count of CD3+ cells/ml of

peripheral blood - p53+/R246S versus p53+/�: 2,190.42 ± 60.10

versus 1,065.67 ± 164.00, p < 0.05). It is noteworthy that the
.



Figure 4. DN Effects Are Abrogated in Hypomorphic Mutant p53-Expressing p53+/R246SNeo Mice

(A) Expression of different p53 alleles was determined by restriction fragment length polymorphism using thymocyte cDNA. p53 transcript was amplified by RT-

PCR, and 1 mg of purified RT-PCR product was digested with the BsrB1 restriction enzyme—because of the generation of this site by the introduced R246S

mutation—and analyzed by agarose gel electrophoresis. The relative intensity of the cleaved products indicates the expression levels of the knockin allele.

(B) Irradiated (5 Gy) splenocytes and thymocytes were harvested, and p53 protein levels were determined by immunoblotting. Representative blot of two

independent experiments are shown.

(C–F) Viability of thymocytes (C) and splenocytes (E) was determined after irradiation. Expression of p53 target genes after irradiation (5 Gy) of thymocytes (D) and

splenocytes (F) were determined. Data representsmean ± SEMwith 3–4 (C and E) or 2–3 (D and F)mice/genotype, except for the p53�/� case inwhich onemouse

was used for thymocytes. p values are shown for differences between the p53+/246Neo and p53+/� genotypes.

See also Figure S2.
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numbers returned to almost baseline levels about 2 weeks after

irradiation and that there was no elevation beyond the baseline

values in both in p53+/R246S and p53�/� mice (Figure 5A).

Long-term monitoring of these irradiated cohorts of mice

expectedly led to thymoma/lymphoma/sarcoma formation in a

p53-dependent manner (median tumor-free survival of p53+/�

versus p53�/� mice is 33.43 weeks versus 16.65 weeks, p <

0.01) (Figure 5B). However, tumor formation rate was not accen-

tuated in p53+/R246S, which were almost identical to the p53+/�

case (median tumor-free survival of p53+/R246S versus p53+/�

mice is 35.43 weeks versus 33.43 weeks, p = 0.835), indicating

that the initial DN effect on cell death after acute DNA damage

did not have any impact on tumor formation rates. Analysis of
Can
tumor spectrum revealed that majority of both p53+/R246S and

p53+/� mice developed sarcomas primarily and lymphomas to

a lesser extent (data not shown), confirming the lack of DN effect

on carcinogenesis.

To further confirm that the mutant p53-mediated DN effect is

indeed only observed at the initial acute phase but is not contrib-

utory to tumor formation, we utilized the Myc-induced B cell

lymphoma model (Em-Myc transgenics) to follow the fate of B

cells that develop lymphomas in a p53-dependent manner

(Schmitt et al., 1999). First, we purified B cells from Em-Myc

transgenic mice of the various p53 genotypes at an early age,

where LOH has not taken place (Figures S3A and S3B), to deter-

mine the effect of irradiation. The analysis revealed that the
cer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc. 757



Figure 5. DN Effect Contributes to Acute p53-Mediated Response but Does Not Promote Tumorigenesis

(A) Absolute counts of peripheral CD3+ lymphocytes from 20 ml of blood collected from 8-week-old mice were determined before and up to 3 weeks after whole-

body g-irradiation (2.5 Gy). Data represents mean ± SEM with three mice/genotype. * represents p < 0.05 for differences between the p53+/246 and p53+/�

genotypes.

(B) Kaplan-Meier survival curves of g-irradiated (single dose, at 5–8 weeks) mice are shown.

(C) B220+ cells were purified from splenocytes of 4 weeks old Em-Myc transgenic mice of various p53 genotypes and irradiated (5 Gy), prior to determination of

cellular viability. Data represents the percent viability normalized against unirradiated control.

(D) Kaplan-Meier survival curves of Em-Myc transgenic mice of various p53 genotypes are shown.

See also Figure S3.
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presence of the mutant protein led to resistance to cell

death compared to the p53+/� cells (percentage of cell viability-

p53+/R246S versus p53+/�: 42.26 versus 20.29 with Myc) (Fig-

ure 5C), indicating the presence of DN activity on cellular survival

upon acute p53 activation. Monitoring these mice over time indi-

cated that both the Em-Myc;p53+/R246S mice and Em-Myc;p53+/�

mice succumbed to tumor formation at the same rate, with the

median tumor-free survival being 6.57 and 6.14 weeks, respec-

tively (p = 0.973) (Figure 5D). These results suggest that the DN

effect seen after acute p53 activation on cell death during the

radiosensitive phase does not lead to enhanced tumorigenesis.

DN Effect Is neither Exhibited during Spontaneous
Tumor Formation in the Absence of Stress Stimuli nor
Evident during Embryonic Lethality Because of Mdm2
Absence
In order to further investigate if a DN effect is exhibited in

the absence of exposure to acute stress signals, we first moni-

tored a cohort of mice of various p53 genotypes for sponta-

neous tumor formation. Similar to the irradiated cohorts, the

median survival of p53+/� and p53+/R246S mice was comparable,
758 Cancer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc
indicating a lack of DN effects on overall tumorigenesis

(median survival of p53+/� and p53+/R246S mice: 63.43 versus

59.86 weeks, p = 0.46) (Figure 6A; Table 1). Furthermore, there

was no difference in the spectrum of tumors arising from mice

of p53+/� and p53+/R246S genotypes (comparison of tumor spec-

trum by genotype, p53+/� versus p53+/R246S mice: 2 lymphoma

and 19 sarcoma versus 8 lymphoma and 15 sarcoma, p =

0.0725 by Fisher’s exact test) (Table 1). However, when we

focused on the incidence of lymphoma alone, there is a slight

but statistically significant decrease in the lymphoma inci-

dence in p53+/R246S mice (lymphoma-bearing p53+/R246S versus

p53+/� mice: 2/20 versus 8/19, p = 0.031 by Fisher’s exact test)

(Table 1). Nonetheless, there was no significant difference in

survival between p53+/� and p53+/R246Smice in terms of sponta-

neous or IR-induced tumor formation, as well as in the Em-Myc

lymphoma model (Figure 5; Table 1), suggesting that though

the DN effect of mutant p53 may affect the type of cancers

because of cell-type specificity, it does not affect overall

tumor susceptibility. Supporting this idea, no significant dif-

ference was noted in the lymphoma incidence between the

p53+/R246S versus p53�/� mice (lymphoma-bearing p53+/R246S
.
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versus p53�/�mice: 8/19 versus 29/42, p = 0.054, Fisher’s exact

test), although the rate of tumorigenesis was markedly different

between the genotypes (Table 1), indicating that the mutant

allele may have an effect on tissue specificity, though not having

any DN effect on overall tumorigenesis.

Second, we investigated if embryonic lethality due to

Mdm2 deficiency—that can be rescued by inactivation of p53

(Jones et al., 1995)—can be rescued by the DN effect of mutant

p53. To that end, we intercrossed the p53+/R246S;Mdm2+/�

double heterozygotes and found no viable Mdm2�/� mice

with p53+/+ or p53+/R246S genotypes, in contrast to Mdm2�/�;
p53R246S/R246S double homozygous mice, which were viable at

birth (number of Mdm2�/�;p53+/+, Mdm2�/�;p53+/R246S, and

Mdm2�/�;p53R246S/R246S mice found at the time of weaning: 0,

0, and 22, respectively) (Table 2). These results indicated that

the R246S mutant is a completely nonfunctional mutant, reflect-

ing the p53�/� case when homozygous but does not confer DN

effects to rescue Mdm2�/� lethality.

These data therefore show that the DN effect of mutant p53

is only manifested during the acute p53 activation phase and

does not contribute in any significant way to accelerate tumor

formation in the three models studied here, as well as during

embryogenesis.

Elevated Mutant p53 Expression in the Absence of
Mdm2 or in Tumors Is Insufficient to Confer GOF
Properties
We next explored if the R246S mutant possesses oncogenic

GOF properties, by first analyzing the tumor formation rates in

several models. As shown in Figure 5B and Figure 6A, the

median survival of p53�/�, p53R246S/-, and p53R246S/R246S mice

are comparable during both spontaneous and IR-induced can-

cer formation (spontaneous cancers - p53�/� versus p53R246S/-

versus p53R246S/R246S: 21.29 versus 20.86 versus 19.71 weeks,

p = 0.375, for IR-induced cancer p53�/� versus p53R246S/-:

16.64 versus 16.5 weeks, p = 0.23), suggesting that the R246S

mutant may not possess GOF properties. Detailed analysis indi-

cated that the p53�/�, p53R246S/-, and p53R246S/R246S mice

developed mainly lymphomas and sarcomas with similar inci-

dence, much more than the p53+/R246S and p53+/� mice, during

both spontaneous and IR-induced cancer formation (proportion

of p53�/� versus p53R246S/R246S mice developing spontaneous

tumors that are lymphoma and sarcoma: 69% and 23.9% versus

78.3%and 21.7%, p = 0.3846 by Fisher’s exact test) (Table 1 and

data not shown). Unlike the case of other hot spot mutant p53 -

R172H, metastasis was not observed in the tumor-bearing

p53R246S/- and p53R246S/R246S mice (data not shown), further

suggesting a lack of GOF properties of the R246S mutant.

Terzian and colleagues have suggested that the manifestation

of the GOF of mutant p53 can be elevated by increasing the

abundance of the mutant p53 protein, in the Mdm2�/� back-

ground (Terzian et al., 2008). To investigate this aspect, we first

analyzed the status of mutant p53 in normal thymus and thy-

moma of p53R246S/- mice by immunoblotting, which indicated

that the stabilization of the protein only in the tumorigenic state

(Figure 6B), similar to the observation with other hot spot mutant

p53 knockin mice (Lang et al., 2004; Olive et al., 2004). Immuno-

histochemical staining of tumors of p53R246S/R246S mice also

confirmed the elevation of R246S mutant protein only in tumor
Can
cells (Figures S4A–S4D), altogether implying that the abundance

of R246S mutant in tumors alone is insufficient to confer GOF.

Moreover, the stabilized mutant p53 was found to be S18 phos-

phorylated (Figure 6B), suggesting elevated basal DNA damage

in tumors that may contribute to its increased abundance.

We thus evaluated if the R246S mutant p53 would be capable

of exhibiting GOF properties in the Mdm2�/� background, by

generating cohorts of p53R246S/R246S mice with different Mdm2

genotypes. As shown in Figure 6C, the median survival of

p53R246S/R246Smice with differentMdm2 genotypes were similar

(median survival of p53R246S/R246S mice with Mdm2 genotypes

+/+ versus +/� versus �/�: 16 versus 17.5 versus 17.57 weeks,

p = 0.577). Analysis of the tumor spectrum of these mice also

revealed no significant differences among the various Mdm2

genotypes, suggesting that the R246S mutant does not pos-

sess oncogenic GOF properties (proportion of Mdm2+/+ versus

Mdm2+/� versus Mdm2�/� mice with p53R246S/R246S harboring

lymphoma: 71.4% versus 54.2% versus 58.3% and sarcoma:

28.6% versus 37.5% versus 25%, p = 0.9039 by chi-square

test) (Table S1A). Examination of mutant p53 expression in

normal tissues (spleen and thymus) revealed that the level of

R246S mutant protein was indeed elevated in the absence of

Mdm2 (Figure 6D, left panel). Furthermore, the R246S mutant

protein levels were much higher in tumors compared to normal

tissues lacking Mdm2 (Figure 6D, right panel), implying that

phosphorylation of mutant p53 in the tumor context may prevent

its degradation. Immunohistochemical staining of tumors of

p53R246S/R246S; Mdm2�/� mice also confirmed the elevated

levels of R246S mutant in tumors and in normal tissues (Figures

S4E–S4H). These data therefore indicate that elevation of mutant

p53 levels alone by Mdm2 absence or by the DNA damage

context in tumors is insufficient to confer GOF properties to the

R246S mutant.

GOF Is a Phenomenon Exhibited by the R172H Mutant
but Not by the R246S Mutant
Although we did not observe any biological differences between

p53�/� and p53R246S/R246S mice with and without Mdm2, one

cannot exclude the possibility that there may be subtle differ-

ences that cannot be revealed by macroscopic analysis. Tran-

scriptome profiling was thus performed using normal thymus

from p53�/� and p53R246S/R246S mice with/without Mdm2. The

principal component analysis (PCA) of normal thymi indicated

the transcriptome profiles were nearly identical among different

genotypes (data not shown). In order to detect differential gene

expression based on different p53 genotypes, we performed

ANOVA and compared the transcriptomes of p53�/� and

p53R246S/R246S samples. As shown by the volcano plot in Fig-

ure S4I (left panel), most genes showed high p values and low

fold changes, suggesting they are not significantly differentially

expressed, indicating the lack of GOF in normal tissues. A similar

trend was also noted in the absence of Mdm2, implying that

Mdm2 loss per se does not confer GOF to the R246S mutant

p53 (Figure S4I, right panel).

To determine if the ‘‘tumor context’’ is a prerequisite for the

manifestation of GOF, we performed additional microarray anal-

yses using B cells (primary or Em-myc-induced lymphoma) and

MEFs (E1A/Ras transformed). For B lymphoma analysis, only

cells that have lost the wild-type allele were used so that the
cer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc. 759



Figure 6. Mutant p53 GOF Properties Are Mutation-type Specific

(A) Kaplan-Meier survival curves of untreated mice of various p53 genotypes are shown.

(B) Abundance and phosphorylation status of p53 protein in thymoma (T) and normal (N) thymi of mice of various p53 genotypes were analyzed by western

blotting.
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Table 1. Characterization of Spontaneous Tumors in Various p53 Genotypic Backgrounds

p53 Genotype +/+ +/� +/246 �/� 246/246

Lymphoma (%) nd 2/20 (10) 8/19 (42.1) 29/42 (69) 18/23 (78.3)

Sarcoma (%) nd 19/20 (95) 15/19 (78.9) 10/42 (23.9) 5/23 (21.7)

Other (%) nd 0/20 (0) 0/19 (0) 3/42 (7.1) 0/23 (0)

Median survival (weeks) 92.43 63.43 59.86 21.29 19.71

Cohorts of mice of various p53 genotypeswere aged, and spontaneous tumor formation wasmonitored. Moribundmicewere sacrificed, and necropsy

was performed to determine the type of tumor developed. Stats� (232) contingency table of (+/�, +/246)3 (lymphoma, sarcoma) (Fisher’s exact test):

+/� versus +/246, p = 0.0725. Stats� (232) contingency table of (+/�, +/246)3 (lymphoma, nonlymphoma) (Fisher’s exact test): +/� versus +/246, p =

0.031. nd, not detected.
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p53 status of the lymphoma cells will be p53�/� and p53R246S/-

(Figure S4J). For MEFs, the level of p53 and p19ARF of primary

and E1A/Ras-transformed MEFs were determined to ensure

transformation was successful (Figure S4K). PCA analyses re-

vealed that the lymphoma cells were distinctly separated from

the normal primary B cells (Figure 6E). However, the p53 null

and R246S mutant expressing samples were clustered together

and not segregated, suggesting the global transcriptome profiles

were almost identical. As shown in the volcano plots, the detailed

ANOVA comparing p53 null andmutant cells also indicated most

genes were not differentially expressed between these two

genotypes (Figure S4L). Similar results were obtained using

both primary and transformed MEFs, suggesting a lack of GOF

properties of the R246S mutant (Figures 6F and S4M). To rule

out the possibility that there may be a small collection of genes

that may be differentially expressed because of the GOF of the

R246S mutant, we determined the expression of genes showing

the highest fold changes in the microarray study by qRT-PCR,

which did not reveal any differences (Table S1B).

At the cellular level, the viability of p53R246S/- thymocytes was

nearly identical to that of p53�/� thymocytes upon irradiation and

lacked transactivation potential (Figures 3 and S1D). Moreover,

p53R246S/- and p53�/� MEFs always respond similarly to all

stresses tested (Figures 2 and 3), further suggesting a lack

of GOF at cellular and biochemical levels. Given that the

p53R172H/- MEFs have been shown to display GOF properties

through the inhibition of its family members (Lang et al., 2004;

Olive et al., 2004), we studied the effect on p73-mediated trans-

activation of target genes upon ectopic expression of p73 in

p53R246S/- or p53R172H/- MEFs. Expression of Mdm2 was much

less induced by p73 in p53R172H/- cells compared to p53R246S/-

MEFs (Figure S4N). Similarly, p73-mediated upregulation of
(C) Kaplan-Meier survival curves of p53R246S/R246S mice on various Mdm2 genot

(D)Western blot analysis of p53 protein levels in normal spleen and thymus (left), an

thymoma from p53R246S/R246S mice of different Mdm2 genotypes (right) are show

(E and F) Transcriptome profiling of tissues/cells of various p53 genotypes were pe

shown for normal and B lymphoma cells from Em-Myc transgenic mice (E) and fo

sample, and the ellipsoids represent the zone within two SD of an experimental

(G) Viability of E1A/Ras-transformed MEFs of various p53 genotypes was determ

Respective sibling p53�/�MEFs from the R172H or R246S crosses were used as c

cultures were used after 24 hr treatment for western blot analysis of p53. p73 ex

(right panels). Cells transfected with p73 was used as a positive control (+ve). Da

(H) MEFs from the indicated genotypes (top panel) and human H1299 cells stably e

scratch assays, and photographs taken at 0 hr (at scratch) or the indicated time p

PCR analysis of mouse (m) CXCL12 or human (h) CXCL8 were determined in the

See also Figure S4 and Table S1.
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p21-promoter luciferase activity was consistently reduced by

the R175H but not the R249S mutant, the human equivalents

of the mousemutants examined here (Figure S4O), as previously

shown (Gaiddon et al., 2001), suggesting that the R246S mutant

p53 is not capable of efficiently inhibiting p73 activity. In order

to confirm the lack of this inhibitory activity, we performed

two additional experiments. First, we took advantage of the

fact that taxol-induced cell death is highly p73-dependent (and

not p53-dependent) (Toh et al., 2010) and compared sensitivity

of p53�/�, p53R246S/-, and p53R172H/- MEFs to taxol. Both

p53�/� and p53R246S/- MEFs were found to be equally sensitive

to taxol treatment, whereas p53R172H/- MEFs were more resis-

tant (percentage of cell death- p53�/� versus p53R246S/- versus

p53R172H/-: 23.67 or 20.0 versus 20.0 versus 12.0), although

p73 induction was similar in all cells (Figure 6G). Next, we

analyzed ras-induced cellular transformation, which was shown

to be more efficient in p53R172H/- MEFs compared to p53 null

cells (Lang et al., 2004). Expectedly, ras-mediated transforma-

tion was more efficient in p53R172H/-, but not in p53R246S/-

MEFs, compared to p53�/� MEFs, resulting in at least 2-fold

more colonies in the former case (Figure S4P). Altogether, these

data suggest that the inability of R246S mutant to inhibit p73

appears to be one reason for the lack of GOF.

Given that p53 mutants can also exhibit GOF through activa-

tion of novel target genes and promote cellular migration (Muller

et al., 2009; Weisz et al., 2007, Yeudall et al., 2012), we further

examined the effect of R246S mutant on cellular migration.

Scratch assays indicated that although the p53R172H/- MEFs

were able to close the wounded area fully by 12.5 hr, both

p53�/� and p53R246S/- MEFs had only partially migrated (Fig-

ure 6H). Similarly, human H1299 cells stably expressing the

R175H mutant (Vikhanskaya et al., 2007) were able to close
ypic backgrounds are shown.

d the comparison of p53 levels and phosphorylation status of normal thymi and

n.

rformed by Affymetrix mouse exon array. Principal component analysis (PCA) is

r primary and E1A/Ras-transformed MEFs (F). Each data point represents one

group.

ined 48 hr after 400 nM taxol treatment by Annexin v and PI staining (left panel).

ontrols for eachmutant-p53 expressingMEF line. Cellular lysates from parallel

pression was determined by immunoprecipitation followed by immunoblotting

ta represents mean ± SEM.

xpressing the indicated p53mutants (lower panel) were used in wound-healing

oints thereafter are shown to determine extent of cellular migration. Real-time

se cell lines. Data represents mean ± SEM.
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Table 2. Mdm2–/– Lethality Rescue: Offspring Analysis

p53+/246Mdm2+/� Intercross

p53

+/+ +/246 246/246

Mdm2 +/+ 32 77 26

+/� 78 170 52

�/� 0 0 22

p53+/R246S;Mdm2+/� mice were intercrossed to generate mice of various

p53 andMdm2 genotypes. Mice were weaned at 3 weeks old, and geno-

types were determined by PCR. Numbers in the table indicate number of

offspring at 3 weeks of age.
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the wounds by 20 hr, at which time the empty vector or R249S

mutant p53-expressing counterparts had only partially closed

the wounded area (Figure 6H, lower panel). Consistent with

these effects, the expression of the chemokines CXCL12 or

CXCL8, shown to be novel targets of mutant p53 with GOF (Yeu-

dall et al., 2012), were much more elevated in the p53R172H/-

MEFs and R175H-expressing H1299 cells, respectively, com-

pared to p53R246S/- MEFs and R249S-expressing H1299 cells.

These results collectively demonstrate that the R246S p53

mutant, unlike the other hot spot R172Hmutant, does not exhibit

GOF properties in various cell types, both in the primary and

transformed tissues, and even in the absence of Mdm2.

DISCUSSION

The data presented here demonstrate that the DN activity of

mutant p53 is indeed operative in vivo. It is apparent after acute

p53 activation and affects target gene transactivation and short-

term biological outcomes, such as sensitivity to irradiation, in

a cell-type-specific manner but does not affect long-term tumor-

igenesis. Importantly, it is dependent on the dose of the mutant

p53, as hypomorphic mice expressing reduced levels of mutant

p53 do not exhibit the DN effects. In addition, this study also

highlights that the GOF properties of mutant p53 are not

a universal phenomenon. It is specific to themutation and cannot

be induced by absence of Mdm2, demonstrating the differences

in properties of even the common hot spot mutants found in

human cancers. These data raise several interesting points

that merit consideration.

First, the DN effect is seen in a cell-type-specific manner, as

the biological outcome was affected in embryonic stem cells

(Lee and Sabapathy, 2008), T and B lymphoid cells (referred to

here as sensitive cell types) but not in Lin- progenitor cells and

MEFs (referred to here as insensitive cell types). Interestingly,

transactivation was also affected in the insensitive MEFs, indi-

cating that in these cells, p53-mediated target gene transactiva-

tion alonemay not be sufficient to determine biological outcome,

as opposed to the sensitive cell types, in which the p53-depen-

dent target gene activation may the dominant mechanism regu-

lating cellular survival. These findings highlight that mutant p53 is

capable of inhibiting the wild-type counterpart at the molecular

and biochemical level, although the effect is not translated

onto the cellular outcome in all cases. This further suggests

that other cell-type-specific and cell fate regulating signaling

pathways may be operating in conjunction with p53 pathway,

and hence, the manifestation of DN effects on cellular outcome
762 Cancer Cell 22, 751–764, December 11, 2012 ª2012 Elsevier Inc
reflect the reliance of cells on the p53 pathway. Though the iden-

tity and nature of factors that discriminate between the cell-type

specificity is at present unclear, it appears that the generally

observed predisposition of a cell to p53 activation, such as

cell-cycle arrest versus apoptosis, is not the determining factor.

For example, E1A/Ras-transformed MEFs did not exhibit a

DN effect and underwent cell death or cell-cycle arrest upon

nutlin treatment and IR, respectively. Moreover, primary MEFs

underwent cell-cycle arrest upon nutlin treatment, which in-

duced apoptosis in their transformed counterparts, although

a DN effect was not observed in both cases. The manifestation

of the DN effect also appears to be independent of cellular

‘‘stemness’’ as the effects were observed in ES cells (Lee and

Sabapathy, 2008) but not Lin-ve hematopoietic progenitors,

whereas mature splenic and peripheral lymphocytes displayed

the effects.

Second, the DN effect is seen only after acute activation of

p53, being able to negate radiosensitivity, but does not appear

to contribute to long-term tumorigenesis after irradiation, there-

by defining the perimeters for exhibition of the DN effect in vivo.

This suggests that the transient activation of p53 activity, which

regulates acute cellular survival, is the time point at which the

DN effect is manifested, in contrast to baseline activity, which

appears to be critical for prevention of tumor formation. The

DN effect may therefore be important during therapeutic p53

activation phases, such as during chemo- or radiotherapy.

Inducible p53 expression in mice has also supported the notion

that p53 activity during acute DNA damage is not sufficient to

prevent tumor formation (Christophorou et al., 2006; Junttila

and Evan, 2009), emphasizing that the p53 burst in the acute

phase of activation is neither relevant nor required for tumor

suppressive properties. Supporting this conclusion, a recent

study on familial cancer prone patients with different p53 muta-

tions revealed no differences in the distribution of the clinical

subclasses in patients carrying a perceived DN or a severely

defective nonfunctional (SD) p53 allele, suggesting that haplo-

insufficiency, rather than a DN effect, is the major factor contrib-

uting to cancer predisposition (Monti et al., 2011). Interestingly,

patients carrying these DN alleles tended to develop brain

tumors in contrast to SD allele carriers, who were at a higher

risk of developing breast cancers, suggesting tissue specificity

of the DN effects in vivo (Monti et al., 2011), as noted in the study

presented here.

Another salient point to emerge is that the DN effect is depen-

dent on the dose of mutant p53 protein present in the cells. The

DN effect was completely abolished in sensitive cell types in

the hypomorphic strain used here, clearly demonstrating the

requirement for sufficient levels of mutant p53 to inhibit wild-

type p53 function. This is again consistent with the observation

that the DN effect is generally seen upon acute p53 activation,

when the p53 levels are elevated. While this manuscript was

in preparation, Lozano and colleagues showed that reducing

wild-type p53 levels in p53+(Neo)/R172H mice also led to the mani-

festation of DN effects in tissues and cell types that generally do

not exhibit it (insensitive tissues) (Wang et al., 2011). For

example, spontaneous tumor formation was affected by the

presence of a weaker wild-type allele. These data provide proof

of principle that DN can exist in vivo and are consistent with the

fact that the ratio of mutant to wild-type p53 determines the
.
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manifestation of DN effects in sensitive cells, as has also been

implied from in vitro work (Chan et al., 2004). In addition, this

also suggests that the different mutant p53’s may have different

properties, including different degrees of the DN effect in the

same tissue.

The work presented here implies that the coexistence of

mutant p53 with the wild-type allele prior to LOH will have an

impact during acute p53 activation, as shown with the case of

radiosensitivity, and thus in cases of therapeutic treatment.

Hence, mutant p53 may affect the outcome of treatment, likely

leading to reduced or poor response and the eventual relapse

of tumors. Though direct clinical evidence for this is unavailable,

presence of mutant p53 has been correlated with poor prognosis

after treatment (Robles and Harris, 2010). However, one could

not be precisely sure if this was due to mutant p53’s GOF in

tumors that have lost the wild-type allele or to the DN effect of

the mutant, as the early sequencing efforts would have not

excluded the presence of stromal compartments in evaluating

p53 status (which would contain wild-type p53 and therefore

lead to contamination). We have not been able to directly test

the hypothesis that mutant p53’s DN effect is indeed contribu-

tory to poor response to therapy in mice, as LOH is predominant

in tumors arising in the irradiation and the Myc-induced models

(data not shown). Nonetheless, evidence from Lozano and

colleagues indicate that although wild-type p53 activation in

mutant p53-expressing tumors could arrest tumor growth, this

is not as efficient as in the case in which mutant p53 is absent,

suggesting that mutant p53’s presence can indeed prevent

complete functionality of wild-type p53 when activated (Wang

et al., 2011). Thus, the existence of mutant p53 certainly has

a negative impact on cellular survival and hence therapeutic effi-

cacy, either through the DN effect or GOF.

The most convincing evidence by far supporting the existence

of GOF in vivo are derived from the analysis of mutant p53

knockin mice harboring other hot spot mutants, such as

R172H and R270H, which showed higher incidence of carci-

noma and higher metastatic potential than the p53 null mice

(Lang et al., 2004; Olive et al., 2004). GOF was attributed to the

ability of the mutant p53 protein to inhibit its family members,

p73 and p63. However, it is still unclear if GOF properties are

universal for all major hot spot mutants and if there are any differ-

ences in the degree and spectrum of biological activities of GOF

among different mutants. Here, we provide extensive evidence

that a particular hot spot mutant may not exhibit GOF in multiple

cell types and even when its levels are elevated because of

Mdm2 deficiency, challenging the belief that elevated mutant

p53 levels alone are sufficient for GOF of all mutants. The lack

of GOF properties of the R246S mutant p53 is consistent with

its lack of ability to inhibit p73 (this report and Gaiddon et al.,

2001), supporting the notion that inhibition of p73 is one mecha-

nism by which GOF is manifested, and highlights the importance

of our knockin model in understanding human cancers. More-

over, our data also imply the presence of other negative regula-

tors of p53 abundance, which could be deactivated in the tumor

context, leading to further stabilization.

In conclusion, mutant p53 is shown here to have DN effects

in a cell-type and dose-dependent manner, especially during

acute p53 activation, and hence highlights the need for con-

sideration during cancer therapy. Furthermore, GOF properties
Can
appear not to be a universal phenomenon for all hot spot p53

mutants.

EXPERIMENTAL PROCEDURES

Generation and Breeding of p53+/R246S Knockin Mice

The targeting construct, screening strategy, targeted mouse generation, and

genotyping methodology have been previously described (Lee and Sabapa-

thy, 2008; Lee et al., 2011). All animal experiments were approved by and per-

formed in accordance with the guidelines of the Singhealth’s Animal Care and

Use Committee.

Cell Culture and Biochemical Analysis

Details of cell/tissue isolation, culture and treatment, cell-cycle and cell death

analysis, immunoblotting, flow cytometric, and quantitative real-time PCR

analysis are described in detail in the Supplemental Experimental Procedures.

Statistical Analysis

ANOVA was used to determine statistical significance in all experiments,

except cancer formation cohorts. Fisher’s exact test was used to analyze

the difference in incidences of different types of tumor. For cancer formation

cohorts, the ‘‘Log-rank (Mantel-Cox) test’’ was used.
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The microarray data reported in this paper have been deposited in the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo).

The accession number is GSE40417.
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