COMMUNICATION

LINEAR EXTENSIONS OF FINITE POSETS AND A CONJECTURE OF G. KREWERAS ON PERMUTATIONS

Gwihen ETIENNE

Université Pierre et Marie Curie, Paris VI, U.E.R. 48 (E.R. Combinatoire), 75005 Paris, France

Communicated by C. Berge
Received 5 April 1984

We prove a conjecture of G. Kreweras on the number of solutions of the equation \(xy = z \) for permutations of a given signature.

1. Introduction

Let \(x \) be a permutation of \([n]=\{1, 2, \ldots, n\} \), \(n \) an integer \(\geq 2 \). The signature of \(x \) is the \((n-1)\)-tuple \(e = \{e_1, e_2, \ldots, e_{n-1}\} \) where \(e_i \) is the sign + if \(x_i < x_{i+1} \) and − otherwise.

Let \(P_e \) be the set of permutations of \([n]\) with given signature \(e \). G. Kreweras has conjectured [2] (see also [1]) that the number of solutions \((x, y) \in P_e \times P_e \) of the equation \(xy = z \) for \(z \in P_e \) does not depend on \(z \) in \(P_e \). We prove this conjecture in a more general form by relating it to linear extensions of posets.

We give an expression of the number of solutions in terms of a Möbius function as a corollary of a theorem of Stanley.

2. Linear extensions

A linear extension of a finite poset \((E, \leq)\) with cardinality \(n \), is a one-to-one mapping \(s:[n] \rightarrow E \) such that \(s_i < s_j \) implies \(i < j \).

Let \(s, t \) be two one-to-one mappings \([n] \rightarrow E \). We denote \(\sigma_s(t) = (\alpha_1, \ldots, \alpha_{n-1}) \) the \((n-1)\)-tuple of signs \(\{+, -\} \) defined by

\[
\alpha_i = \begin{cases}
+ & \text{if } s^{-1}(t_i) < s^{-1}(t_{i+1}), \\
- & \text{otherwise}.
\end{cases}
\]

Let \(s \) be a linear extension of \((E, \leq)\). Suppose that \(s_i \) and \(s_{i+1} \) are incomparable in \((E, \leq)\). We call allowed transposition \(\tau \) on \(s \) the transposition \(\{s_i, s_{i+1}\} \) leading to
the new linear extension \(t = \tau(s) \) defined by
\[
\begin{align*}
t_j &= s_j & \text{if } j \in [n] \setminus \{i, i + 1\}, \\
t_i &= s_{i+1}, & t_{i+1} &= s_i.
\end{align*}
\]

Lemma 1. Let \(\mathcal{S} \) be the set of linear extensions of \((E, \leq)\) and \(s, s' \in \mathcal{S} \). There exists a finite sequence \(\tau_1, \tau_2, \ldots, \tau_k \) of allowed transpositions such that
\[
s' = \tau_k \circ \tau_{k-1} \circ \cdots \circ \tau_1(s).
\]

Proof. We denote by \(I(s, s') \) the set of pairs \(\{e, f\} \subset E \) such that \(s^{-1}(e) < s^{-1}(f) \) and \(s'^{-1}(e) < s'^{-1}(f) \).

Suppose that for every \(i \in \{1, \ldots, n-1\} \), \(\{s_i, s_{i+1}\} \notin I(s, s') \). Then by definition,
\[
s'^{-1}(s_1) < s'^{-1}(s_2) < \cdots < s'^{-1}(s_n)
\]
gives \(s'^{-1}s_i = i \) for every \(i \) and \(s' = s \).

This proves that if \(s \neq s' \) there exists \(i \in \{1, \ldots, n-1\} \) and \(\{e, f\} \in I(s, s') \) verifying
\[
s^{-1}(e) = i, \quad s^{-1}(f) = i + 1.
\]

Set \(\tau_1 \) the allowed transposition \(\{e, f\} \) on \(s \). One may verify that \(I(\tau_1(s), s') = I(s, s') \setminus \{e, f\} \). By induction on the cardinality of \(I(s, s') \) it is clear that we can obtain \(s' \) from \(s \) using \(|I(s, s')| \) allowed transpositions. \(\square \)

Let \((\leq, \leq')\) be a couple of partial orders on \(E \). We say that this couple verifies **Property (C)** if for every \(x, y \in E \), \(x \) covers \(y \) for \(\leq' \) implies that \(x \) and \(y \) are comparable for \(\leq \).

Let \((\leq, \leq')\) be a couple of partial orders on \(E \) verifying Property (C). We denote by \(\mathcal{S} \), resp. \(\mathcal{S}' \), the set of linear extensions of \((E, \leq)\), resp. \((E, \leq')\). Let \(s \in \mathcal{S} \), \(\tau \) be an allowed transposition on \(\mathcal{S} \) and \(t = \tau(s) \).

Lemma 2. \(\sigma_t(\mathcal{S}') = \sigma_t(\mathcal{S}'') \).

Proof. Set \(s = s_1s_2\ldots s_{i-1}abs_{i+2}\ldots s_n \) and \(t = s_1s_2\ldots s_{i-1}bas_{i+2}\ldots s_n \).

Case 1. \(a \leq' b \). \(a \) and \(b \) are incomparable for the ordering relation \(\leq \). By property (C), \(b \) does not cover \(a \) for \(\leq' \). Thus we cannot have linear extensions \(s' \in \mathcal{S}' \) with \(s'^{-1}(a) = s'^{-1}(b) - 1 \): in every linear extensions \(s' \in \mathcal{S}' \), \(a \) and \(b \) are separated by other elements of \(E \). Clearly, \(\sigma_t(\mathcal{S}') = \sigma_t(\mathcal{S}'') \).

Case 2. \(a \) and \(b \) are incomparable for \(\leq' \). We can partition \(\mathcal{S}' \) into
\[
\mathcal{S}'_1 = \{ \text{linear extensions } s' \in \mathcal{S}' \text{ such that } a, b \text{ are not consecutive in } s' \}
\]
\[
\mathcal{S}'_2 = \{ \text{linear extensions } s' \in \mathcal{S}' \text{ such that } b \text{ is the successor of } a \text{ in } s' \}
\]
\[
\mathcal{S}'_3 = \{ \text{linear extensions } s' \in \mathcal{S}' \text{ such that } a \text{ is the successor of } b \text{ in } s' \}
\]
As in Case 1, $\sigma_s(S_1') = \sigma_r(S_1')$.

The transposition $T = \{a, b\}$ is an allowed transposition on linear extensions $s' \in S_2' \cup S_3'$ and $\tau(S_2') = S_3'$, $\tau(S_3') = S_2'$. We verify that $\sigma_s(S_2') = \sigma_r(\tau(S_2')) = \sigma_r(S_3')$ and $\sigma_r(S_3') = \sigma_r(\tau(S_3')) = \sigma_r(S_2')$.

Therefore $\sigma_s(S') = \sigma_r(S')$. □

The next result immediately follows from Lemmas 1 and 2.

Proposition 3. Let (\leq, \leq') be two partial orders on E with property (C), \mathcal{S}, resp. \mathcal{S}', the set of linear extensions of (E, \leq), resp. (E, \leq'). For every $s, t \in \mathcal{S}$, $\sigma_s(S') = \sigma_r(S')$.

3. Permutations with given signature

Let ε be a $(n-1)$-tuple of signs $\{+, -\}$. We say that a permutation x of the finite set $[n]$ has signature ε if

$$
\varepsilon_i = + \text{ implies } x_i < x_{i+1} \quad \text{and} \quad \varepsilon_i = - \text{ implies } x_i > x_{i+1}.
$$

We denote by $\sigma(x)$ the signature of a permutation x. We recall that P_ε denote the set of permutations with a given signature ε.

Let E the finite set $\{e_1, e_2, \ldots, e_n\}$ and e be the one-to-one mapping $i \mapsto e_i$.

If ε is a $(n-1)$-tuple of signs, let \leq_ε denote the ordering defined by the transitive closure of the couples $\{(e_i, e_{i+1}) \text{ if } \varepsilon_i = +\} \cup \{(e_{i+1}, e_i) \text{ if } \varepsilon_i = -\}$. The set of linear extensions of (E, \leq_ε) will be denoted by \mathcal{S}_ε.

Remark 4. If ε and ε' are two not necessarily distinct signatures, the ordering couple $(\leq_\varepsilon, \leq_\varepsilon')$ verifies Property (C).

Clear, since if e_i covers e_j for \leq_ε, then $i = j + 1$ or $i = j - 1$ and e_i, e_j are comparable for \leq_ε.

Remark 5. $S : [n] \to E$ is a linear extension of (E, \leq_ε) if and only if $s^{-1}e \in P_\varepsilon$.

Proof.

$$
S^{-1}e \in P_\varepsilon \iff \forall i \in [n-1] \begin{cases}
S^{-1}e(i) < S^{-1}e(i+1) & \text{if } \varepsilon_i = + \\
S^{-1}e(i) > S^{-1}e(i+1) & \text{if } \varepsilon_i = -
\end{cases}
$$

$$
\iff \forall i \in [n-1] \begin{cases}
S^{-1}(e_i) < S^{-1}(e_{i+1}) & \text{if } e_i \leq_\varepsilon e_{i+1} \\
S^{-1}(e_i) > S^{-1}(e_{i+1}) & \text{if } e_i \geq_\varepsilon e_{i+1}
\end{cases}
$$

by definition of (E, \leq_ε)

$$
\iff s \in \mathcal{S}_\varepsilon \quad \text{by transitivity.} \quad \Box
$$

Remark 6. Let s, t be two one-to-one mappings $[n] \to E$; then $\sigma_s(t) = \sigma(s^{-1}t)$.

We are now able to prove a conjecture of G. Kreweras [2], generalized by the author to the case of two signatures, and by P. Moszkowski [3] to the case of three signatures.

Theorem 7. Let \(\varepsilon_1, \varepsilon_2 \) and \(\varepsilon_3 \) be three \((n-1)\)-tuples of signs \(\{+, -\} \) and \(P_\varepsilon \) be the set of permutations of \([n]\) with given signature \(\varepsilon_i \), \(i \in \{1, 2, 3\} \).

The number of couples \((x, y) \in P_{\varepsilon_1} \times P_{\varepsilon_2} \) solutions of the equation \(xy = z \) does not depend on the choice of \(z \in P_{\varepsilon_3} \).

Proof. Let \(z \) be a permutation with signature \(\varepsilon_3 \). Consider the set of signatures \(\{ \sigma(zy^{-1}) \colon y \in P_{\varepsilon_3} \} \).

By Remark 5, \(y \in P_{\varepsilon_3} \Leftrightarrow ey^{-1} \in S_{\varepsilon_2}, \ z \in P_{\varepsilon_3} \Leftrightarrow ez^{-1} \in S_{\varepsilon_3} \). Thus,

\[
\{ \sigma(zy^{-1}) \colon y \in P_{\varepsilon_3} \} = \{ \sigma(ze^{-y^{-1}}) : ey^{-1} \in S_{\varepsilon_2} \}
\]

\[
= \{ \sigma(s^{-1}t) : t \in S_{\varepsilon_2} \}
\]

\[
= \{ \sigma_s(t) : t \in S_{\varepsilon_2} \} \text{ by Remark 6}
\]

\[
= \sigma_s(S_{\varepsilon_2}).
\]

By Remark 4 and Proposition 3, the set of signatures \(\sigma_s(S_{\varepsilon_2}) \) does not depend on the choice of \(s \in S_{\varepsilon_2} \). In other words, \(\{ \sigma(zy^{-1}) : y \in P_{\varepsilon_3} \} \) is the same for every \(z \in P_{\varepsilon_3} \).

Then the number of solutions of \(xy = z \), \((x, y) \in P_{\varepsilon_1} \times P_{\varepsilon_2} \) with \(z \) given in \(P_{\varepsilon_3} \), that is \(|P_{\varepsilon_1} \cup zP_{\varepsilon_2}^3| \) does not depend on the choice of \(z \) in \(P_{\varepsilon_3} \). \(\square \)

4. Average

Let \((E, \preceq) \) be a finite poset of cardinality \(n \), and \(s \) be a linear extension of \(E \). We call **allowed permutation** on \(s \) a permutation \(\pi \) of \([n]\) such that \(s_0 \pi \) is a linear extension of \(E \).

Now set \(\varepsilon \preceq \varepsilon' \) if the set of signs \(- \) of \(\varepsilon \) is a subset of the set of signs \(- \) of \(\varepsilon' \). For this partial order \(\varepsilon = \{+, -\}^{n-1} \) is a lattice isomorphic to the lattice of subsets of \([n-1]\).

Finally note \(L \) the distributive lattice of ideals of the finite poset \((E, \preceq)\). If \(\varepsilon \in S \), note \(h_1, h_2, \ldots, h_p \) the integers \(i \) such that \(e_i = - \) and note \(L(\varepsilon) \) the subset of elements of \(L \) with height \(0, h_1, h_2, \ldots, h_p, n \). Denote by \(\mu_{L(\varepsilon)} \) the Möbius function of the ordered set \((L(\varepsilon), \subseteq)\). The following theorem is due to Stanley.

Theorem (Stanley [4]). Let \(s \) be a linear extension of \((E, \preceq)\), \(\varepsilon \) a \((n-1)\)-tuple of signs \(\{+, -\} \). The number of allowed permutations with signature \(\varepsilon \) on \(s \) is \(|\mu_{L(\varepsilon)}(\emptyset, E)| \).

Corollary. Let \(\varepsilon \in \{+, -\}^{n-1} \). Let \(h_1 < h_2 < \cdots < h_p \) be the places of the signs \(- \) in
Let $L(\varepsilon)$ be the ordered set of ideals of (E, \leq_{ε}) with height $0, h_1, h_2, \ldots, h_p, n$ and $\mu_{L(\varepsilon)}$ be its Möbius function.

The number of solutions $(x, y) \in P_\varepsilon \times P_\varepsilon$ of $xy = z$ for a given $z \in P_\varepsilon$ is $|\mu_{L(\varepsilon)}(\emptyset, E)|$.

References

