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Abstract

Let 
k ⊂C denote a domain, such that 1 ∈ 
k and @
k is a conic section, with eccentricity equal to 1=k. In this paper
authors introduce the class of k-uniformly convex functions k-UCV, with the property that the values of the expression
1+zf′′(z)=f′(z) lie inside the domain 
k . Necessary and su�cient conditions for membership in k-UCV, as well as sharp
growth and distortion theorems for k-uniformly convex functions are given. The obtained results generalize the concept
of uniform convexity due to A.W. Goodman (Ann. Polon. Math. 56 (1991) 87–92). c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let H denote the class of functions of the form

f(z) = z +
∞∑
n=2

anzn; (1.1)

analytic in the open unit disk U , and let S denote the class of functions (1.1), analytic and univalent
in U . By CV we denote the subclass of convex, univalent functions, de�ned by the condition

CV =
{
f ∈ S : Re

(
1 +

zf′′(z)
f′(z)

)
¿ 0; z ∈ U

}
: (1.2)

In 1991 Goodman [2] investigated the class of functions mapping circular arcs contained in the
unit disk, with the center at an arbitrarily chosen point in U , onto convex arcs. Goodman denoted
this class by UCV. Recall here his de�nition.
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De�nition 1.1 (Goodman [2]). A function f ∈ H is said to be uniformly convex in U , if f is
convex in U , and has the property that for every circular arc , contained in U , with center �, also
in U , the arc f() is convex.

We remark that for � = 0, we are back to the class CV, and also that if  is a complete circle
contained in U , it is well known that f() is a convex curve also for f ∈ CV.

An analytic condition for UCV has also been formulated by Goodman [2]. We state this as:

Theorem 1.1 (Goodman [2]). Let f ∈ H . Then f ∈ UCV i�

Re
{

1 + (z − �)f
′′(z)
f′(z)

}
¿0; (z; �) ∈ U × U: (1.3)

However, the above condition contains two variables z and �, and for this reason it is not con-
venient for investigation. RHnning [7], and independently Ma and Minda [6], have given a more
applicable one-variable characterization of the class UCV, stated below.

Theorem 1.2 (RHnning [7] and Ma and Minda [6]). Let f ∈ H . Then f ∈ UCV i�

Re
{

1 +
zf′′(z)
f′(z)

}
¿
∣∣∣∣zf′′(z)
f′(z)

∣∣∣∣ ; z ∈ U: (1.4)

One can describe the domain of values of the expression p(z) = 1 + zf′′(z)=f′(z); z ∈ U geomet-
rically. From (1.4) it follows that f ∈ UCV i� p is in the parabolic region


 = {w ∈ C: (Imw)2¡ 2 Rew − 1}:

2. De�nition, necessary and su�cient conditions for the class of k-uniformly convex functions

De�nition 2.1. Let 06k ¡∞. A function f ∈ S is said to be k-uniformly convex in U , if the
image of every circular arc  contained in U , with center �, where |�|6k, is convex.

For �xed k, the class of all k-uniformly convex functions will be denoted by k-UCV. Clearly,
0-UCV = CV, and 1-UCV = UCV.

De�nition 2.1 was motivated by the desire to generalize the family of circular arcs contained in
U , with center also in U , to a family of circular arcs contained in U with center at any point of
the complex plane.

Observe that, the above de�nition generalizes the idea of convexity, and establishes a continuous
passage between the well-known class of convex functions CV and the class UCV.

It is obvious from the de�nition, that the class k-UCV is invariant under the rotation ei�f(e−i�z).
Recall that convexity on a curve z = z(t); t ∈ [a; b], is equivalent to the condition

Im
{
z′′(t)
z′(t)

+ z′(t)
f′′(z)
f′(z)

}
¿0; t ∈ [a; b]; (2.1)

(cf. e.g., [1], vol. I, p. 110).
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For the circle with center at any point � ∈ C, and in view of (2.1), we obtain as an immediate
consequence the analogue of Theorem 1.1. We omit the proof.

Theorem 2.1. Let f ∈ H; and 06k ¡∞. Then f ∈ k-UCV i�

Re
{

1 + (z − �)f
′′(z)
f′(z)

}
¿0; z ∈ U; |�|6k: (2.2)

As with the class UCV it is possible to get a one-variable characterization of the class k-UCV,
depending only on the parameter k.

Theorem 2.2. Let f ∈ H; and 06k ¡∞. Then f ∈ k-UCV i�
Re
{

1 +
zf′′(z)
f′(z)

}
¿k

∣∣∣∣zf′′(z)
f′(z)

∣∣∣∣ ; z ∈ U: (2.3)

Proof. In the case when k = 0 inequality (2.3) reduces to the well-known condition of convexity
(1.2), and when k = 1 we are back to (1.4).

Let 0¡k¡∞, and assume that f ∈ k-UCV. Then, condition (2.2) is ful�lled for every z ∈ U ,
and 06|�|6k. Choosing �= Arg[zf′′(z)=f′(z)], and �= kze−i�, we obtain from (2.2)

Re
{

1 +
zf′′(z)
f′(z)

}
¿Re

{
�f′′(z)
f′(z)

}
= k Re

{
e−i�zf′′(z)
f′(z)

}
= k

∣∣∣∣zf′′(z)
f′(z)

∣∣∣∣ ; z ∈ U: (2.4)

Since 1+zf′′(z)=f′(z) is an analytic function in U , and maps 0 to 1, the Open Mapping Theorem
implies that equality in (2.4) is not possible. Thus, we get a necessary condition for f to be in
k-UCV.

Next, assume for the proof of the su�cient condition, that for 0¡k¡∞, condition (2.3) holds.
Let != �=k. Then we shall prove that

Re
{

1 +
zf′′(z)
f′(z)

}
¿k Re

{
!f′′(z)
f′(z)

}
(2.5)

for all z and ! in the unit disk. By the Minimum principle it su�ces to prove (2.5) for 1¿ |z| =
R¿ |!|. Then (2.3) gives

Re
{

1 +
zf′′(z)
f′(z)

}
¿k Re

∣∣∣∣zf′′(z)
f′(z)

∣∣∣∣¿k
∣∣∣∣!f′′(z)
f′(z)

∣∣∣∣¿k Re
{
!f′′(z)
f′(z)

}

= Re
{
�f′′(z)
f′(z)

}
and (2.2) is established.

3. General properties of k-uniformly convex functions

Denote by 
k with 06k ¡∞, the following set:


k =
{

1 +
zf′′(z)
f′(z)

: z ∈ U;f ∈ k-UCV
}
: (3.1)
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Fig. 1.

Note that, by (2.3), 
k is a domain such that, 1 ∈ 
k and @
k is a curve de�ned by the equality

@
k = {w = u+ iv: u2 = k2(u− 1)2 + k2v2}; (06k ¡∞): (3.2)

From elementary computations we see that (3.2) represents the conic sections symmetric about
the real axis, with eccentricity equal to 1=k, when k 6= 0. In the limiting case when k = 0 the curve
reduces to the imaginary axis. All of the curves have one vertex at (k=(k + 1); 0), and the focus at
(1; 0). If the curve is an ellipse the other vertex is at (k=(k − 1); 0), see Fig. 1.

This characterization enables us to designate precisely the domain 
k , as a convex domain con-
tained in the right half-plane. Moreover, 
k is an elliptic region for k ¿ 1, parabolic for k = 1,
hyperbolic for 0¡k¡ 1 and �nally 
0 is the whole right half-plane.

Furthermore, from (3.1) and (3.2) we can also prove that for f ∈ k-UCV with 06k ¡∞,

Re
{

1 +
zf′′(z)
f′(z)

}
¿

k
k + 1

; z ∈ U (3.3)

and

∣∣∣∣Arg
{

1 +
zf′′(z)
f′(z)

}∣∣∣∣¡



arctan
1
k

for 0¡k¡∞;
�
2

for k = 0:
(3.4)

Denote by P the family of analytic and normalized Carath�eodory functions, and by pk ∈ P the
function such that pk(U ) = 
k . Denote also by P(pk), according to Ma and Minda’s notation [5],
the following family:

P(pk) = {p ∈ P: p(U )⊂
k} = {p ∈ P: p ≺ pk in U} :
We shall specify the functions pk , which are extremal for the class P(pk). Obviously,

p0(z) =
1 + z
1 − z ; z ∈ U (3.5)



S. Kanas, A. Wisniowska / Journal of Computational and Applied Mathematics 105 (1999) 327–336 331

and, in the case of a parabolic domain (cf. [6] or [7]),

p1(z) = 1 +
2
�2

(
log

1 +
√
z

1 −√
z

)2

; z ∈ U: (3.6)

Now, we shall give an explicit form of the function which maps U onto the hyperbolic region


k =

{
u+ iv:

(u+ k2=(1 − k2))2

k2=(1 − k2)2
− v2

1=(1 − k2)
¿ 1; u¿ 0

}
; 0¡k¡ 1: (3.7)

The transformation

w1(z) =

(
1 +

√
z

1 −√
z

)A
;

where
√
z is such that it takes positive values for positive values of z and A= (2=�)arccos k, maps

U onto the angular region D of width A�=2 = arccos k in the w1-plane. Next, the mapping

w2(w1) =
1
2

(
w1 +

1
w1

)

transforms the region D onto the domain G being the interior of the right branch of the hyperbola
whose vertex is at the point w2 = k.

Finally,

w(w2) =
1

1 − k2
w2 − k2

1 − k2

maps G onto the interior of hyperbola, given by (3.7).
Summing up, the function w(w2) =:pk(z)

pk(z) =
1

2(1 − k2)



(

1 −√
z

1 +
√
z

)A
+

(
1 +

√
z

1 −√
z

)A− k2

1 − k2
; z ∈ U (3.8)

and A= (2=�)arccos k, gives the desired mappings. This function also has an equivalent form

pk(z) =
1

1 − k2
cosh

{
A log

1 +
√
z

1 −√
z

}
− k2

1 − k2
; z ∈ U: (3.9)

The conformal mapping of the unit disk onto the interior of the ellipse


k =

{
u+ iv:

(u− k2=(k2 − 1))2

k2=(k2 − 1)2
+

v2

1=(k2 − 1)
¡ 1

}
(1¡k¡∞); (3.10)

requires the use of Jacobian elliptic functions. (Note that for no choice of the parameter k (k ¿ 1),
can 
k reduce to the disk.) It is known (cf. [3], p. 280, or [4], vol. II, p. 140), that the Jacobian
elliptic function sn(s; �) transforms the upper half-plane (and the upper semidisk of {s: |s|¡ 1=

√
�})

onto the interior of a rectangle with vertices ±K; ±K+iK ′. Here, equivalently K=K(�); � ∈ (0; 1)
is Legendre’s complete elliptic integral of the �rst kind

K(�) =
∫ 1

0

dt√
1 − t2√1 − �2t2

;
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and

K ′(�) = K(
√

1 − �2)

is the complementary integral of K(�). The mapping

z(w1) =
√
�sn

(
2K
� arcsin

w1

c
; �
)

maps conformally the elliptic domain

E = {w: |w + c| + |w − c|¡ 2�}; 0¡c¡�;

onto the unit disk U , where � = c cosh(�K ′=4K) and � = c sinh(�K ′=4K) are the semi-axis of the
ellipse E. Its inverse

w1(z) = c sin

(
�

2K(�)

∫ z=
√
�

0

dt√
1 − t2√1 − �2t2

)

=
1

k2 − 1
sin

(
�

2K(�)

∫ z=
√
�

0

dt√
1 − t2√1 − �2t2

)
;

where � ∈ (0; 1) is chosen such that k = cosh �K ′(�)=4K(�), maps the unit disk U onto the elliptic
domain E such that w1(0) = 0. The shift through the distance k2=(k2 − 1) to the right

w(w1) = w1 +
k2

k2 − 1

transforms E onto 
k , given by (3.10), but with the normalization w(w1(0))=k2=(k2−1). Combining
w and w1 we see that to obtain the function pk = w(w1) with the desired normalization pk(0) = 1
we need to solve the equation

pk(0) = w(w1(u(0))) = 1;

where u is the M�obius transformation of the unit disk onto itself. Hence we get

1
k2 − 1

sin

(
�

2K(�)

∫ u(0)=
√
�

0

dt√
1 − t2√1 − �2t2

)
+

k2

k2 − 1
= 1;

that gives

sin

(
�

2K(�)

∫ u(0)=
√
�

0

dt√
1 − t2√1 − �2t2

)
= −1

and equivalently∫ u(0)=
√
�

0

dt√
1 − t2√1 − �2t2

= −K(�):

From the properties of the Legendre’s integral (cf. [4] pp. 127–138) the above equality will be
full�lled if

u(0)√
�

= −1:
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The automorphism

u(z) =
z −√

�
1 −√

�z

provides the required self-mapping of U . Finally,

pk(z) =
1

k2 − 1
sin

(
�

2K(�)

∫ u(z)=
√
�

0

dt√
1 − t2√1 − �2t2

)
+

k2

k2 − 1
; (3.11)

where z ∈ U , is the desired mapping of the disk U onto the elliptic domain 
k , given by (3.10),
with the normalization pk(0) = 1.

Remark 3.1. Note, that P(p0) = P, and P(p1) = PAR (cf. [5]).

Remark 3.2. Observe that, the functions pk in the case k ¿ 1, are regular on the boundary of U .

Property 3.1. (i) It is easy to verify that in the case when k = 0 we obtain A= (2=�) arccos 0 = 1,
and formula (3.8) reduces to p0(z) = (1 + z)=(1 − z); z ∈ U .

(ii) Let k → 1−, then A → 0+, and by using twice the 1’Hospital principle with respect to k to
the function pk given by (3.9), we get that pk(z) → p1(z); z ∈ U .

The characterization of the class k-UCV can be expressed in term of subordination, as follows.

Theorem 3.1. The function f ∈ k-UCV i� p(z) = 1 + zf′′(z)=f′(z) ≺ pk(z) in U .

Note, that for each 06k ¡∞, the domain 
k =pk(U ) is symmetric with respect to the real axis,
convex, and the function pk satis�es the condition p′

k(0)¿ 0.
De�ne the function fk by the following conditions:

1 +
zf′′

k (z)
f′
k(z)

= pk(z); z ∈ U; fk(0) = f′
k(0) − 1 = 0:

Then, by Theorem 3.1, fk ∈ k-UCV. The function fk plays the role of the Koebe function for the
class k-UCV.

As simple consequences of the above, and the results given in [5] we obtain the following prop-
erties for the class k-UCV.

Theorem 3.2. Let 06k ¡∞; and f ∈ k-UCV. Then

f′(z) ≺ f′
k(z) in U; (3.12)

f′
k(−r)6|f′(z)|6f′

k(r); |z| = r ¡ 1; (3.13)

− fk(−r)6|f(z)|6fk(r); |z| = r ¡ 1: (3.14)

Equality in (3:13) and (3:14) occurs for some z0 6= 0; if and only if f is a rotation of the function
fk .
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The next theorem presents a su�cient condition in terms of the coe�cients for the function f to
be k-uniformly convex.

Theorem 3.3. Let f ∈ S. If for some k; 06k ¡∞; the inequality
∞∑
n=2

n(n− 1)|an|6 1
k + 2

(3.15)

holds; then f ∈ k-UCV. The number 1=(k + 2) cannot be increased.

Proof. Suppose that f ∈ S, and that inequality (3.15) holds for a �xed number k, 06k ¡∞. Then,
for the same number k

∞∑
n=2

n|an|6 1
k + 2

and for |�|6k we get

Re
{

1 + (z − �)f
′′(z)
f′(z)

}
¿ 1 −

∑∞
n=2 n(n− 1)|an| |z|n−2

1 −∑∞
n=2 n|an| |z|n−1

|z − �|

¿ 1 − 1=(k + 2)
1 − 1=(k + 2)

(k + 1) = 0:

Thus, from (2.2) and by Theorem 2.1, f ∈ k-UCV. Equality in (3.15) is attained for

f(z) = z − z2

2(k + 2)

with z = 1 and �= −k.
In the case when k = 1, Theorem 3.3 reduces to the following result.

Corollary 3.1 (Goodman [2]). Let f ∈ S. If the inequality
∞∑
n=2

n(n− 1)|an|61
3
;

holds; then the function f ∈ UCV.

For k = 0 we obtain from Theorem 3.3:

Corollary 3.2. Let f ∈ S. If
∞∑
n=2

n(n− 1)|an|61
2
;

holds; then f∈CV:

Now, we shall solve a k-UCV radius problem in the class S. The well-known radius of convexity
in S is 2 −√

3 (see e.g., [1], vol. I, p. 119), and the UCV radius in S is (4 −√
13)=3, (cf. [8]).
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Theorem 3.4. The radius of k-uniform convexity in S is

r0 =
2(k + 1) −√

4k2 + 6k + 3
2k + 1

=
1

2(k + 1) +
√

4k2 + 6k + 3
: (3.16)

Proof. Let f ∈ S. Then the following sharp inequality∣∣∣∣∣zf
′′(z)

f′(z)
− 2r2

1 − r2

∣∣∣∣∣ 6 4r
1 − r2

; |z| = r ¡ 1

holds (cf. e.g., [1], vol. I, p. 63), or equivalently∣∣∣∣∣
(

1 +
zf′′(z)
f′(z)

)
− 1 + r2

1 − r2

∣∣∣∣∣ 6 4r
1 − r2

; |z| = r ¡ 1: (3.17)

The above condition represents a disk intersecting the real axis at the points ((1+r2−4r)=(1−r2); 0)
and ((1 + r2 + 4r)=(1− r2); 0). According to Theorem 2.2, and in view of relations (3.1) and (3.2),
we search for the largest value of r = |z| such that the disk (3.17) lies completely inside the conic
domain 
k . Since all the conic sections have one vertex at the point (k=(k + 1); 0), it is necessary
to ful�ll the condition

1 + r2 − 4r
1 − r2

¿
k

k + 1
:

This inequality is satis�ed for 06r6r0, with r0 given by (3.16). It su�ces to check that for this r0
the disk (3.17) and the conic section @
k have only one common point (u1; 0), where

u1 =
1 + r2 − 4r

1 − r2
=

k
k + 1

: (3.18)

In fact, for the value of k determined by (3.18), one can see that the system of equalities

u2 = k2(u− 1)2 + k2v2;

(
u− 1 + r2

1 − r2

)2

+ v2 =
16r2

(1 − r2)2
(3.19)

has two solutions (u1; 0); (u2; 0), where u1 is given by (3.18) and u2¡ 0. Hence the value u1 is the
only positive solution of (3.19). Thus for r6r0 the disk (3.17) lies completely inside the domain

k .

Remark 3.3. Since the Koebe function gives equality in (3.17), it follows that r0 is the k-UCV
radius in the class of starlike, univalent functions.

Remark 3.4. In the case, when k = 0; r0 = 2 − √
3 is the CV radius in the class S, and if k = 1,

then r0 = (4 −√
13)=3, which coincides with a result from [8].

We can also give a characterization of the class k-UCV in terms of convolution. Recall that the
Hadamard product, or convolution, of two power series f(z)=z+

∑∞
n=2 anz

n and g(z)=z+
∑∞

n=2 bnz
n

is de�ned as (f ∗ g)(z) = z +
∑∞

n=2 anbnz
n.



336 S. Kanas, A. Wisniowska / Journal of Computational and Applied Mathematics 105 (1999) 327–336

Theorem 3.5. Let 06k ¡∞. A function f ∈ S is in the class k-UCV if and only if 1
z (f∗Gt)(z) 6= 0

in U for all t¿0; such that t2 − (kt − 1)2¿0; where

Gt(z) =
1

1 − C(t)
z

(1 − z)2

(
1 + z
1 − z − C(t)

)
; z ∈ U

and

C(t) = kt ± i
√
t2 − (kt − 1)2:

Proof. Let 06k ¡∞. Assume that f ∈ S and p(z) = 1 + zf′′(z)=f′(z); z ∈ U . Since p(0) = 1, it
follows that

f ∈ k−UCV ⇐⇒ p(z) 6∈ @
k for all z ∈ U:
Note that

@
k = C(t) = kt ± i
√
t2 − (kt − 1)2; where t(k + 1)¿1 and (1 − k)t¿− 1:

Also note that
z

(1 − z)2
∗ f(z) = zf′(z)

and

z(1 + z)
(1 − z)3

∗ f(z) =

[
z
(

z
(1 − z)2

)′]
∗ f(z) = zf′(z) + z2f′′(z):

Hence,

1
z

(f ∗ Gt)(z) =
1

1 − C(t)
(f′(z) + zf′′(z) − C(t)f′(z)) =

f′(z)
1 − C(t)

(
1 +

zf′′(z)
f′(z)

− C(t)
)
:

Thus,

1
z

(f ∗ Gt)(z) 6= 0 ⇐⇒ p(z) 6∈ @
k ⇐⇒ p(z) ∈ 
k; z ∈ U:
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