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Abstract

According to several experiments reported in the literature, the elastoplastic behaviour of metals depends not only on the first
stress invariant (triaxiality) for the ductile damage and on the second stress invariant (equivalent von Mises stress) for the yield,
but also on the third stress invariant (normalized Lode angle X) which may affect at the same time the yielding and the ductile
failure.

In this paper a new yield model is presented, where the yield surface depends on the Lode Angle and, eventually, also on the
triaxiality ratio.

The proposed model is identified by a calibration parameter expressing the degree of nonlinearity of the yield with respect to the
Lode angle, and a calibration function expressing the maximum variability of the hardening stress at the two extremities of the
Lode angle range, corresponding to the uniaxial and to the pure shear stress states.

The proposed model has been tested against several experimental data from the literature on the Titanium alloy Ti6Al4V,
including mixed tension-torsion loading which allowed to control the evolution of X and to confine its values into different
narrow ranges for better investigating the Lode angle effects on the yield response.
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1. Introduction

For completely describing the local stress state at single material points of loaded structures, three parameters are
necessary, namely, the principal stresses or the invariants of the stress tensor.

In the classical plasticity framework, the second deviatoric stress invariant is assumed to be sufficient for
describing the elastoplastic response of structural materials via the von Mises criteria and the hardening functions,
the first expressing the yield condition through a yield surface in the stress space, the second relating the evolving
size of such a surface to the equivalent plastic strain.

Frequently, the response of structural metals does not comply with such idealization because also the stress
triaxiality TF (first stress invariant normalized to the Mises stress) and the normalized Lode angle X (based on the
third stress invariant normalized by the Mises stress) play a significant role on the elastoplastic response and on the
ductile fracture.

Since the sixties of the past century, the stress triaxiality is known to accelerate the failure of ductile materials by
decreasing their failure strain (Chaboche (1988), Lemaitre (1985), Mackenzie et al. (1988), McClintock (1968), Rice
and Tracey (1969), Gurson (1977), Tvergaard and Needleman (1984), Barsoum and Faleskog (2007), Mashayekhi
and Ziaei-Rad (2006), Bai and Wierzbicki (2010), Xue and Wierzbicki (2009)); this aspect is completely ascertained
and many models are available in the literature (Bao and Wierzbicki (2004), Brunig et al. (2008), Mirone (2004),
Wierzbicki et al. (2005)), although no triaxiality-related failure criteria is still universally accepted.

Similar considerations apply to the third invariant expressed by normalized Lode angle, whose role in the
embrittlement of materials is gaining stronger evidence in the recent years (Xue (2009), Xue et al. (2010), Mae et al.
(2007), Ghajar et al. (2013), Mirone and Corallo (2010), Graham et al. (2012), Barsoum et al. (2012), Faleskog et al.
(2013), Xue et al. (2013), Papasidero et al. (2014), Rodriguez-Millan (2015), Cortese et al. (2014)) but is not yet
fully recognized.

Also the elastoplastic response of structural materials is potentially affected by the triaxiality factor TF and by the
deviatoric parameter X; the triaxiality is known to directly influence the plastic yield of granular materials, ceramics
etc., but at the same time it seems to have a negligible effect on the plasticity of most metals (Bigoni and Piccolroaz
(2004), Piccolroaz and Bigoni (2009), Penasa et al. (2014), Lehmann (1985)), suggesting that their yield surface in
the stress space has constant cross section along the trisector axis.

Conversely, the deviatoric parameter X is found to play a key role on the yield of many metals; in such cases, the
flow curves from tension may significantly differ from those obtained by torsion (Bai and Wierzbicki (2008), Erice
and Galvez (2014), Gao et al. (2009), Gao et al. (2011), Dorogoy et al. (2015), Cortese et al. (2015), Mirone (2014)),
although it is not a generalized occurrence, and the stress-strain plastic response of other metals is almost unaffected
by X ( autori yield surface cilindrica ).

Then the yield surface of metals may either have a circular, Mises-like cross section or as a six-lobed, Lode-angle
dependent cross section. In case of anisotropic metals with X-dependent yield, also the six-lobed symmetry does not
apply and a full dependence of the yield stress on the Lode angle occurs on a 360 degrees domain, for each given
hardening state of the material.

In this paper, a new yield model including a dependence on both the TF and X is proposed, including the
functions by von Mises and by Tresca as special cases of full insensitivity and of reference sensitivity to X,
respectively.

Experimental data from the literature including mixed tension/torsion tests are used for assessing the predictive
capability of the yield model by way of fortran subroutines implemented in finite element simulations of the
experiments.

2. Yield Model formulation and calibration

A given stress tensor corresponds to a point in the space of principal stresses and can be either identified by the
Cartesian coordinates sl, s2, s3 in a rectangular reference system or by the Haigh coordinates in a cylindrical
reference system; the stress coordinates also express the three invariants of the stress tensor which can be combined
each other in the following parameters:
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where | % O agies is the radial coordinate of the stress state (Figure 1) based on the second stress invariant, the

deviatoric parameter X is the Lode angle @ (third invariant of deviatoric stress) normalized over +/- 30 deg intervals,
and the triaxiality factor 7F expresses the axial coordinate (related to the first stress invariant and to the hydrostatic
stress oy ), normalized to the equivalent stress.

Considering that isotropy is assumed to apply, the Yield Surface (YS) has a tri-lobe symmetry around the {1, 1, 1}
axis. In case of positive-negative symmetry (yield stresses in tension and compression identical each other), then a
six-lobed symmetry applies.

The greatest possible evidence of the Lode angle affecting the yield of some materials is given by the difference
found between the hardening curves in pure tension and in pure torsion.

The phenomenological YS proposed here is a combination of the von Mises and the Tresca surfaces, based on a
Tresca-like linear cross section with straight edges connecting the pure shear and the purely uniaxial yield
conditions, over which a tunable amplification is superimposed in the form of a quadratic function of the Lode
angle, ensuring a flexible calibration parameter with good control of the convexity of the yield surface.

01

Figure 1 Cylindrical, stress invariants-based coordinates

As usual for metals, the effect of the triaxiality on the yield surface is supposed to be negligible, then the yield
surface has a uniform cross section along the trisector axis, and the whole surface can be then identified by its
intersection with the deviatoric plane. However, a tapered cross section modelling the effect of hydrostatic pressure
on the yield can be easily included as in Mirone (2014).

Assuming symmetrical behaviours in tension and compression the definition of the yield surface can be limited to
the interval of Lode angles [0,30].
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Figure 2: yield surface edge definition

According to the scheme of Figure 2, a Cartesian reference U-V is assumed on the deviatoric plane, so that the U
axis identifies a zero Lode angle, pure shear direction. The red line identifies a Tresca-like yield surface with
straight edges accounting for a Lode-angle dependent yield stress, spanning between org in pure tension and csy in
pure shear.

Such a segment is described by the equation of a line passing across the above points on the deviatoric plane:

V:i. U_\F'O_SH : m:O'TE~COS(7'Z'/6)—O'SH (4)
m 3 oy -sin(7/6)

The intersection P between such segment and the general direction at Lode angle 0 can be then easily found, and its
distance from the origin returns the current yield stress according to the straight-edged yield surface connecting the
pure shear and the uniaxial yield stresses:

67(9)=U,7 7, = [ o, Aftran(s) 5

1—m-tan(9)

Then, a Lode angle-dependent quadratic amplification of the yield stress is introduced for better flexibility as a
second order multiplicative term, whose effect is qualitatively depicted by the blue curve in Figure 2. Such a
quadratic amplification spans from 1.0 at the extremities of the Lode angle range (6=0 and 0=n/6), up to the desired
calibration value at the desired representative angle 6*, so providing a single calibration parameter. As far as the
calibration value is positive, the resulting yield surface is convex in the Lode angle range (0, n/3), which is where
convexity must be ensured.

The radial coordinate of the point Q is then obtained by incrementing that of the point P by the above quadratic
term, and the equivalent stress is finally defined as in equation 6.

2 9 _n/.9
O-Eq(‘g)z\/g'OQ(‘g)ZGSH'Htan(lg)' 1+ qa ( % ) (6)

1-m-tan(9) 3*2_%.3*

where ga is the only calibration parameter, required together with the m function, for assessing the quadratic
amplification of the yield due to the Lode angle, and for finalizing the current shape of the yield surface.

The hardening effect in equation (6) is provided by the evolving scale factor sy, which is the current, strain-
dependent yield stress in pure shear, while the possible variability of the surface shape during the straining process
is included in the term m, which expresses the strain-dependent relationship between the hardening stresses under
pure uniaxiality and pure shear. The degree of curvature of the surface edges is instead assumed to be constant as the
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parameter ga, so far, is assumed to be a strain-independent material constant.
Then the yield surface can be also expressed in the fully equivalent form of eq. 7, where the hardening is accounted
for by the more familiar hardening stress in pure tension ore, playing the role of the evolving, strain-dependent scale

factor:
2 _H/
(19)_ ) V4 o T . 1+tan2(19). 1+ ('9 4 9)
R W U B ) e e 7 ™

In principle, the complete identification of such a yield surface can be made by two base experiments in pure tension
and in pure torsion, providing the hardening stresses (orz oy and m), plus one more single test at the intermediate
Lode angle 6%, for calibrating the additional parameter ga.

More reasonably, the parameter ga can be found by minimizing the discrepancies of finite elements runs against a
finite set of tests at intermediate Lode angles.

If m=atan(15 deg), then the parameter ga can be tuned for making the yield surface to collapse on the Mises surface,
depending on the arbitrary calibration angle 6*. If instead m=0 and ¢=0, the Tresca surface is obtained as a special
case.

The variability of ga with the plastic strain can be eventually introduced, making it a calibration function instead of
a calibration constant, so allowing to model further strain-promoted shape evolutions of the yield surface and then
giving one more degree of flexibility to the proposed Yield model.

Figure 3 shows four possible yield surfaces for a given reference uniaxial yield stress, where the shear yield stress is
greater or smaller than the Tresca yield stress (outward or inward protruding dodecagons) and the quadratic
amplification is either turned off or is imposed to be 20% at 15 deg (straight or curved edges).

Figure 3: Four different Yield surfaces corresponding to a given uniaxial stress and two couples of shear stress / quadratic amplification.
3. Experiments and Lode angle -dependent yield calibration

The yield model discussed here is checked against literature experimental data on Ti6Al4V by Allahverdizadeh,
Nima, et al. (2015).

The above experimental campaign includes pure tension, pure torsion and mixed tension-torsion tests imposed by a
constant tensile preload followed by monotonically increasing torque up to failure, so that the deviatoric parameter
can be virtually controlled at the local scale for investigating its effect on the stress-strain response.

In fact, axisymmetric tensile stress states (including uniaxiality as special case) generates X=1, while the generalized
plane strain (including pure torsion as special case) makes X=0; mixing both load types in the desired proportions
allows to determine and maintain the desired values of X at the meaningful material points within the specimens.
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Table 1. Experimental tests by Allahverdizadeh et al.

Material Series id ~ Test type Specimen shape

ATo Torsion
A20 pre-Tension 20 kN + Torsion «
A30 pre-Tension 30 kN + Torsion “

é A40 pre-Tension 40 kN + Torsion “
5 ﬁ; TFS Tension Tens. Flat smooth
< g SFB Shear Shear Flat butterfly
E g TFH Tension Tens. Flat holed
%‘ TFN Tension Tens. Flat notch. R 6.67
TRS Tension Tens. Round smooth
TRN Tension Tens. Round Notched
TPB Three-points Bending Notched square bar

Allahverdizadeh et al. — Tenso-torsio Allahverdizadeh et al. — Tensile round notch

T
Tw

VA
o
-

-\
e

Allahverdizadeh et al. — Shear flat smooth Allahverdizadeh et al. — Tensile flat holed

it

A

Allahverdizadeh et al. — Tensile flat noich Allahverdizadeh et al. — Three points bending

Figure 4: Specimens shapes and load modes

In Table 1 are identified the tests from literature (Allahverdizadeh et al (2015)) used here for checking the accuracy
of the proposed yield model.

Also flat specimens with butterfly-like, grooved and notched shapes are included in the test series according to
Figure 4, providing further data about particular combinations of evolving X and TF values.

The reader may refer to Allahverdizadeh et al. (2014), Allahverdizadeh et al. (2015) and Allahverdizadeh PhD
Thesis (2014) for further details about the experiments.

For the Ti alloy considered here, the load-elongation-diameter curves and the specimens geometry data reported in
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Allahverdizadeh et al. (2014), Allahverdizadeh et al. (2015) and Allahverdizadeh PhD Thesis (2014) allow the
derivation of the tensile flow curve including the postnecking correction (e.g. reverse engineering, Bridgman,
MLR), while the flow curve in torsion is obtained from the torque-angle experimental data processed through the
Nadai torsional formulation (Nadai (1963)), respectively.

The material hardening functions from tensile and from torsional tests after a general reassessment of the data are
summarized in Table 2 and plotted in Figure 5.

Table 2. Material hardening functions in tension and torsion

Material Test type  Flow curves

0.06 .
o, . =1335-¢ (pre-necking)
Ti6Al4V Tension Eq-Tens Eq

2 .
Allahverdizadeh et al. O pg-tens = 1058+1230- Epg — 550- €rq (post-necking)

. 0.08
Torsion  Op, p,,, =1325 &,

Tors

1800
1600 |OEa[MPa] FLOW curves Ti6Al4V I
1400
1200
1000

800 ——TORSION 1325 eeq0.08 (FIT M 3)

600 ——TENSION CURVE & - PRE NECK

400 === TENSION CURVE 8 - POST NECK

200

8Eq
0
0 0.1 0.2 03 0.4 0.5 0.6 0.7

Figure 5: Material hardening functions in tension and torsion

The significant departure of the flow curve in torsion from that in tension evidences that the Lode angle plays a key
role in the yield of this metal.

The evolving function m(gg,) for the Ti6Al4V alloy, derived according to the yield model proposed here and to eq.
(4), is plotted in Figure 6.

The initial negative values of m indicate that, at the beginning of the plastic range, the yield stress in pure shear is
intermediate between the Tresca one and the Mises one at the given hardening level.

The increasing values of m imply that the shape of the cross sections of the yield surface progressively changes, and
the small protrusion it shows just after the first yield at the pure shear angular coodinate, tends to move inward and
becomes less and less pronounced as the plastic strain evolves.

When m=0 the yield in pure shear becomes identical to that of the classical Tresca criteria, although the yield stress
at different Lode angles is generally beyond the Tresca prediction; if instead also the quadratic parameter ga=0, then
the whole surface collapses into the Tresca one.

Positive values of m indicate that the yield surface exhibits inward edges at the zero Lode angle and the yield stress
in pure shear is lower than the Tresca prediction at that hardening level.
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Figure 6: G1 yield factor for the considered metals

The second yield parameter of the yield model, ga, is calibrated by finite elements-based reverse eingineering, as a
compromise allowing to satisfactorily reproduce the macroscopic response (load-elongation and torque-angle
curves) of the various mixed tension-torsion tests performed at different combinations of such loading modes.

All the finite elements analyses are based on the update Lagrangian finite general plasticity with additive
decomposition of the strains, available in a commercial nonlinear code; the proposed yield critieria and the
corresponding  associative plasticity are implemented via fortran user subroutines. The tension-torsion
displacements are imposed via contact surfaces where the proper constraints, motions and loads are imposed (see
Figure 7).

Figure 7: Deformed meshes of tension-torsion and flat shear specimens

The value attributed to the ga parameter for the Ti6Al4V is 0.043 and, together with the m function in Figure 6 and
the uniaxial hardening function in Figure 5, generates the expanding yield surfaces reported in Figure 8 at the strain
levels of 0.02, 0.2, 0.4, 0.6, respectively.

Ti-6Al-4V yield surfaces

90 2000

Figure 8: Evolving yield surface of the Ti-6Al-4V alloy at different strain levels
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The yield surface changes its shape during the straining history, but the degree of curvature of its cross section edges
is fixed because of the constant value of ga. An upgrade of the model is in progress for making the quadratic
amplification ga variable with the plastic strain, increasing the model flexibility.

The results of the finite elements runs performed with the proposed yield model and with the standard Mises yield
criteria are presented in the next section for the various tests by Allahverdizadeh et al.; the data are presented in
terms of macroscopical response parameters like load, elongation, torque and twist angle.

4. X-dependent yield and numerical simulations

In Figure 9 the experimental results are compared to the predictions of the proposed yield criteria (plots A and C)
and to the outcome of finite elements with standard Mises plasticity (plots B and D).

The most iportant outcome of a Lode angle-dependent yield surface is the differentiation of the evolving yield stress
under pure tension from that under pure shear; with this regard the proposed model (black continuous curve in
Figure 9 C) allows to reproduce very well the experimental data with almost no error (large filled black dots in
Figure 9 C and D), while the standard von Mises predictions, typically based on the flow curves from tension,
(black dashed line in Figure 9 D) generate considerable approximations in simulating the torsion experiments with
an error close to 15% at failure.

30 30 . " "
Load [N] Quadratic Yield - Elongation-based tests Load [N] von Mises Yield - Elongation-based tests
-
7
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3 —TRS Mises yield o EXPTRS L* ° %
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J o EXPTFH — —TFH Mises yield
e, —SFBQuad Yield & EXPSFS }ﬁﬁ -
& w7 x EXPTFN - - -TFN Mises yield
—TFH Quad Yield o EXPTFH 15 + +
- - P H i
—TFNQuadVield  x EXPTFN f; x EXPTPB TPB Mises yield
1 _-——-
/{ \ f = —
% 10 4y F S S
P 3 ) 1.; e 3 % B)
o 7,
N x -‘—E_S-E-SS‘E\ an’g‘b;\:,:d‘u—ﬂ&f»—n-e B08 S0-04 & ming
% 5 28 . X )
X A, 4 X
ng Elong. [mm] Q’* ’%
X oxx  x oy ox o« 0 XX x k w o ou Elong. [mm]
1 1.5 2 2.5 3 0 0.5 1 15 2 25 3
. (hmi Quadratic Yield - Tensio-Torsion tests von Mises Yield - Tensio-Torsion tests | - - - |
orque [Nm _L--
100 100 —Torque {Nm} o=
M———"""M e ,—""—.o "'::.....%
. J--q !_2_0____— .
80 R LR o I e TN R BN TR
H C) A B H D)
W . .‘/.....oooo.......... .
60 | 60 .
L ® EXP S1-ATo ——Ato Quad Yield ® EXP S1-ATo - — Ato Mises yield
w0 A . X = EXP S1-A20 ——A20 Quad Yield w0 & = EXP S1-A20 = = A20 Mises yield
§ *4 o EXPS1-A30 ——A30 Quad Yield e EXPS1-A30 = = A30 Mises yield
20 z + EXP A40 A40 Quad Yield 20 g EXP A40 A40 Mises yield
¢ ¢
i Rotation [deg] ¢ :
. . Rotation [deg]
08 08
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Figure 9:Finite elements modelling of experiments by quadratic yield and by von Mises yield

The data in Figure 9 A and B refer to the extension-based tests where, although shear stress at the local scale can be
generated due to finite straining, no macroscopical twist nor torque are applied; here no color code is used for
differentiating the curves of the various tests, as the relationship between an experimental set and the corresponding
finite element simulation is clearly identified.
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All the tests of this series are simulated reasonably by the Mises yield and no great improving is introduced by using
the quadratic yield, except for the “tensile flat holed” test, TFH, where the poor accuracy provided by the Mises
yield (error beyond 12% at failure) is substantially fixed by the proposed yield model (error close to 3% at failure).
Instead, the data in in Figure 9 C and D, for the mixed tension-torsion tests, include a color coding other than the
curves symbols, because the Mises-based numerical simulations exhibit such a poor approximation that the curves
from a certain simulated test are close to the experimental data from a different test, and the correspondence of the
numerical curves to the experimental ones is not always clear.

The error at failure of the tensio-torsion simulations based on the Mises yield spans from 15% (pure torsion) to 30%
(A40 tests).

Such a discrepancy cannot be due to the damage, affecting the experiments and not modeled by the finite elements.
In fact, the progressive microvoid evolution in tension-dominating stress states is known to play negligible role on
the value of the local stresses and of the macroscopic load, as confirmed by the good accuracy of the Mises-based
finite elements fot the elongation-based tests of Figure 9 A and B. Instead in Figure 9 C and D, the 15% error of the
pure torsion, increases up to 30% for the test A40 where the axial component of the stress state is the greater of the
lot.

Then, such a poor accuracy of the simulations with Lode angle deviating from 30 degs. can be reasonably attributed
to the whole Mises yield criteria alone, and the adoption of the quadratic-yield formulation proposed here is capable
of largely reducing the error, which drops down to the range between almost zero (pure torsion) and 8% (A20 test),
with no apparent dependence on the mix between tension and torsion.

The stress paths for the A20 and A40 tension-torsion tests at the most meaningful material points in the specimens
(mid-thickness and outer surface at the neck section) are acquired from the finite elements runs with the X-
dependent yield, and are reported in Figure 10 for the “extreme” mixed tests A20 and A40.

A20 A40
on an
- Quad-Yield Ext B Quad-Yield Ext
— Quad-Yield Midp Quad-Yield Midp
B . e
1 000 ‘ ‘\\\ 1000 h
e " 30 e N30
5000 o\ 5000 o\
- __ =il \\ - \‘
-~ : ‘l |
0 0
l .
A20
A40

an

‘ -- - Mises Yield Ext
Mises Yield Midp

1000 7

| s Mises Yield Ext
Mises Yield Midp

b

1000 N

~,

"\ 30 ¢
s

500

Figure 10: Stress histories of A20 and A40 tests at critical material points

The stress paths are initially very close to the pure tension because of the tensile preload, then the A20 test quickly
departs from uniaxiality after yield because of the low preload, instead the A40 test where the tensile preload is
greater, only later departs from uniaxiality, closer to the first yield condition.

In both cases the paths tend to deviate from their initial straight trajectory, converging toward intermediate stress
states at higher plastic strains.
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As expectable, the larger deviations from uniaxiality occur in the A20 test because the evolving ratio between the
torque and the low-level tensile preload is greater than it is in the A40 test.

In both tests, the stress paths of the material points on the outer surface of the specimens deviate from uniaxiality
more than the inner ones, because the torque-induced shear stress is null at the specimen core and increases along
the section radius toward the secimens surface.

The points on the specimen axis, not reported in Figure 10, are subjected to the tensile preload alone, so their stress
path evolves along the 30 deg direction until failure.

The adoption of the quadratic yield also implies minor modifications of the stress paths, by reducing the variation of
the Lode angle between the beginning and the end of each test, as visible by comparing the upper solid line plots of
Figure 10 to the lower ones.

Summarizing, it is possible to say that the greater departure of the experimental evidence from the Mises criteria,
occurring under pure shear conditions, is reproduced very well by the new yield criteria proposed here; this means
that the m-based feature of the model is capable of correctly reproducing virtually whatever possible departure
function of the pure torsion hardening from the purely tensile hardening.

The ga-based feature which determines the model transition from pure tension to pure shear at intermediate values
of the deviatoric parameter might require further adjustments and upgrades.

The single-valued constant ga resulted to be suitable for correctly modeling the response of the Ti6Al4V alloy but,
for different materials, it is very likely that a strain-dependent variable curvature of the edges of the yield surface
must be implemented through a multi-valued ga function of the strain.

5. Conclusions

A new yield criteria is developed here, based on the experimental evidence that many structural metals exhibit
different hardening functions when the plastic deformation occurs under differently evolving Lode angles.

The proposed yield surface is initially based on a blend of the von Mises surface to a Tresca-like one, with
dodecagonal straight-edged cross section.

Such yield function, X-dependent through the calibrating term m which expresses the relationship between the
hardenings in pure shear and in pure tension, is further amplified by a quadratic function of the Lode angle
calibrated through the material constant ga. Eventually, a similar dependence on the hydrostatic stress can be added
for including the effect of the stress triaxiality, if the material response requires it.

Experimental data by Allahverdizadeh et al. on Ti6Al4V are used for calibrating the model and for checking its
suitability to reproduce the behavior of such alloy undergoing various plastic straining histories, occurring under
different stress paths and Lode angle ranges.

The experimental variability of the Lode angle is provided through assorted mixes of tension-torsion, pure tension
and pure torsion, as well as by pulling tests of flat plane strain and shear butterfly-like specimens.

The calibrated model allows to reproduce all the experiments with good accuracy, leaving almost unaltered the
already good accuracy shown by the classical Mises plasticity for the tests where the stress states evolve closer to
uniaxiality, while almost completely fixing the substantial error which the same Mises plasticity introduces when the
simulated tests involve variable Lode angles departing from uniaxiality.

Further experiments, generating constant Lode angles and scanning the 0-30 degrees range in finer intervals, might
be useful for better assessing the sensitivity of the yield to Lode angle variations.

Although the elastoplastic response of the Ti6Al4V alloy is accurately modeled by the proposed yield function,
other materials should be modeled for checking the model generality, eventually including an upgrade of the yield
model currently in progress, which incorporates a strain-dependent quadratic amplification parameter ga(( geg).
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