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Abstract

We present an explicit construction of a family of steady state density matrices for an open integrable
spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far
from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the
boundary. The steady state solution exhibits n + 1 fold degeneracy, for a chain of length n, due to existence
of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and
define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution
entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl2 and a
non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Nonequilibrium transport problem in extended low-dimensional (say one-dimensional, 1D)
quantum systems is an important current topic in statistical mechanics with possible links to
experiments in condensed matter systems [1,2]. Among the most important open issues are (i)
classification or identification of possible transport behaviors, ranging from ballistic, via diffusive
(normal or anomalous), to insulating, and understanding their microscopic mechanisms [3,4],
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and (ii) developing nonequilibrium quantum thermodynamics [5] and a theory of nonequilibrium
quantum phase transitions (see e.g. [6,7]).

A convenient setup for studying far from equilibrium relaxation dynamics or steady state
situations which support macroscopic currents of charge/particles, magnetization, or energy/heat,
is to couple a 1D system of strongly interacting quantum particles to incoherent forcing governed
by two reservoirs attached at each end of the particle chain and assign them different effective
thermodynamic potentials. This can be achieved e.g. by choosing simple Markovian dissipation
channels which operate as quantum jumps, i.e. pump-in or absorb-out the elementary excitations
at the surface (boundary of the chain). The rest of the system is chosen to be unaffected by the
dissipation and hence evolves according to fully-coherent unitary evolution. For a derivation and
physical justification of such an approach, see Refs. [5,8].

With the hope of being able to take advantage of their rich and elegant mathematical content,
one addresses integrable systems with local interactions first. In this light one obtains a toy model
to study dissipative integrable theory with surface ‘non-unitary sources’. This model could be
in some sense also regarded as a quantum analogue of classical stochastic exclusion processes
[9–11]. Focusing initially on the steady states alone, the aim is to be able to isolate regimes where
complexity of the steady state density operator is drastically reduced, opening a possibility of
finding an efficient and exact representation in terms of the matrix product state. Ever since the
first solutions in this direction have been presented, addressing quasi-free theory [12] and the
paradigmatic strongly interacting case of the (anisotropic) Heisenberg (XXZ) spin-1/2 chain
[13,14], the quest for new integrable out-of-equilibrium scenarios continues [15,16], with some
recent attempts [17–19] of putting these searches under the common roof of theory of integrable
quantum systems [20,21].

It has been argued [15,18] that explicit steady state solutions of boundary driven Liouvillian
(Lindbladian) flows pertaining to certain integrable models arise as a consequence of the under-
lying quantum group symmetry of the model. The latter provides a prerequisite condition for
the solution in the bulk which needs to be fine-tuned with the form of the quantum noise pro-
cess applied to the system’s boundaries. Two principal insights have been made, namely (i) to
re-write the matrix product representation of solution in terms of monodromy matrices with Lax
operators arising from solutions of the universal Yang–Baxter equation associated with a sym-
metry algebra of an interaction, and (ii) to allow for non-unitary irreducible representations over
infinitely-dimensional vector spaces [22]. In the prototype case of the Heisenberg spin-1/2 model
it actually appears that fundamental (local) building blocks that generate the solution inherit sym-
metry from the interaction, despite that the latter is finally broken at the level of Liouvillian flow
and density operator. Below we demonstrate however, how central objects of our construction
could also admit a (non-trivial) continuous symmetry which does not respect that of integrable
bulk interactions.

To this end, we consider an integrable SU(3)-invariant spin-1 chain, commonly referred to as
the Lai–Sutherland model [23,24],1 and employ a pair of Lindblad jump operators which couple
only two extreme levels at the chains end. The intermediate level, which can be viewed as a
hole particle, is thus protected from the environment and its number is preserved throughout the
(dissipative) evolution. Henceforth, such Lindbladian flow is reducible to a (thermodynamically)
infinite number of sectors corresponding to subspaces with fixed ‘hole doping’. This allows for

1 Despite its commonly known name, the model has been discussed even a few years earlier by Uimin [25].
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a possibility of constructing a grand canonical steady state ensemble, with chemical potential
being an additional parameter which controls the average number of holes (or the filling factor).

The paper is organized as follows. In Section 2 we introduce the open three-state Lai–
Sutherland model and specify suitable ‘integrable’ boundary dissipative processes in the frame-
work of Markovian (Lindblad) master equations. In Section 3 we rigorously construct the so-
lution of the steady state in terms of an infinite rank matrix product ansatz. In Section 4 we
discuss several important physical properties of the solution: we introduce the grand canonical
nonequilibrium steady state ensemble (Section 4.1), describe a formal computation of local phys-
ical observables (Section 4.2), discuss graph-theoretic interpretation of the solution in terms of
sums over walks (Section 4.3), characterize the symmetries (Sections 4.4, 4.5, 4.6) and discuss
possible connection to quantum inverse scattering method (Section 4.7). Finally, we conclude in
Section 5.

2. Open Lai–Sutherland model far from equilibrium

Consider a finite chain of n sites and let H1 ∼= C3 be a local quantum (‘physical’) space
associated with each spin-site x ∈ {1,2, . . . , n}. The entire 3n dimensional many-body quantum
space Hs is constructed as n-fold tensor product of local spaces, Hs = H

⊗n
1 . Using the Weyl

matrix basis {eij = |i〉〈j |; i, j = 1,2,3} of End(H1) = gl3, we define a full set of local generators
of the matrix algebra F= End(Hs) as

e
ij
x = 1⊗(x−1)

3 ⊗ eij ⊗ 1⊗(n−x)
3 , (1)

1d defining a d-dimensional unit matrix, satisfying the Lie algebra relations[
e
ij
x , ekl

x′
] = (

δjke
il
x − δile

kj
x

)
δx,x′ . (2)

The spin-1 Lai–Sutherland model [23,24] for a chain of n sites is given by the Hamiltonian
H ∈ F,

H =
n−1∑
x=1

hx,x+1, hx,x+1 = 	sx · 	sx+1 + (	sx · 	sx+1)
2 − 1, (3)

where 	sx = (s1
x , s2

x , s3
x), with

s1
x = 1√

2

(
e12
x + e21

x + e23
x + e32

x

)
, s2

x = i√
2

(
e21
x − e12

x + e32
x − e23

x

)
,

s3
x = e11

x − e33
x , (4)

form independent spin-1 variables (local s = 1 representations of su2) satisfying[
si
x, s

j

x′
] = i

∑
k

εijks
k
xδx,x′ . (5)

Straightforward inspection shows that the local Hamiltonian hx,x+1 – the interaction – is in fact
just the permutation operator between neighboring sites

hx,x+1 =
3∑

1⊗(x−1)
3 ⊗ |i, j 〉〈j, i| ⊗ 1⊗(n−x−1)

3 =
3∑

e
ij
x e

ji

x+1. (6)

i,j=1 i,j=1
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The local Hilbert state basis is therefore given by a triple of states |1〉 ≡ |↑〉, |2〉 ≡ |0〉, |3〉 ≡ |↓〉,
which can be interpreted as three different particle species; respectively, as spin-up particles,
holes, and spin-down particles. The model then becomes equivalent to the so-called supersym-
metric t-J model [26].

Lai–Sutherland chain is a multi-component quantum model and we may associate with it a
skew-symmetric tensor of particle currents, with two-site density

J ij = i
(
eij ⊗ eji − eji ⊗ eij

)
, J

ij
x = 1⊗(x−1)

3 ⊗ J ij ⊗ 1⊗(n−1−x)
3 = −J

ji
x , (7)

which, by construction, satisfies the following continuity equation

d

dt

(
eii
x − e

jj
x

) = i
[
H,eii

x − e
jj
x

] = J
ij

x−1,x − J
ij

x,x+1. (8)

J ij can be considered as a partial current of the particles of species i into particles of species j .
The total current of particles of species i,

J i =
3∑

j=1

J ij , (9)

then fulfills the continuity equation

d

dt
eii
x = J i

x−1,x − J i
x,x+1, (10)

where eii
x can be considered as the operator of particle density of species i.

We shall now open the Lai–Sutherland chain and couple it to the environment via Marko-
vian processes which act only on local quantum spin spaces at the boundary, i.e., at x = 1 and
x = n. The many-body density operator ρt , t ∈R+, considered as an element of F which may be
here considered as a Liouville vector space of operators, then evolves according to Liouvillian
semigroup

ρt (ε) = exp (tL̂)ρ0, L̂ = L̂0 + εD̂, (11)

with time-independent generator – the Liouvillian L̂ ∈ End (F) being split into non-dissipative
part L̂0(ρ) ≡ −i[H,ρ] governing unitary Liouville–von Neumann evolution, and a dissipator
D̂ ∈ End (F) describing the incoherent, dissipative (non-unitary) processes of overall strength ε.
The latter is given in terms of a set of jump operators {Aα ∈ F} and takes a general canonical
Lindblad [27,28] form

D̂ρ =
∑
α

D̂Aα (ρ), where D̂A(ρ) := 2AρA† − {
A†A,ρ

}
. (12)

In particular, we install a single local jump operator at each end of the chain:

A1 = e13
1 = 1

2

(
s+

1

)2
, A2 = e31

n = 1

2

(
s−
n

)2
, where s±

x := s1
x ± is2

x . (13)

Two dissipation channels, interpreted as the left and right magnetization baths, perform the pro-
cesses |↑〉 → |↓〉 and |↓〉 → |↑〉, respectively, with the rates ε. Both processes keep the hole state
|0〉 unaffected. Since also the bulk dynamics generated by L̂0 conserves the number of particles
of each species, it follows that the whole Liouvillian dynamics (master equation) preserves the
number of holes. More precisely, defining the hole-number operator N0 ∈ F as
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N0|i1, i2, . . . , in〉 =
(

n∑
x=1

δix,2

)
|i1, i2, . . . , in〉, (14)

we have that the set of all, the Hamiltonian and the jump operators, commute with N0

[H,N0] = 0, [A1,2,N0] = 0, (15)

which implies that N0 generates a strong [29] U(1) symmetry of the Liouvillian flow (11). N0 fo-
liates the physical space into n + 1 orthogonal eigenspaces, Hs = ⊕n

ν=0 H
(ν)
s , N0H

(ν)
s = νH

(ν)
s .

Theorem A.1 of Ref. [29] then guarantees that the full Lindblad dynamics (11) is closed on
F(ν) = End(H

(ν)
s ), L̂(ν) = L̂|F(ν) , and that a fixed point ρ

(ν)∞ = limt→∞ exp(tL̂(ν))ρ
(ν)
0 – nonequi-

librium steady state (NESS) – exists for each symmetry subspace flow,2

L̂(ν)ρ(ν)∞ = −i
[
H,ρ(ν)∞

] + εD̂
(
ρ(ν)∞

) = 0. (16)

The theorem by Evans [31] can then be used to show uniqueness of NESS ρ
(ν)∞ for each fixed ν.

In the next section we shall outline a simple algebraic procedure for actual explicit construction
of density operators ρ

(ν)∞ .

3. Matrix product solution

Let P̂(ν) ∈ End(F) be an orthogonal projector to F(ν). We define a universal density matrix of
NESS as a direct sum of non-trivial solutions of (16) for all ν,

ρ∞ =
n∑

ν=0

ρ(ν)∞ , with ρ(ν)∞ = P̂(ν)ρ∞ �= 0, (17)

being solution of the fixed point equation (16) as well. The state ρ∞ shall be sought for in terms of
Cholesky factorization (in analogy to previous solutions of XXZ [14] and Hubbard [16] models)

ρ∞(ε) = Sn(ε)S
†
n(ε), (18)

where Sn(ε) ∈ End(Hs) is some yet unknown operator which is represented by an upper trian-
gular matrix in the computational basis |i1, . . . , in〉. Introducing an auxiliary Hilbert space Ha –
separable, but of infinite dimensionality as will become clear later – we define the monodromy
operator M(ε) ∈ End (Hs ⊗Ha) as a spatially-ordered product of some local Lax operators3

Lx(ε) ∈ End (Hs ⊗Ha),

M(ε) = L1(ε)L2(ε) · · ·Ln(ε). (19)

Throughout the paper, the upright-boldface notation designates objects which are not scalars in
auxiliary space Ha. Index free Lax operator can be defined as L(ε) ∈ End(H1 ⊗Ha) so that one
writes Lx(ε) = 1⊗(x−1)

3 ⊗L(ε)⊗1⊗(n−x)
3 . Furthermore, we define the components of Lax matrix

Lij (ε) ∈ End(Ha), such that

2 Note that Thm. A.1 of [29] guarantees that dynamics (11) is closed inside non-diagonal spaces Lin(H(ν),H(ν′)),
ν �= ν′ , as well, but these may or may not [30] (based on computer experiments we conjecture that they do not) support
Liouvillian fixed points and shall not be discussed in this paper.

3 A suggestive name Lax operator should hint on the relation to the zero-curvature condition which shall be established
later.
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Lx(ε) =
3∑

i,j=1

e
ij
x ⊗ Lij (ε), L(ε) =

3∑
i,j=1

eij ⊗ Lij (ε). (20)

We further assume existence of a special state |vac〉 ∈Ha, such that Cholesky factor writes as the
auxiliary expectation value of monodromy operator, or equivalently, as a matrix product operator
(MPO)

Sn(ε) = 〈vac|M(ε)|vac〉 =
∑

i1,j1...in,jn

〈vac|Li1j1 · · ·Linjn |vac〉ei1j1 ⊗ · · · ⊗ einjn . (21)

Fixing an arbitrary orthonormal basis {|ψk〉} of Ha we define the conjugate Lax matrices L(ε)

by 〈ψk|Lij (ε)|ψl〉 := 〈ψk|Lij (ε)|ψl〉. For notational convenience we denote the second copy
of auxiliary space carrying conjugate representation of Lij as Ha. One can then write MPO
formulation of NESS density operator ρ∞ directly, by introducing two-leg Lax matrices Lij (ε) ∈
End(Ha ⊗Ha), and Lx(ε) ∈ End(Hs ⊗Ha ⊗Ha) as

L
ij (ε) =

∑
k

Lik(ε) ⊗ Ljk(ε), Lx(ε) =
∑
i,j

e
ij
x ⊗L

ij (ε), (22)

namely

ρ∞(ε) = 〈〈vac|M(ε)|vac〉〉. (23)

Note the transposition in the quantum space of the conjugated factor of (22). Here a two-leg
monodromy operator

M(ε) = L1(ε) · · ·Ln(ε) ∈ End(Hs ⊗Ha ⊗Ha), (24)

and a product of a pair of vacua 〈〈vac| = 〈vac| ⊗ 〈vac|, |vac〉〉 = |vac〉 ⊗ |vac〉 have been intro-
duced, so that (23) is merely a formal rewriting of (18). These definitions become particularly
handy when we consider evaluation of expectation values of local observables with respect to
NESS ρ∞(ε).

Let η := iε be a complex-rotated coupling parameter and let us (for convenience) relabel the
quantum space matrix elements of the L-operator as

L =
⎛
⎝ l↑ t+ v+

t− l0 u+
v− u− l↓

⎞
⎠ . (25)

The key results of this paper are the following:

Theorem 1. Suppose that 9 matrix elements {Lij } generate the Lie algebra g defined by commu-
tation relations,[

u+, t±
] = [

u−, t±
] = [

u±,v±] = [
t±,v±] = 0,[

l↑,u±] = [
l↓, t±

] = [
l↑, l↓

] = 0,[
l↑, t±

] = ∓ηt±,
[
l↓,u±] = ∓ηu±,[

u±,v∓] = ±ηt∓,
[
t±,v∓] = ±ηu∓,[

l↑,v±] = [
l↓,v±] = ∓ηv±,

[
v+,v−] = η

(
l↑ + l↓

)
,[

t+, t−
] = [

u+,u−] = ηl0,[
l↑,↓, l0

] = [
u±, l0

] = [
v±, l0

] = [
t±, l0

] = 0, (26)

with a representation over the Hilbert space Ha satisfying the following conditions
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l↑|vac〉 = l0|vac〉 = l↓|vac〉 = |vac〉,
〈vac|l↑ = 〈vac|l0 = 〈vac|l↓ = 〈vac|,
t+|vac〉 = u+|vac〉 = v+|vac〉 = 0,

〈vac|t− = 〈vac|u− = 〈vac|v− = 0. (27)

Then, the universal solution (17) to NESS fixed point condition (16) is given via Cholesky factor-
ization (18) with explicit MPO expression (21) for Sn(ε) with η = iε.

Theorem 2. A possible irreducible explicit representation of the Lie algebra g (26) satisfying
(27) is given as

t+ = b↑, t− = ηb†
↑,

u+ = ηb↓, u− = b†
↓,

v+ = η
(
b↑b↓ + s+)

, v− = η
(
b†

↑b†
↓ − s−)

,

l↑,↓ = η

(
b†

↑,↓b↑,↓ + 1

2
− sz

)
, l0 = 1, (28)

in terms of three auxiliary degrees of freedom with a three dimensional lattice {|j, k, l〉, j, k, l ∈
Z+} forming a basis of Ha, namely, two bosonic modes b↑,↓

b†
↑|j, k, l〉 = √

j + 1|j + 1, k, l〉, b↑|j, k, l〉 = √
j |j − 1, k, l〉,

b†
↓|j, k, l〉 = √

k + 1|j, k + 1, l〉, b↓|j, k, l〉 = √
k|j, k − 1, l〉, (29)

and a complex spin (Verma module of sl2)

s+|j, k, l〉 = l|j, k, l − 1〉,
s−|j, k, l〉 = (2p − l)|j, k, l + 1〉,
sz|j, k, l〉 = (p − l)|j, k, l〉 (30)

with |vac〉 = |0,0,0〉 being the highest-weight state. The complex spin parameter p should be
linked to dissipation parameter via

p = 1

2
− 1

η
= 1

2
+ i

ε
. (31)

Proof. The proof of the theorems is based on verifying that the Lie algebra g, given by (26),
can be equivalently defined by means of an identity over End(Hs ⊗ Ha) in the form of local
operator divergence (LOD) condition (customary referred to as the Sutherland equation which
is equivalent to zero curvature/Lax condition),[

hx,x+1,Lx(ε)Lx+1(ε)
] = Bx(ε)Lx+1(ε) − Lx(ε)Bx+1(ε), (32)

with the so-called boundary operator Bx(ε) ∈ End(Hs ⊗Ha) – operating non-trivially only in
the local quantum space

Bx = η
(
e33
x ⊗ 1a − e11

x ⊗ 1a
) = bx ⊗ 1a, where bx(ε) = −iεs3

x ∈ F. (33)

Identification of (26) with LOD (32) is straightforward, based solely on the permutation action
of Hamiltonian density
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[
hx,x+1, e

ij
x ekl

x+1

] = e
kj
x eil

x+1 − eil
x e

kj

x+1. (34)

Multiplying LOD by a string L1 · · ·Lx−1 from the left and a string Lx+2 · · ·Ln from the right,
summing over x and taking vacuum expectation value yields the global almost conservation
condition for the Cholesky factor (the so-called defining relation, analogous to similar relations
in other integrable nonequilibrium models [14,16]),[

H,Sn(ε)
] = −iε

(
s3 ⊗ Sn−1(ε) − Sn−1(ε) ⊗ s3), where s3 = e11 − e33. (35)

Consequently, by expanding the unitary part of Liouvillian L̂0,

−L̂0(ρ∞) ≡ i[H,ρ∞] = i[H,Sn]S†
n − iSn[H,Sn]†, (36)

in conjunction with (35), and employing the definition (22), the steady state condition (16) yields
a decoupled system of boundary equations

〈〈vac|(D̂A1(L1) − i
(
B

(1)
1 −B

(2)
1

)) = 0,(
D̂A2(Ln) + i

(
B

(1)
n −B

(2)
n

))|vac〉〉 = 0, (37)

where two-leg boundary operators B(1)
x ,B

(2)
x ∈ End(Hs ⊗Ha ⊗Ha), reading

B
(1)
x =

3∑
i,j=1

bxe
ij
x ⊗ 1a ⊗ Lji , B

(2)
x =

3∑
i,j=1

e
ij
x bx ⊗ Lij ⊗ 1a, (38)

have been defined. Note that, due to (33), bx = iεs3
x = −bx for ε ∈R.

The last two lines of (26) indicate that pairs of auxiliary operators (t+, t−) and (u+,u−) span
the Weyl–Heisenberg algebra. In conjunction with the highest weight conditions (27) this fixes
(uniquely, up to unitary transformations) the representation of (t+, t−) and (u+,u−) to be that
of a Fock space of two canonical bosonic (oscillator) modes, specified by creation/annihilation
operators, [bσ ,b†

σ ′ ] = δσ,σ ′ , [bσ ,bσ ′ ] = 0, σ,σ ′ ∈ {↑,↓}, suggesting that the auxiliary space Ha
is perhaps just a two-mode bosonic Fock space. While realization for all the other generators
consistent with the bulk algebra g is not difficult to construct (e.g. v±, l↑ + l↓ can be just the
Schwinger boson representation of su2 – see 5th line of (26)), it turns out not to be consistent
with the boundary conditions (27).4 Therefore the auxiliary space Ha has to contain (at least) one
additional degree of freedom.

Ultimately, in order to fulfill (37), a straightforward calculation shows that it is enough to add
a Verma module S of a complex spin representation (30) of sl2 and consider a triple-product
space Ha ∼= B ⊗ B ⊗ S = lsp{|j, k, l〉; j, k, l ∈ Z+}, and find a representation of the algebra
(26) which is compliant with conditions

L|vac〉 =
⎛
⎝ |vac〉 0 0

η|1,0,0〉 |vac〉 0

η(|1,1,0〉 − |0,0,1〉) + 2|0,0,1〉 |0,1,0〉 |vac〉

⎞
⎠ , (39)

〈vac|L =
⎛
⎝ 〈vac| 〈1,0,0| η(〈1,1,0| + 〈0,0,1|)

0 〈vac| η〈0,1,0|
0 0 〈vac|

⎞
⎠ , (40)

4 One can for instance compute Schmidt ranks of bipartite (symmetric) cuts for exact MPO solutions of Sn for small
systems sizes and observe that they exceed the upper bounds implied by the conjectured two-particle Fock space for Ha.
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with vacuum being given by the ground state |vac〉 ≡ |0,0,0〉. These requirements are all satisfied
by choosing representation (28)–(30) with p being fixed (31) as required by the conditions in the
first two lines of (27). The last two lines of (27) hold due to highest-weight-property of |vac〉.
As such a representation is clearly irreducible, this concludes the proof of Theorems 1 and 2. �
Remark. All MPO (21) amplitudes, i.e., matrix elements of the Cholesky factor of the density
operator

〈i1, i2, . . . , in|Sn|j1, j2, . . . , jn〉 = 〈vac|Li1j1Li2j2 · · ·Linjn |vac〉, (41)

are polynomials (of order not more than n) in η = iε with integer coefficients. This is a simple
consequence of Wick theorem, or representation of Theorem 2.

4. Discussion

The formulae (18), (21), (25), (28)–(31) are the main result of this paper: They generate
explicit construction of a many-body density matrix of a family of degenerate NESSes ρ

(ν)∞ =
P̂(ν)ρ∞ for any number of holes ν ∈ {0,1 . . . n}. The computational complexity of obtaining any
locality-based information about the state ρ∞, say to compute its matrix elements of the type
〈i1, . . . , in|ρ∞|j1, . . . , jn〉 or local observables, is at most polynomial in n. Since the eigenspaces
H(ν) of number-of-holes operator N0 are orthogonal, one can also split the Cholesky factors
S

(ν)
n (ε) = P̂(ν)Sn(ε)

ρ(ν)∞ (ε) = S(ν)
n (ε)S(ν)†

n (ε), (42)

since S(ν)S(ν′)† = 0 if ν �= ν′. Projected Cholesky factor satisfies a projected defining rela-
tion (35)[

H,S(ν)
n

] = −iε
(
s3 ⊗ S

(ν)
n−1 − S

(ν)
n−1 ⊗ s3), (43)

and can be expressed in terms of a constrained or microcanonical MPO

S(ν)
n (ε) =

∑
i1,j1...in,jn

δ(
∑

x δix ,2),ν〈vac|Li1j1 · · ·Linjn |vac〉ei1j1 ⊗ · · · ⊗ einjn . (44)

Note that since [S(ν),N0] = 0, the Kronecker-δ constraint can just as well be replaced by
δ(

∑
x δjx ,2),ν as only operators ei1j1 ⊗ · · · ⊗ einjn for which

∑
x δix ,2 = ∑

x δjx,2 appear in MPO
expansion (21).

We note two limiting cases of our new solution. For zero hole sector ν = 0 one obtains exactly
the fully polarized boundary driven isotropic (XXX) Heisenberg spin-1/2 chain and reproduces
the solution of Ref. [14] as formulated in [17]. The other extreme case (ν = n) is the so-called
dark state, i.e. a pure state ρ

(ν=n)∞ = (e22)⊗n = |2,2, . . . ,2〉〈2,2, . . . ,2| which is unaffected by
the dissipation, i.e. it is simultaneously annihilated by L̂0 and D̂, L̂0ρ

(n)∞ = D̂ρ
(n)∞ = 0.

4.1. Grand-canonical nonequilibrium steady state ensemble

Any convex mixture of states ρ∞ = ∑
ν cνρ

(ν)∞ , cν ∈ R+, is a valid NESS density operator as

well, which factorizes (18) with a Cholesky factor Sn = ∑
ν

√
cνS

(ν)
n . Microcanonical constraint

in (44) seems cumbersome as it prevents facilitating transfer matrices for computation of local
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observables. There seems to be a particularly attractive option which overcomes this problem.
Namely, one may define a grand canonical nonequilibrium steady state (gcNESS) ensemble by
taking a hole chemical potential μ with cν = exp(μν):

ρ∞(ε,μ) =
n∑

ν=0

exp (μν)ρ(ν)∞ (ε). (45)

Clearly, the addition theorem for exponential function erases the constraint in MPO expansions:

Sn(ε,μ) =
∑

i1,j1...in,jn

〈vac|Li1j1(ε,μ) · · ·Linjn(ε,μ)|vac〉ei1j1 ⊗ · · · ⊗ einjn , (46)

ρ∞(ε,μ) =
∑

i1,j1...in,jn

〈〈vac|Li1j1(ε,μ) · · ·Linjn(ε,μ)|vac〉〉ei1j1 ⊗ · · · ⊗ einjn , (47)

where the chemical potential only modifies the components of the Lax operators as

Lij (ε,μ) = exp

(
μ

2
δi,2

)
Lij (ε), L

ij (ε,μ) = exp

(
μ

2
(δi,2 + δj,2)

)
L

ij (ε). (48)

Moreover, introducing a transfer vertex operator

T(ε,μ) =
∑

i

L
i i (ε,μ) =

∑
i,j

Lij (ε,μ) ⊗ Lij (ε,μ), (49)

we define the nonequilibrium partition function and express it via the transfer matrix method

Zn(ε,μ) = tr
(
ρ∞(ε,μ)

) = 〈〈vac|(T(ε,μ)
)n|vac〉〉. (50)

The hole chemical potential μ can be connected to the ensemble averaged filling factor (doping)
r via logarithmic derivative of the partition function

r := 〈ν〉
n

=
∑n

ν=0 ν exp(νμ) trρ(ν)∞
n

∑n
ν=0 exp(νμ) trρ(ν)∞

= n−1∂μ log
(
Zn(ε,μ)

)
. (51)

As usual, we expect the fluctuations 〈ν2〉/n2 − r2 to be thermodynamically small.
We can make a simple assertion about the thermodynamic behavior of Zn. In the regime,

n → ∞, one can write an asymptotic expansion

logZn(ε,μ) = α(ε,μ)n +
∑
j

βj (ε,μ)fj (n) + o(n), (52)

where fj (n) are all possible – perhaps non-analytic – super-linear dependencies satisfying
limn→∞ n

fj (n)
= 0 (as we shall argue later the most typical being f (n) = n logn), and o(n) is the

standard ‘little-o’ notation. Here we have assumed that the chemical potential μ is an intensive
quantity, i.e., independent of n. According to the definition (51), the doping should be confined
to the unit interval, 0 � r � 1,∀n, so the following identities follow in the thermodynamic limit

r(ε,μ) = ∂

∂μ
α(ε,μ),

∂

∂μ
βj (ε,μ) ≡ 0, (53)

i.e., coefficients in front of all super-linear dependencies cannot depend on the chemical poten-
tial.
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4.2. Computation of local observables

Expectation values of (local) observables can be extracted by facilitating auxiliary vertex
operators. Let X[x,y] = 1⊗(x−1)

3 ⊗ X ⊗ 1⊗(n−y)

3 be a generic local observable supported on a
sublattice between sites x and y. Then, a formal expression

〈X[x,y]〉 = Z−1
n (ε,μ) tr

(
X[x,y]ρ∞(ε,μ)

)
, (54)

can be calculated from the MPO representation of ρ∞(ε,μ) by tracing out the physical space
Hs and associating with each observable X[x,y] a corresponding vertex operator via a mapping
Λ� : End(H⊗�

1 ) → End(Ha ⊗Ha), where � = y − x + 1, using the prescription

Λ�(X) =X :=
∑

i1,j1...i�,j�

tr
((

ei1j1 ⊗ · · · ⊗ ei�j�
)
X

)
L

i1j1 · · ·Li�j� . (55)

For a complementary part of a lattice, i.e. where X[x,y] operates trivially, one has the transfer
vertex operator T = Λ1(13), Eq. (49), so the final expectation value reads

〈X[x,y]〉 = Z−1
n 〈〈vac|Tx−1

XT
n−y |vac〉〉. (56)

For example, for on-site observables we have auxiliary vertex operators Λ1(e
ij ) = Lji , e.g. for

a magnetization density Λ1(s
3) = L11 −L33.

As for two point observables, we consider an interesting example of the current density tensor

Λ2
(
J ij

) = J
ij = i

(
L

ji
L

ij −L
ij
L

ji
)

= i
∑
k,l

(
LjkLil ⊗ LikLj l − LikLj l ⊗ LjkLil

)
. (57)

Stationarity (time-independence) of NESS and continuity equation (8) imply spatial-independence
of current expectation values. In auxiliary transfer matrix formulation (49) this implies commu-
tation of transfer vertex operator with current vertex operators when projected onto subspace of
states created upon action of T on the vacua, namely〈〈

ϕL
k

∣∣[T,Jij
]∣∣ϕR

l

〉〉 = 0,
〈〈
ϕL

k

∣∣ := 〈〈
vac

∣∣Tk,
∣∣ϕR

k

〉〉 := T
k
∣∣vac

〉〉
. (58)

Additionally, using representation given in Theorem 2 and highest weight nature of the vacuum,
one can with some effort express the expectation values of total current operators (9) in terms of
the nonequilibrium partition function (50)

〈
J 1〉 = 2ε

Zn−1

Zn

,
〈
J 3〉 = −2ε

Zn−1

Zn

. (59)

Using parametrization of thermodynamic scaling (52) we can express large n asymptotics of the
spin current J s = J 1 − J 3 as

log
〈
J s

x

〉 = − ∂

∂n
logZn + const = −

∑
j

βjf
′
j (n) + const. (60)

For example, in the limiting case r → 0 of XXX spin-1/2 chain, we have [14] a single term in
the sum of (52) with f1(n) = n logn and β1 = 2, implying a sub-diffusive scaling 〈J s

x〉 ∝ n−2.
We claim that such scaling may be quite generic, yielding a power-law scaling of the current, β1
being the power-law exponent.
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In order to obtain more precise, or explicit results on the thermodynamics of observables in our
nonequilibrium model one would need to have a better understanding of the algebra of auxiliary
vertex operators generated by Lij and of analytic properties of the partition function Zn, such as
in the case of XXX model [14,18,32]. A very attractive question would be to investigate ε–μ

phase diagram of the open Lai–Sutherland chain and to analyze possibilities of nonequilibrium
phase transitions.

For example, one may define the minimal and maximal doping, accessible by an inten-
sive (n-independent) chemical potential in the non-equilibrium grand canonical state, as r± :=
limμ→±∞ limn→∞ n−1∂μ logZn(ε,μ) (note the importance of the order of the limits!). Depend-

ing on the tails of the ν-dependence of tr ρ
(ν)∞ , one may have r− = 0, or r− > 0 (and r+ = 1, or

r+ < 1). In the latter of the case(s) one may hence expect a phase transition at r = r±, whereas
the rest of the doping range, [0, r−] (or [r+,1]), is only accessible by considering a carefully
chosen n-dependent chemical potential μ(n). Eqs. (53) imply that the current scaling exponent
β1(r) is constant on the entire range [r−, r+], nevertheless it may be different than the XXX

exponent β1|r=0 = 2, which can be obtained from our solution of the Lai–Sutherland chain via
different order of the limits limn→∞ limμ→−∞. It is thus in principle possible to find even a
normal diffusive exponent β1 = 1 and/or transitions to other, say super-diffusive or ballistic be-
haviors with changing the doping r . Investigating these exciting questions will be a subject of
intense future work.

4.3. The solution as a walking graph state

In Ref. [16] a universal interpretation of NESS density operators of integrable boundary driven
chains have been given in terms of walking graph states (WGS). WGS can be considered as an
appealing and compact formulation of matrix product state with infinite-dimensional matrices
having a simple local structure.

Following notation of [16] we show here that our MPO solution (21) can be given a WGS
interpretation as well. Let the set of vertices of the graph G be an octant of a three-dimensional
Cartesian grid V(G) = {(j, k, l); j, k, l ∈ Z+}. The set of edges is a union E(G) = E ′ ∪ E ′′ of
non-degenerate E ′ and degenerate E ′′ ones. Non-degenerate edges are givens as eight types of
pairs of neighboring vertices,

E ′ = {(
(j, k, l), (j + 1, k, l)

)
,
(
(j + 1, k, l), (j, k, l)

)
,(

(j, k, l), (j, k + 1, l)
)
,
(
(j, k + 1, l), (j, k, l)

)
,(

(j, k, l), (j + 1, k + 1, l)
)
,
(
(j + 1, k + 1, l), (j, k, l)

)
,(

(j, k, l), (j, k, l + 1)
)
,
(
(j, k, l + 1), (j, k, l)

); j, k, l ∈ Z
+}

, (61)

corresponding, respectively, to the following values of an index-function ω : E(G) → End(H1),
namely, e12, e21, e23, e32, e13, e31, e13, e31. Edges

E ′′ = {(
(j, k, l), (j, k, l); i); j, k, l ∈ Z

+, i ∈ {1,2,3}}, (62)

are diagonal self-connections and are triple degenerate, corresponding to index function ω = eii .
Finally, we define an amplitude function a : E(G) → C by the following prescription. For each
g ∈ E(G) connecting vertex p(g) to vertex q(g) we define a(g) = 〈p(g)|Li(g)j (g)|q(g)〉, follow-
ing (25), (28)–(30), where indices i(g), j (g) are determined by the value of index function at g,
ω(g) ≡ ei(g)j (g).
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Clearly, the MPO (21) can now be written as a WGS, i.e., a sum over a set of all walks
Wn � g ≡ (g1, g2, . . . , gn) starting at the origin (0,0,0) and returning to the origin in exactly n

steps, p(g1) = (0,0,0), q(gx) = p(gx+1), q(gn) = (0,0,0),

Sn =
∑

(g1,g2...gn)∈Wn

a(g1)a(g2) · · ·a(gn)ω(g1) ⊗ ω(g2) ⊗ · · · ⊗ ω(gn). (63)

Contrary to XXZ and Hubbard models [16], where each value ω(g) of the index function
corresponds to only one direction q(g)–p(g) in the graph diagram, and consequently the par-
tition function could be written as an appealing walking graph sum of strictly positive terms
Zn = ∑

(g1,g2...gn)∈Wn
|a(g1)a(g2) · · ·a(gn)|2, (even if a(g) are not C-numbers like in the Hub-

bard case) this is not the case here, since the index function is degenerate. E.g., to e13 there
correspond directions (1,1,0) and (0,0,1). Nevertheless, one can verify that the whole partition
function still remains a sum of positive terms being attributed to multiple walks g which share
common index functions ω(g) := ω(g1) ⊗ · · · ⊗ ω(gn), i.e., now individual contributions from
degenerate walks coherently add up to a final amplitude, much like the interference property in
standard wave-like phenomena.

4.4. Characterization of the Lie algebra

The Lie algebra g, Eq. (26), has a non-trivial structure. It can be decomposed however (ac-
cording to Levi theorem) as a semi-direct product of a solvable ideal (radical) and semi-simple
part,

g = r� a. (64)

In our case a is given by lsp{v+,v−, l+}, writing l± := l↑ ± l↓, i.e. a ∼= sl2 is isomorphic to
spin algebra, whereas r = lsp{t±,u±, l−, l0}, generates a (non-nilpotent) radical. The element l0

lies in the center of g. It is worth noticing also, that parameter η can be fully removed from the
algebra (26) by diving all generators by η, except t+,u−.

4.5. Symmetries of the Lax and transfer operators

In contrast to situation with XXX or XXZ spin-1/2 chain [14,15], it might seem surprising
here that the fundamental local unit, the Lax operator L, does not exhibit the full SL(3) symmetry
of the interaction. However, the dissipative driving breaks the SL(3) symmetry, resulting in only
remaining U(1) global symmetry of the Liouvillian flow generated by

M =
n∑

x=1

s3
x , (65)

over End(Hs). Consequently, we found generators of U(1) symmetry for the Lax operators rep-
resented in H1 ⊗Ha, and H1 ⊗Ha ⊗Ha, namely[

L, iεs3 ⊗ 1a + 13 ⊗ l+
] = 0, (66)[

L, iεs3 ⊗ 1a ⊗ 1a + 13 ⊗ l+ ⊗ 1a + 13 ⊗ 1a ⊗ l+
] = 0. (67)

It remains to be investigated whether other gauges exist in which Lax operators exhibit non-
Abelian symmetry.
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Furthermore, transfer vertex operator T exhibits U(1) × U(1) symmetry, i.e. there exist two
conserved auxiliary-space operators K± ∈ End(Ha ⊗Ha),[

T,K±] = 0, K
± := l± ⊗ 1a + 1a ⊗ l±. (68)

Conserved operators look particularly useful in the auxiliary spin–boson representation of The-
orem 2 (note that η = −η for physical (real) dissipation) where we have now four indepen-
dent bosonic modes b↑↓,b↑↓ and two complex spins sα and sα with representation parameters
p = 1/2 − 1/η and p = 1/2 + 1/η

K
+ = η

(
b†

↑b↑ + b†
↓b↓ − 2sz) − η

(
b†

↑b↑ + b†
↓b↓ − 2sz), (69)

K
− = η

(
b†

↑b↑ − b†
↓b↓

) − η
(
b†

↑b↑ − b†
↓b↓

)
. (70)

Computation of nonequilibrium partition function (50) should hence be performed on a 4D sub-
lattice of a 6D lattice (a basis of Ha ⊗ Ha, {|j, k, l, j , k, l〉; j, k, l, j , k, l ∈ Z+}) where, say j, k

can be eliminated using constraints:

j − k = j − k, j + k − 2l = j + k − 2l. (71)

This is analogous to ‘diagonal reduction’ of the transfer matrix for the open XXZ chain proposed
in Refs. [14,19].

4.6. Symmetries of the Liouvillian flow and its fixed point

Besides the strong U(1) symmetry generated by N0, the full Liouvillian flow has another
U(1) symmetry generated by magnetization operator M (65), as noted in Section 4.5. This is a
weak symmetry in the sense of Ref. [29] and can be formally written as

[M, L̂ρ] = L̂
([M,ρ]), ∀ρ. (72)

As a consequence M should be a ‘good quantum number’ for the fixed point (NESS) ρ∞, i.e.,
[ρ∞,M] = 0 and

〈i1, . . . , in|ρ∞|j1, . . . , jn〉 �= 0 only if
n∑

x=1

ix =
n∑

x=1

jx. (73)

The Liouvillian flow and NESS display additional Z2-parity weak symmetry which is a com-
position of lattice reversal R̂ ∈ End (F),

R̂
(
ei1j1 ⊗ ei2j2 ⊗ · · · ⊗ einjn

) = einjn ⊗ ein−1jn−1 ⊗ · · · ⊗ ei1j1, (74)

and a product of local mirror symmetries Ŝ ∈ End (F) which exchange spin-up and spin-down
particles,

Ŝ = Ŝ⊗n
1 , Ŝ1

(
eij

) = e3−i+1,3−j+1, (75)

namely

[R̂ Ŝ, L̂] = 0 and R̂Ŝρ∞ = ρ∞. (76)

Cholesky factor Sn(ε) however acquires another Z2-parity symmetry. By means of transposi-
tion map T̂ ∈ End (F),
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T̂ = T̂ ⊗n
1 , T̂1

(
eij

) = eji, (77)

one finds

R̂ŜSn = T̂ ŜSn = Sn. (78)

Notice that T̂ Ŝ pertains to the symmetry with respect to exchange of the bosonic modes in
auxiliary space.

4.7. Transfer matrix property of Cholesky factors

Similarly to XXX [17] and Hubbard [16] chains the Cholesky factor is found, empirically by
checking explicitly systems of small size n, to exhibit a transfer matrix properly, namely

[
Sn(ε), Sn

(
ε′)] = 0, ∀ε, ε′ ∈ C. (79)

This property justifies calling the L-operator a quantum Lax matrix with M-operator being a cor-
responding monodromy matrix and Sn(ε) = 〈vac|M(ε)|vac〉 the corresponding transfer matrix
where the trace in infinitely dimensional auxiliary space is replaced by a ground state expecta-
tion value [17]. It remains an open issue though to prove that L(ε) belongs to solutions of the
quantum Yang–Baxter equation. Clearly, the property (79) can be extended to grand canonical
objects due to orthogonality of subspaces H(ν), namely [Sn(ε,μ),Sn(ε

′,μ′)] = 0.

5. Conclusions

We have presented an explicit infinite rank matrix product state construction of an exact
solution for a grand canonical nonequilibrium steady state of a boundary-driven integrable
SU(3)-symmetric spin-1 chain. Beside the external chemical potential, controlling an average
filling factor of conserved “hole particles”, the NESS (continuously) depends also on the bath
coupling parameter, describing strength of incoherent processes at the boundaries. Quite re-
markably, the elements of the main building block (the L-operator) generate a Lie algebra of
non-trivial structure whose simple part is given by classical sl2 algebra. Despite the fact that
L-operator does not seem to exhibit invariance with respect to any continuous non-Abelian
symmetry, empiric evidence clearly suggests that it generates a quantum transfer matrix of an (ab-
stract) integrable system, indicating that a Yang–Baxter structure is sitting underneath. Another
central aspect to the problem is that the auxiliary space can be factored into three-fold product of
infinite-dimensional quantum spaces – a Fock space of two independent bosonic modes and one
generic representation of sl2 (Verma module) – depending on one complex continuous represen-
tation (spin) parameter p. In order to fulfill the boundary system of equations which guarantee
solutions to our problem, the value of spin parameter must be chosen according to the dissipation
rate. The solution contains, as a special extreme case, previously known NESS for symmetrical
driving of the spin-1/2 (isotropic) Heisenberg model. It remains an open issue whether presented
solution admits any integrable continuous deformation (q-deformation), enabling generalization
to anisotropic versions of the Lai–Sutherland model, say for the Perk–Schultz model [33]. An-
other interesting open issue is to generalize our solution to more than three (N > 3) component
Sutherland models.
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