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ABSTRACT 

We present a method that transforms the problem of downdating the singular- 
value decomposition into a problem of diagonalizing a diagonal matrix bordered 
by one column. The first step in this diagonalization involves bidiagonalization 

of a diagonal matrix bordered by one column. For updating the singular-value 
decomposition, a two-way chasing scheme has been recently introduced, which 
reduces the total number of rotations by 50% compared to previously developed 
one-way chasing schemes. Here, a two-way chasing scheme is introduced for the 
bidiagonalization step in downdating the singular-value decomposition. We show 

how the matrix elements can be rearranged and how the nonzero elements can be 
chased away towards two corners of the matrix. The newly proposed scheme saves 
nearly 50% of the number of plane rotations required by one-way chasing schemes. 
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1. INTRODUCTION 

Suppose we have a matrix A E Cm’” for which we also have a certain 
orthogonal decomposition, such as the QR decomposition or the singular- 
value decomposition (SVD). In many applications, we need to solve prob- 
lems recursively, where the data matrix of one time step differs from that of 
the previous step only through addition of a new row (updating) or through 
deletion of an existing row (downdating). Obviously, we would like to ob- 
tain a new solution without recomputing the new decomposition all over 
again. In many of these updating and downdating problems, we need 
to restore the bandwidth of a banded matrix bordered by a row or a 
column. 

For updating the SVD [3, 41, a two-way chasing scheme has been re- 
cently introduced [15]. We have generalized this scheme for the reduction 
of a more general banded matrix bordered by one or more rows and/or 
columns to banded form [ll]. By splitting the matrix into two similarly 
structured submatrices and chasing nonzeros to the corners in two direc- 
tions, the newly proposed patterns reduce the number of required rotations 
and hence the computational cost by 50% compared to the other existing 
one-way chasing algorithms [l, 41. These methods can be used for updating 
the ordinary SVD and the partial SVD [13, 141, for example. 

In this paper, we show that the problem of downdating a row in the 
SVD of a matrix can be transformed to a problem of bidiagonalizing a 
diagonal matrix bordered by a column and then finally diagonalizing this 
bidiagonal matrix. In Section 2, we briefly describe how to downdate the 
QR decomposition and show that downdating the QR decomposition is 
closely related to downdating the SVD. Section 3 then shows how the idea 
of downdating the QR decomposition can be adapted to downdating the 
SVD. In Section 4, we present the main characteristics of the one-way 
and two-way chasing schemes for the bidiagonalization step in downdating 
the SVD. For the two-way chasing scheme which requires only 50% of the 
computational cost of the one-way chasing scheme, we show how the matrix 
elements can be rearranged and how the nonzero elements can be chased 
away towards two corners of the matrix. 

2. DOWNDATING THE QR DECOMPOSITION 

We first briefly present an algorithm for downdating the QR decompo- 
sition, because this topic is well described in the literature [2, 6-8, lo] and 
also because downdating the SVD is closely related to downdating the QR 
decomposition. 
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Assume that a QR decomposition of a matrix A E Cmx”, m > n, is 
given as 

A=(x;)=Q(;)=(;;j)($ (2.1) 

where xH E Clxn is the first row of A, Q E Cm’” is unitary, and qH is 
the first row of Q. We can find a sequence of complex plane rotations J, 
in the plane (i, i + 1)) 1 5 i < m - 1, which gives 

qH J,-l J,_z.. . J1 = e,T, (2.2) 

where el E R mxl is the unit vector with 1 in the first position and 0 
everywhere else. We define P = J,_l J,-_z.. .Jl and apply PH from the 
left to the matrix 

( 

R 
9 

( )) 0 

to obtain 

= PHQH(el A) = (2.3) 

where yH E Crxn and ?i E Cnx” . IS upper triangular. From (2.3), since 
PHQHel = el, PHQH has the form 

pHQH = (2.4) 

for a unitary matrix G E C(m-l)x(m-l). Thus from (2.3) and (2.4), we 
have 

which gives y = x and the new QR decomposition 
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for 1. Equation (2.3) shows that the downdating transformation P is com- 
pletely determined by the first row q H of the unitary factor Q. However, in 
many cases, only the “skinny” Q factor which consists of the first n columns 
of Q is known, e.g., in the Gram-Schmidt or modified Gram-Schmidt al- 
gorithms, or the Q factor is not computed at all for the purpose of saving 
storage and computational costs. Downdating this skinny QR decompo- 
sition by means of a modified Gram-Schmidt-type algorithm is discussed 
in [2, 51. For downdating the upper triangular factor in cases when the Q 
factor is not known, several algorithms, such as the LINPACK algorithm [8], 
and the CSNE and hybrid algorithms which produce more accurate solutions 
[2], have been developed. 

Suppose we have the skinny QR decomposition 

(2.5) 

where Qn. E Cmx” consists of the first n columns of the unitary matrix 
Q, and d’ E Clxn is the first row of Qn. Then since xH = q:R, we 
can obtain the first row qf of Qn by solving this triangular system. The 
complex rotations J,- 1, . . . , Jn+l in (2.2) do not affect the matrix R in 
the computation (2.3). Thus, we can simply compute y = dm and 
obtain the downdated triangular factor R from 

(2.6) 

where K,” is a complex plane rotation in the plane (i, i + 1) that annihilates 
the (i + l)th component of 

K$. . . K,” qn 
( ) 

. 
Y 

This is the LINPACK algorithm [8] for downdating the QR decomposition, 
where Q is assumed to be not available. The numerical properties of this 
method are discussed in [2, lo]. 

3. DOWNDATING THE SVD 

We now show how the idea of downdating the QR decomposition can 
be adapted to downdating the SVD. In [7], the relation between down- 
dating the QR decomposition and downdating any two-sided orthogonal 
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transformations has been shown. Assume that the SVD of the matrix 
A E Cmxn, m > n, is given by 

A=(x;)=U(;)VH=(;;j)(f)VH, (3.7) 

where U E CmX m and V E Cnx n are unitary, C E RnX n is diagonal, and 
uH E Clxm is the first row of U. We will show in the next section that 
there exist unitary matrices F E Cmx” and G E C(nfl)x(n+l), a product 
of complex plane rotations each, such that 

FH(u (f))G=(; ;) (3.8) 

where U E CnX n is a bidiagonal matrix and wH E Clxn is a row vector. 
Moreover, it can be shown that there exists a matrix G of the form 

G= (3.9) 

for some unitary matrix G E (2”‘“. Consequently, G does not operate on 
the first column of 

( c 
u ( )) 0 . 

Then from (3.7) and (3.8), we have 

FHIJH(el AV)G = 

and since FH UHel = el, FH UH has the form 

FHUH = 

(3.10) 

(3.11) 
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for some unitary matrix c E C(“-l)x(“-l). Therefore, from (3.9), (3.10), 
and (3.11), 

FHUH(el AV)G = (:, ?“+I ..,( :, ;) 

which gives the bidiagonal reduction of the downdated A: 

Further reduction of the bidiagonal matrix B to a diagonal matrix can be 
performed by using QR iterations [6], resulting in the SVD of the matrix A. 

As in the QR decomposition, the matrix U is expensive to compute 
and store. However, many problems can be solved without the matrix U. 
We show how the singular values and the right-singular-vector matrix V 
can be downdated when the left singular vector matrix U is unknown. We 
assume rank A = r 5 n, and 

C= 
CT- 0 ( ) 0 0 ’ 

where C, E R”’ is a full-rank diagonal matrix. Then from (3.7), we have 

where U, E Cmx’ and VT E CnxT consist respectively of the first T 
columns of U and V, and u,” E C1 xT is the first row of U,.. Note that 
(3.12) has the same structure as (2.5) which was used for downdating the 
QR decomposition. Since 

XH v, = IL;& (3.13) 
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we can obtain 14,“. As in (2.6), we can then compute unitary matrices 
J’ E C(‘+i)x(‘+i) and G E C(T’l)x(T+l), each a product of complex plane 
rotations, such that 

F”(; ;)G= (; z) (3.14) 

where B, E C”’ is bidiagonal, w,” E Clxr is a row vector and y = 
dm. Thus, the problem is to transform a matrix of the form 

X x 0 0 . . . 0 

x oxo...o 

x00x i 

. . . . . . . 0 

x oo... 0 x 

x oo... 0 0 

\ 

into the form 

/ 

1 x x x . . . x‘ 

ox x 0 . . . 0 

ooxx ! 

0 0 0 x . . . 0 

. . . . . . . . . . . x 

0 0 0 . . . 0 x, 

\ 

/ 
(3.15) 

by using complex rotations from the left and right sides of the first form 
in (3.15). In the following section, two schemes are presented that perform 
this bidiagonal reduction. We will see that although the first row, (1 w:), 
is allowed to be a full vector, the algorithms we present generate wTH which 
has zero components except for the first two components. 

The complex plane rotations that constitute the downdating transfor- 
mations F and G shown in (3.14) can be replaced by real plane rotations 
by using the fact that C, is real even when A is complex [9]. Suppose we 
multiply two unitary diagonal matrices 

p,H= ( poH et:,+l)> (3.16) 

where P = diag (eial,. . . , eiaF) and i = a, from the left and the right, 
respectively, of the matrix 
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FIG. 1. Downdating a 4 x 4 diagonal submatrix bordered by one column to bidi- 
agonal form using a one-way chasing scheme. 

Then, since 

(3.17) 

we can choose I+, 1 5 j 2 T + 1, to make PHu, and e2ar+ly real, which 
makes the matrix D, real, since PHC,P = C,. 

Thus, after D, is made real via PI and P2, we can use real plane rota- 
tions to transform D, into the desired form. Note that in downdating the 
QR decomposition, the upper triangular factor and the row to be down- 
dated cannot both be made real via simple transformations like diagonal 
unitary matrices. 

4. BIDIAGONALIZATION SCHEMES FOR DOWNDATING THE SVD 

4.1. One- Way Chasing Scheme 

The bidiagonalization operation (3.15) on the r x r diagonal subma- 
trix C, bordered by one column can be performed by means of a one-way 
chasing scheme, as illustrated in Figure 1 for r = 4. As used convention- 
ally, x represents possible nonzero entries of a matrix, and a blank space 
represents a zero. In the figures, the entry to be annihilated at the current 
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reduction step is encircled, and a + represents a new fill-in entry. A pair of 
rows and a pair of columns involved in the plane rotation at each reduction 
step are marked by -+ and 1, respectively. Denoting the rotation from the 
left in the plane (i, i + 1) as Fi and that from the right as G,, the rotation 
sequence in the one-way chasing scheme is represented as 

(4.18) 

F2, G3, F3r G4, F4, . . . . G,, F, 

Fl 

where the jth line represents the rotations that are required to annihilate 
the (T + 2 - j)th element of the current first column of D, or D, and 
to complete the j x j trailing bidiagonalization. The desired bidiagonal 
form is built from bottom to top while nonzeros are chased away to the 
lower-right corner. This proves that we can find unitary or orthogonal 
matrices F and G, products of the rotations Fi and Gi above, that reduce 
the matrix D, or D, to the form (3.15) from which the bidiagonal reduction 
of the downdated A follows. Since Gr does not occur in the sequence (4.18), 
G does not operate on the first column of D, or D, implying that G is of 
the form 

1 0 ( ) 0 ZI ’ 

as required. This one-way chasing scheme needs 1 + CrE2(2i - 3) = r2 - 
2r + 2 plane rotations and 14r2 - 28r + 0(l) flops (according to [ll], using 
the definition of [6, p. 191) to perform the required reduction on D,. 

4.2. Two- Way Chasing Scheme 

A reduction of the number of plane rotations by up to 50% can be 
obtained by chasing nonzeros away in two directions, i.e., the upper left 
and lower right corners of the matrix. This is done as follows. First, we 
find unitary diagonal matrices PI and P2 to make D, = PFD, P2 real 
as in (3.17). Suppose we find orthogonal matrices F E R(T+l)X(‘fl) and 
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G E R(Tf’)X(T+l), a product of plane rotations each, such that 

FTP;(u; ;)PzG-(.,,, (;))=(; ;), 

where 

& = (&I Okx(r-k-11) E Rkxr 
and 

Bll = 
oxx f E R”x@+‘) 

’ 

and 

B22 = 

x x 0 0 . . . 

oxx i 

0 ‘..‘..o 

x x 

0 . . . 0 0 x 

\ 

E R(r-“)X(T-“) 

/ 

k = 7./2 for even r( k = (T + 1)/2 for odd T), and w,’ E R1’ T. Then 
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for some unitary matrix WH that operates only on the rows r + 1,. . . , m. 
We can find G so that it does not operate on the first column of the matrix. 
Accordingly, 

F 0 

0 ITT-r-1 

whi lch means that 

H 

WH UH el = ek+l, 

(: I~:J’( ‘d ,,:~-I)H~H~H= [p ; 

for some GrH E CkX(m-l) and cSH E C(m-k-l)x(“-l), where 

ErH 

i ) kjH 
6 C(m-rIx(m-1) 

is unitary. Thus, from (4.19), 

i 

(4.20) 

for a unitary 5: E Crx’, and this completes the bidiagonal reduction of the 
downdated A: 

The problem now is to transform the real matrix 

(4.22) 

(4.23a) 
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into the form 

(4.2313) 

For that, we first permute columns (1,2), (2,3), . . . , (k, lc + 1) by means of 
a permutation matrix II E R(‘+l)X(rfl) such that the border column is 
moved to the middle: 

(4.24) 

with 

, C,r = diag (gr, . . , ok), and Cr2 = diag(crk+r, . . . , CT,). 

The matrix now contains two similarly structured submatrices which can 
be reduced separately, as illustrated in Figure 2 for r = 8. 

The upper left k x (k + 1) submatrix (C,r ?&.I) is reduced to bidiagonal 
form B11 by an ordinary one-way chasing scheme that applies to a diagonal 
matrix bordered by one column (see e.g. [l]). Denoting the rotation applied 
to the entire matrix from the left in the plane (i, i + 1) as Fi and that from 
the right as Gi, the rotation sequence in this one-way chasing scheme is 
represented as 

Fl, GI 
F2, G2, FI> G 

F3, G, F2, G2, FI, G 

Fk-1, G/~--I, . ., F2, G2, Fl, G 

(4.25) 

where the jth line represents the rotations that are required to annihilate 
the jth element of the current U,r and to complete the j x j leading bidiag- 
onalization. The reduction of this upper left submatrix is performed with 
Cfzrr 2i = k2 - k plane rotations. 
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/ - 
xx 

@xx 
xx 

xx 

xx 

xx 

xx 

-xx 

- xe 
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The lower right (r - k + 1) x (T - k + 1) submatrix 

ET.2 L2 ( ) r 0 

has the same structure as the left matrix in (3.15) and is reduced to bidi- 
agonal form Bzz using the same one-way chasing scheme, as illustrated in 
Figure 1, followed by the annihilation of the remaining nonzero at the (1, 3) 
entry, which is chased away to the lower-right corner in 2(r - k) - 1 rota- 
tions. Using the same notations as before, the rotation sequence is given by 

Fr-2, G,-I, Fr--1, G,, F, (4.26) 

Fk+l, Gw, Fk+z ., Gr, F, 

where the jth line represents the rotations that are required to annihilate 
the (r + 2 - j)th element of the current (y ) and to complete the j x j 
trailing bidiagonalization. The reduction of this lower right submatrix is 
performed with ~~~~(2i - 1) = (r - /c)~ plane rotations. 

Finally, one extra plane rotation Fk : is needed to reduce the matrix 
obtained thus far to the form 

x x 0 .” .‘. 0 0 

. 
0 x x . . . . 

. 1. : 0 

x x 0 x 

0 . . . 0 x x x 

0 . . . . . . . 0 x 

0 . . . . . . . 0 . . . 

0 . . . . . . 0 

0 . . . . . . 0 

0 . . . . . . 0 

x 0 ... 0 

x x . . . i 

. . . . . 0 

x x 

. . . . . 0 x 

(4.27) 
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Hence, we can find F and G, products of the rotations Fi and Gi given 
above, such that 

is reduced to the form (4.27). By performing an inverse permutation IIT, 
this final matrix can be brought into the form 

as required. Observe that no G, operates on the permuted border column 
(;), since Gk and Gk+i do not occur in the rotation sequences (4.25) and 
(4.26). This implies that G is of the form 

after back permutation, as required. In total, r2/2 - r/2 + 2 real plane 
rotations and 7r2 - 7r+0( 1) flops are needed to reduce the r x r bidiagonal 
submatrix in (4.24) bordered by one column by means of this two-way 
chasing scheme. Hence, we save (r2 - 3r + 2)/2 rotations compared to the 
one-way chasing scheme, resulting in a reduction of the computation time 
by nearly 50% for large r. 

5. CONCLUSIONS 

In this paper, a new two-way chasing scheme has been proposed for 
downdating the singular-value decomposition (SVD) of a rank-r matrix. 
Suitable permutations split the matrix into two similarly structured sub- 
matrices that can be reduced separately during the bidiagonalization step. 
In this way, nonzeros are chased away simultaneously towards the two outer 
corners of the matrix, resulting in a reduction of the computation time of 

1 r2-3r+2 
Z r2 - 2r+2 ( > x 100% 
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compared to one-way chasing schemes. These schemes can be easily paral- 
lelized analogously to the parallel schemes for reducing a diagonal matrix 
bordered by one row, as described in [12]. Following the same analysis 
as in [12], similar parallel architectures can be developed for the bidiag- 
onalization of a diagonal matrix bordered by one column, to be used in 
downdating the SVD. 

This work was started in July 1992 when S. Van HuBeel was visiting 
the Army High Performance Computing Research Center, University of 
Minnesota, Minneapolis, U.S. A., and finalized in March 1993. 

REFERENCES 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

A. H. Abdallah and Y. H. Hu, Parallel VLSI computing array implemen- 
tation for signal subspace updating algorithm, IEEE Trans. Acoust. Speech 
Signal Process. ASSP-371742-748 (1989). 
A. Bjijrck, H. Park, and L. Eld6n, Accurate downdating of least squares 
solutions, SIAM J. Matrix Anal. Appl., 15-2:549-568 (1994). 
J. R. Bunch and C. P. Nielsen, Updating the singular value decomposition, 
Numer. Math. 31:111-129 (1978). 
P. A. Businger, Contribution no. 26. Updating a singular value decomposi- 
tion, BIT 10:376-397 (1970). 
J. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonaliza- 
tion and stable algorithms for updating the Gram-Schmidt QR factorization, 
Math. Comp. 30:772-95 (1976). 
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns 
Hopkins U.P. Baltimore, 1989. 
H. Park and L. Eld&n, Downdating of rank-revealing URV decomposition, 
SIAM J. Matrix Anal. Appl., to appear. 
M. A. Saunders, Large-Scale Linear Programming Using the Cholesky Fac- 
torization, Technical Report CS252, Computer Science Dept. Stanford Univ. 
Stanford, Calif., 1972. 
R. H. Schreiber, Implementation of adaptive array algorithm, IEEE Trans. 
Acoust. Speech Signal Process. 34:1038-1045 (1986). 
G. W. Stewart, The effects of rounding error on an algorithm for downdating 
a Cholesky factorization, J. Inst. Math. Appl. 23:203-213 (1979). 
S. Van Huffel and H. Park, Efficient reduction algorithms for bordered band 
matrices, J. Numer. Linear Algebra Appl., Special issue dedicated to Parlett 
and Kahan, to appear (also Preprint 92-101, Army High Performance Com- 
puting Research Center, Univ. of Minnesota, Minneapolis, 1992). 
S. Van Huffel and H. Park, Parallel reduction of bordered diagonal matrices, 
Preprint 93-018, Army High Performance Computing Research Center, Univ. 
of Minnesota, Minneapolis, 1993; submitted for publication. 



DOWNDATING THE SVD 39 

13 S. Van Huffel and H. Park, Parallel tri- and bi-diagonalization of bordered 
diagonal matrices, Parallel Computing 20:1107-1128 (1994). 

14 S. Van Huffel and J. Vandewalle, The Total Least Squares Problem: Compu- 
tational Aspects and Analysis, Frontiers Appl. Math. 9, SIAM, Philadelphia, 
1991. 

15 H. Zha, A two-way chasing scheme for reducing a symmetric arrowhead 
matrix to tridiagonal form, J. Numer. Linear Algebra Appl. 1:49-57 (1992). 

Received 12 April 1993; final manuscript accepted 27 September 1993 


