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Abstract 

PetkoviC, M. and D. Herceg, Higher-order iterative methods for approximating zeros of analytic functions, 
Journal of Computational and Applied Mathematics 39 (1992) 243-258. 

Iterative methods with extremely rapid convergence in floating-point arithmetic and circular arithmetic for 
simultaneously approximating simple zeros of analytic functions (inside a simple smooth closed contour in the 
complex plane) are presented. The R-order of convergence of the basic total-step and single-step methods, as 
well as their improvements which use Newton’s and Halley’s corrections, is given. Some hybrid algorithms that 
combine the efficiency of ordinary floating-point iterative methods with the accuracy control provided by 
interval arithmetic are also considered. 

Keywords: Iterative methods, zeros of analytic functions, inclusion methods, convergence order. 

1. httroduction 

In the recent paper [S] a class of iterative methods of a high order of convergence for the 
simultaneous determination of simple zeros of analytic functions was constructed. These 
methods are based on the logarithmic derivative of a considered analytic function and they can 
be regarded as a generalization of the algorithms presented in [9] for polynomials. In the 
present paper we establish a new class of iterative methods for approximating zeros of analytic 
functions with improved order of convergence. 

Let z - Q(z) be an analytic function inside and on the simple smooth closed contour r 
without zeros on r and with a known number n of simple zeros inside lY Then Q, will be of the 
form 

I1 

@(‘) =x(z) I-I (z - lj), 

j=l 
(1) 
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inside r, where & are the zeros of Q, and X is an analytic function, but without zeros inside r 
(see [El). The number of zeros IZ of @ inside r is determined from the argument principle [7] 

1 

I 

W(W) 
- dw. 

@=2rri r@(W) 
(2) 

Following [18] the analytic function X can be written as 

X(Z) =exp(Y(z)), (3) 

inside r, where Y is also an analytic function inside r given by 

1 
Y(z) =- 

/ 
log[ (w 

2+ r 

- c)-“@(w)] dw 

W- z 

(see [;]I. In (4) c is an arbitrary point inside r such that G(c) f 0. 
Using the logarithmic derivative of Qi from (1) it follows that 

Q’(z) 
-=Y~(r)+ &J-Jl, 2 +&, 
@(z) 

~vhere~om 

j=l 

(4) 

i 1 
-1 

z-Y.(z)- k(z-s,)-l , i=l,*.., rl, 
j=l 

L jti 

Starting from the fixed-pcint relation (5) in [S] a class of methods for simultaneously improving 
the zeros [,, . . . , c,, of @ was developed. For example, if z,, . . . , z,, are approximations 
zeros &, . . . , 5,, then the formula 

ii = q - 

/ 

W( z,) 
.(-Y’(Zi)- k(Zi-cj)-’ 

z* j=l 
jZi 1 

-i 
9 i=l,..., n, 

to the 

(6) 

(obtained from (5)), where ii is the new approximation CO sui, defines the iterative method with 
cubic convergence. 

Remark 1. The fixed-point relation of the form (5) for entire functions with infinitely many 
zertis and exponent of convergence < 1 was previously derived in [S] and applied for the 
inclusion of zeros by circular complex regions. 

2. The fixed-point relations 

Applying a procedure presented in [ll] we now derive a aged-point relation similar to (5). 
Let us define 

fk(z)= 
@tk)( z) 
@( ) 9 k-12 

Z 
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Using the logarithmic derivative, from (1) we find 

fl(Z) 
@‘(z) 

=-g-&=Y’(z)+ i(Z-l)-l 
j=l 

f:(Z) = 
@“(Z)@(Z) - @‘( *)’ 

G(Z)’ 

= Y”(z) - k (z - lj)-‘. 
j=l 

It is evident that 

f2(4 

@“( 2) 
= q-q =fl(z)‘+f;(Z)* 

From (7)-(9) we obtain for z # cj, 

245 

(7) 

(8) 

(9) 

i 1 ~ (Z-~j)-’ 2+ 
j=l 

~ (Z-&+j)-“= [f~(Z)-Y’(Z)-(z-~~)-‘]2 
j=l 

jti j#i 

-[f;(z) + (2 - &)-‘- Y”(z)] 

= [f*(z) - YQ)]‘- 2[f,(Z) - Y’(Z)](Z - ci)-’ 

+f,(z)2 -f2(z) + Y”(z). 

5i=Z- 
2[fl(Z) - ywl 

f,(Z)’ -f2(z) + [ fl(Z) - Y,(z)12 + Y”(z) -gi -sz,i ’ i = 19.*.7 n’ (lQ) 

Sk,i= ~ (Z-~j)-k, k = 1, 2. 
j=l 
j#i 

(11) 

The fixed-point relation (10) is the basis for constructing a class of algorithms for finding 
zeros of analytic functions in (ordinary) complex arithmetic as well as in circular arithmetic. 
According to (4) the derivatives Y’(z) and Y”(z) are given by 

1 
Y’(z) = & 

log[(w -c)-“@(W)] dw 

r ( W-Z)’ 

and 

1 
Y”(Z) = 7 

/ 

log[(w - c)-“@(W)] dw 
. 

@-rl r ( w-z)’ 

(12) 

(13) 



Remark 2. If Q, (21 is a 

X(z)= 1, 

manic polynomial with simple zeros &, . . . , J+,,, that is, 

Y(z)=O, @(z)=&(z)= fi(z-<j)Y 

j= 1 

then (IQ) reduces to the fiied-point relation derived in [ 191 (see also [ 111). 

3. Algorithms in complex arithmetic 

Starting from the fixed-point relation (lo), in a similar manner as for the class of iterative 
methods of Halley’s type [ll], we can construct total-step and single-step methods of higher 
order of convergence. For z E @ let us define 

1’(Z) =f!(z) -Y’(z), h(z) =f1(z)'-f2(2) + Y"(r), 

i= 1 

13 (ti-ai)-’ + i (Zi-bj)-' 2 
j=l j=i+ 1 I 

i=l + C (Zi-Qj)-‘+ e (Zi-bj)-2y 
j=l j=i+ 1 

where a=(q ,..., qtJT and li=(b,,..., b,,JT are some vectors. Further, we denote 

Nf -1 
@W =- 
@‘W 

(Newton’s correction), 

@“(z) -l 
2@‘( 2) 1 (Halley’s correction), 

and introduce the vectors 

z= (z,,..., .?n)T (the former approximations), 

i= (i,,..., in) 
T 

(the new approximations), 

z,r = (zN,l?***, ZN,,E)~Y fN,j=Zi- N( zi) (Newton’s approximations), 

+= qfJt--*~ z,,, ( ) 
-I- 

9 zj.fi = zi - H( ZJ (Halley’s approximations). 

Assume that reasonably good approximations t,, . . . , z,, to the zeros &, . . . , &l were found. 
Letting z = zi and si := ii in (lo), and taking certain approximations of [j in the sum Zi on the 
right-hand side of (IO), we obtain the whole set of iterative methods for the simultaneous 
determination of the zeros {,, . . . , 5, of an analytic function @. 

(TS) For sj := Zj, j f i, we obtain the Total-Step method (TS): 

_& = q - 
2C( Zi) 

h(Zi) + r(Zi)2 -Zi(Z, 2) ’ 
i= l,..., n. (14 
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(SS) Let ~~ := f;, j < i, and ~~ := Zj, j > i (the Gauss -Seidel 
the Single-Step method (SS): 

approach); then we get from (10) 

ii = zi - 2u( 2;) 

h( Zi) + L’( Zi)2 -Zi(i, Z) ’ 
i= I,..., n. (19 

(TSN) Substituting ~~ := ZN j = Zj 
with Newton’s correction (TS&: 

- N(zJ j z i, in (10) one obtains the Total-Step method 

ii = q - 
21’( Zi) 

h(zi) + V(Zi)’ -zi(ZN, Z,) ’ 
i= l,..., n. 

(SSN) The TSN method can be accelerated by applying the Gauss-Seidel approach: setting 

=zi - 
2L’(Zij 

h( Zi) + L1( Zi)2 -~i(~~ Z/t/) ’ 
i= l,..., 12. 

(TSH) Taking 5j := ZH,j = Zj - H(Zi)’ j #i, in (lo), similarly 
construcl the Total-Step method with Halley’s correction (TSH): 

ii =q - 
2v(zi) 

h(Zi) + U(Zi)’ -JSi(ZH, Z,) ’ 
i= l,..., n. 

as for the TSN method we 

(18) 

(SSH) The Single-Step method with Halley’s correction (SSH) is obtained by substituting 

5i := ii, j < i, and sj := Z,,j = Zj - H(Zj), j > i, in (10): 

ii 
2v(ziJ 

=zi - 
h( zi) + LJ( Zi)2 - zi( 1, ZH) ’ 

i = l,..., n. (19) 

We will now consider the convergence speed of the iterative methods (14)-(19). First, for the 
derived Total-Step methods we have the following assertions. 

Theorem 3. The order of convergence of the total-step methods TS ( 14), TSN C 16) and TSH ( 18) is 
four, five and six, respectively. 

Proof. Let zCA) = (z\“), . . . , z!;*))~, A E (1, 2, 31, be the vector of approximations given by 

Z?) 
1 = Zi (the current approximations), 

$2) = z i i - N( Zi) (the Newton approximations), 
z!3’ 

1 = Zi - H( Zi) (the Halley approximations). 

In the proof of this theorem the upper index indicates the type of approximation and it should 
be strongly distinguished from the iteration index. Using this notation the total-step methods 
(141, (16) and (18) can be represented by the unique formula as 

ii =q - 
2v(zi) 

h( Zi) f V( Zi)2 - zi( Z(“), Z’A’) ’ 
i=l,..., n, A= 1,2,3. (20) 
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Let us introduce the abbreviations 
n 

S);:l’ = U (A) 1 
-h 

Zi - Zj , k=l,2, h=l,2,3, 
j= 1 
jti 

j- 1 j=l- _ 

j+i 

I I1 

dtA’ = c 
z!“’ - Jj 

J 

I 

j= 1 (Zi - [j)iZi - 2:“‘) 
jti I 

Let ~j =Zj - pi and ii = ii - 5i, and let 1 E I= mai I Ei 1, I 2 I = mai I ;i I. Assuming that all 
approximations z(l*), . . . , r!lA’ are sufficiently close to the zeros &, . . . , 5, and taking into 
account the quadratic convergence of Newton’s method and the cubic convergence of Halley’s 
method, we can write 

I 
*!A) - 

J 6.1 J <~:_“)JE)~, j=l,..., n, h=l,2,3, 

where CX~^) are some positive numbers. According to (7)-(9) we obtain 
2 

2L’( Zj) = 241.j = F( 1 + QjEj) 
1 

I 

(21 ) 
and 

h( Zj) + L’( Zj)* - 2j( Z(*), z’A’) 

= 

[ 
( Zi_5,)-l+ C(Zi-~j~-'l*~~(Zi-ir)-*+ C(Zi_5j)-* 

j#i 1 j#i 

- 

[ 

2 

C( zi 
-z;q-’ I - c (q-q’)-’ 

j#i j#i 

=2(zi-5,)-2+2(Zi-~i)-1 C(Zi-~j)-'+ C(Zj-lj)-’ 2 
j#i [ j#i 1 - C (Zj -Z~A')-l I jti 

2 

1 1 +c 
1 1 

1 j*i (~i-~j)2 - (Zi-z~h))i j 

=2(Zi-5,)-L+2(Zi-5i)-' C(Zi_5,)-l- C 
i 

Z!“) - 5j 

j+i j#;i (ti - t,(Zi -ZI^‘) 
I 

22, - *j”) - cj 

x Jo (Zi-~j)(Zi-Zj*)) -~ 
i I i Z(A) - s-Ii2 - z(A) - 5.1 J(Zi-;;,‘~~i-~~A,)’ ’ ’ 
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that is, 

2 2a, 
h(zi) + U( zi)’ -~i(Z’*‘, z’~‘) = ~2 + - - di(A’. 

1 Ei 

Let us define 

PI = min 1 zi - lj I, 
i.j 

pi*’ = min 1 Zi - Zj”’ 
i,j 

I 9 Pl = IllZiXIZi-cjl, PiA’= max 
i,i i.i I Zi - ZJ!A’ 1. 

Then we have 

I d!“’ < 
1 I (E 

j#i 

249 

(21”) 

I z!“) - 

+c ’ c-112 . - z(“) - l-1 
j#i 1 Zi -Z i2;ii -~~A’l2 ’ 

where 

Besides, for sufficiently small 1 Ei 1, i = 1,. . . , n, there exist positive constants 7i(‘) so that 

12 + 2aiEi - efdjA)J >, ~1”) >, ~(~1, $A) = min 7:‘). 

i 

Using (21’) and (21”) we get from (20) 

2 
- (1 + LliEi) 
Ei 

- &‘A’ 

ti = Ei - 
i i 

2 2ai 
3 + - - d!“’ 

= 2 + 2aiei - Efdi”’ ’ 
Ei” Ei 

By the previous estimations we find 

l;il= 
( +diA’ 1 

I 2 + 2aiei - EfdjA’l 

wherefrom 

Taking A = 1, 2 and 3, we prove that the order of convergence of the total-step methods (14), 
(16) and (18) is four, five and six, respectively. •I 



250 M. Petkorie, D. Herceg / Zeros of analytic functions 

For the single-step methods we will use the notion of the R-order of convergence, 
duced in [lo]. The R-order of convergence of the iterative process IP with the limit 
&=(&,.... 5,)’ (the vector of exact zeros) will be denoted by OJIP, 5). 

intro- 
point 

Theorem 4. The R-order of convergence of the single-step methods SS (15), SSN (17) and SSH 

(19) is bounded below by 

O&S, 5) 2 3 + t,, O,(SSN, 5) > 3 +x,, O,(SSH, 5) 2 3 +Y,, 

where t,, x, and y, are the unique positive roots of the equations 

t” - t-3=0, Xn_X .2~-L3.2~-1=0, yn_y .3~~--1_3~=0, 

respectively. 

Proof. The convergence analysis of the single-step methods (15), (17) and (19) is performed by 
the same procedure which has already been applied in the papers [1,11,14-161. For this reason 
we will only sketch the proof of Theorem 4. 

Let Ujrn) be a multiple of 1 zirn) - & 1, i = 1,. . . , n, where m = 0, 1,. . . is the iteration index. 
As in the mentioned papers, it can be shown that the single-step methods (151, (17) and (19) 
belong to a class of iterative simultaneous methods for which the following relation can be 
derived: 

1 
u!m+l) < - 

1 ( J(E l&m) p 
n-l ’ 

U(_m+ 1) + 
J U I) 

&&.“) q 
J , 

j<i j>i 

i=l,..., n, m=O, l,..., p, qEN. (22) 
We introduce the ordered pair U(P) = (p, q) as an exponent characteristic of the relation 

(22) for the iterative process P, where p and q are the corresponding exponents in (22i. An 
extensive but elementary analysis (similar to that presented in [1,11,14] etc.) shows that the 
considered iterative methods SS (15), SSN (17) and SSH (19) have the following exponent 
characteristics: 

U(SS) = (3, I), U(SSN) = (3, 2), U(SSH) = (3,3). 
For the single-step iterative process P with U(P) = ( p, q) it was proved in [16] that 

O,(P, 5) 2 3 + T,, 
where r,, is the unique positive root of the equation 

7”_~q”-L_pqn-1=()* 

Taking into account this result with specific values 
assertions of Theorem 4. 0 

for p and q, we immediately obtain the 

The values of the lower bounds of the R-order of convergence for the considered single-step 
methods, in dependence of the number of zeros n, are displayed in Table 1. 

Table 1 

Method n= 2 n= 3 n= 4 n= 5 n= 6 n= 7 n=8 n= 9 n 10 = 

is (15) 5.303 4.672 4.453 4.341 4.274 4.229 4.196 4.172 4.153 
SSN (17) 6.646 5.862 5.585 5.443 5.357 5.299 5.257 5.225 5.200 
SSH (19) 7.854 6.974 6.662 6.502 6.404 6.338 6.291 6.255 6.227 
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4. Algorithms in circular arithmetic 

In this section we present some algorithms for the inclusion of zeros of an analytic function. 
For the construction of these algorithms the complex interval arithmetic will be used. More 
about inclusion methods can be found in [12] and the references cited therein. We only 
emphasize the main advantage of inclusion methods which consists of the determination of 
resulting disks or rectangles containing the sought zeros. In this manner the automatic 
determination of the upper error bounds, given by radii or semidiagonals of inclusion complex 
intervals, is provided. 

Algorithms presented in this section are realized in circular interval arithmetic. In what 
follows a circular closed region (disk) 2 = {z: 1 z - c 1 Q r} with center c = mid 2 and radius 
r = rad Z will be denoted by the parametric notation Z = {c; r}. For the readers convenience 
we briefly review some properties of circular arithmetic (see, e.g., [2,4]): 

h 5) l (c 2; r2) = (clc2; I cl I r2 + I c2 I rl + r,r,), 

2-l = (c; r)-’ = I ‘Fi r, 2, lcl>r, i.e.,OEZ, 
C -r 

z,:z,=z, - z,‘, oticz,, 

I-V-‘=(z: Iz-c12r)-‘= 
(-C; r) 

r2 - 1 c I2 ’ 
1 c 1 <r, i.e., 0 4 IV, 

(the inverse of a closed exterior of a circle which does not contain the origin). 
Assume that we found n disjoint disks 2:‘) = { zi’); r!‘)} containing the simple zeros &, . . . , l,, 

of an analytic function @, & E Zi(O), i = 1,. . . , n. Let z be an arbitrary complex number such 
that z e Zi(‘), i = 1,. . . , n, and let 

, k-1,2. 

Then obviously 

Sk 
1 

j E si”;, 
1 

where Sk i , is given by (11). By this fact from the fixed-point relation (10) it follows that 

5i’Z- 
2LJ(z) 

h(z) -I- u(z)’ - [ S;o;]2 - S;(‘; ’ 
i = I,..., n, (23) 

where v and h are the functions introduced in Section 3. 
If the denominator of (23) does not contain the number 0, then the inverse in (23) is defined 

and the set on the right-hand side of (23) is also a disk. Evidently the relation (23) suggests the 
construction of an iterative interval method for the inclusion of the zeros &, . . . , 5,. 
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Let Z;m) = (z)“‘; ri’“‘), m = 0, I,. . . ) and let pi be the sum defined in Section 3 with 
z = z!~'. Besides, let P) = 

1 
max r(“% The successive inclusion approximations to 5i are given by i i 

z!m + 1) = Z!m) _ 
2l.q zjm)) 

1 1 

h(Zi”‘) +U( 
Zi(m')2-2i(Z'm), 2'"') i=l ,..., n, m=O, I ,..., 

where Zfrn) = (Z\“), . . . , Z(“)lT. 
The properties of the in”terva1 method (24) are given in the next theorem. 

Theorem 5. For the sequences {Zj”‘], i = I,. . . , n, of disks, produced by the total-step iterative 
method(24) wehaveforeachi=l,..., nandm=O, l,..., 

(i) 5i E 2:“‘; 
(ii) T(m + 1) = O(( r(m))4) . 

Prwf. Since the convergence analysis of the interval method (24) is essentially the same as the 
one presented in [4,11], we briefly o&line the proof of Theorem 5. 

First we prove (i). Assuming that 5i E Ztrn), i = 1,. . . , n, m 2 0, and using the relation 

S:i + S*,i E pi ( Z’m’, 2’“‘) ) 

from (24) and (10) we obtain that li E Z,(,+ ‘I. Since li E Z!‘), assertion (i) follows according to 
mathematical induction. 

For simplicity, in proving (ii) we will omit the iteration index and write gi, pi, zip ri, c r 
instead of 2:” + I), rjm+ l), Zi(m), rjm), rtrn+l), rtrn! Besides, let us introduce 

Interval formula (24) now becomes 

&=q- 2v(zi) 2V( Zi) 

h(Zi) +V(zi)*- (Wi; qi) =zi- {h(Zi) +U(Zi)*-Wi; vi} l 

Using the properties of circular arithmetic, from the last formula we find 

;i = rad( gi) = 
2 I vi( zi) I rli 

Ih(zi) +U(Zi)*-Wi~*-~,Z’ 

By circular arithmetic it is easy to show that 

rli=rad(~i(Z, Z))=O(r). 

Furthermore, starting from the factorization (1) we obtain 

(29 

’ I@Czi) I =O( ,Zili,l) =O(~)’ 
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lh(Zi) +1,(Zi)2-wi)= ,4c1 ), Z, 2I~‘(Zi)‘-~“(Zi)~(Zi)+[~‘(Zi)-Y’(Zi)~(Zi)]’ 

I 

1 
+[Y”(Z,)-Wi]4(Zi)‘/=O 7 . 

According to we can 

Pi 
rli = CyiY, Iu(zJl=_r 

i 

Ih(*i) +L’(*i)2-+V~I= s9 

1 

where cyi, pi, ‘)‘i E Iw+ are some positive numbers. From (25) we get 

2Pi 
- . qr 
ri 2aipiri”r 2CZ. 

Fi = ,Piy4 = 
rf yf - afrtr’ < 
_ - cy2r2 

yf - af-r:r2 ’ 

ri! i 

Assuming that all ri are small enough, the denominator can be bounded by some positive 
constant, that is, 

y~-a~r~r2>7>0, foreveryi=l,..., n. 

Taking p = maxi(aipi) we find 

which means that the order of convergence of the interval method (24) is four. •I 

The convergence of the iterative method can be accelerated by computing the new approxi- 
mation 
as they 

Z!“+ ‘) serially, using the already calculated approximations 2:“” ‘I,. . . , 211_“: ‘) as soon 
a;e available. In this way we establish the single-step interval method 

z!ln + 1) = Z!m) _ 
2v( ,ym)) 

I 1 h( ,;m)) + u~~i”‘)’ - si(Z(‘n+i), 2’“)) ’ 

i=l )...) 12, m=o, l)... . 

The R-order of convergence of this method is the same as for the single-step method 

Remark 6. Since rad((l/Z)2) < rad( 1/Z2), in order to obtain small disks in calculating the sum 

Z,, it is better to sum the squares of inverse disks rather than the inversion of disks’ squares. 

(26) 
ss (15). 

Sometimes, it is of interest to find only k ( < n) including approximations, for example when 
the improvement of only a certain group of zeros, clustered around a center c, is of importance. 
Assume that we found k disjoint disks 2;“) = { zi’), r!“) i = 1,. . . , k, containing the zeros 



5 1T”” & and that these disks were included inside the disk (c; R}. All remaining zeros 

5 R_+l.=... 5, are supposed to lie in the region W = (z; 1 z - c I> R) (the exterior of the disk 
(c; R)). Starting from (10) and using the inclusion isotonic@ property we construct the 
following iterative method for simultaneous improving of k inclusion disks: 

where 

We note that the inverse of the exterior of a circle (Zig”) - IV?- ’ is a closed disk if it is provided 
that efrnl E W in each iteration. Furthermore, since 

1 
rad 

i 1 Z!‘n) - w = O(l), 
I 

the order of convergence of the iterative method (27) is only three. 
A particular case of interest appears when only one simple zero, say 5 = &, is isolated in a 

disk P’ = 1~; f-(1) and ~~ E 1~; 1 z - c I> R} = ext(Zto)). Then the iterative formula (27) reduces 
to 

2L’( z(“)) 

( 

1 

i 

27 

h( zo”)) + L’( zy2 - n( n - 1) 
ztrn) - ext( Z(O)) 

m = 0, 1,. . . , zim) = mid(Z’“)). (28) 

The order of convergence of the last iterative method is also three. 
As it is well known, the main objection to interval methods is their comparatively great 

computational amount of work because interval computations require extra operations. Their 
computational efficiency can be increased if these methods are combined with iterative 
methods in ordinary floating-point arithmetic (see [13]). Such combined methods consist of two 
steps: 

( 11 Compute complex approximations zjm), i = 1,. . . , k, 1 Q k < n, appearing in (24), (27) or 
(28) to any wanted accuracy by some algorithms in (ordinary) complex arithmetic starting with 
the centers zj”) = mid( Z:O)). 

(2) Apply the desired interval method ((241, (27) or (28)) only once dealing with the 
improved approximations pi and the initial complex intervals Zif’! 

For example, the combined method which uses the interval formula (24) has the form 

z~m.1, = zp’o - 
2U( zj”‘) 

c I 
h( z;my “I- “( Zyy2 - &(z’O’, Z(O)) ’ 

i = l,..., n. 
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The upper “index” (m, 1) indicates that the inclusion disk Zj”‘*‘) is furnished by m iterations 
in floating-point arithmetic and one interval iteration. As emphasized in [13], the contraction of 
the inclusion complex intervals Z:“‘*‘) is attained due to the influence of the term @(z,““)) 
which is very small (in magnitude) when zip’) is a sufficiently good approximation. The main 
role of the initial complex intervals Z,!‘) is to provide the inclusion of zeros. 

Finally, we observe that the computational efficiency of the combined methods which apply 
some of the interval methods (24), (27) or (28) can be further improved if we use some of the 
simpler iterative methods in floating-point arithmetic (to obtain the “point” approximation 
z!‘“)) which does not require the computation of Y’(z) and Y”(z) in each iteration. For 
ekample, Newton’s method 

$A+ 1) = z(“’ _ 
@( zl”‘) 

I 1 Gf(zi(A)) y A =O, L..., m - 1, 

or Halley’s method 

Z!A+ 1) = z!“) _ = 1 1 o - 9 1 9*--Y m 1, 

could be usefully applied. 

Remark 7. The inclusion methods (24), (27) and (28) and the corresponding combined methods 
can also be realized in rectangular arithmetic and all derived results remain valid. Although the 
operations of rectangular arithmetic are more complicated (than circular arithmetic operations), 
this arithmetic realized by the rounded real interval arithmetic (so-called rounded rectangular 
arithmetic, see [17]) possesses a useful property that takes into account rounding errors. 

5. Some computational aspects 

The presented algorithms possess extremely rapid convergence. As it can be seen from Table 
1 and Theorem 3 the R-order of convergence is between 4 and 7. Numerical examples have 
shown that a high accuracy of the approximative solutions may be obtained by only few (three 
or even two) iterations. In order to avoid the effect of rounding errors, in the implementation 
of the suggested methods multiple-precision arithmetic should be employed. 

The behaviour of the presented methods for the simultaneous determination of zeros of 
analytic functions is almost the same as in the case of polynomial zeros. For this reason and the 
fact that computational aspects of the iterative methods of the same type were presented in [8] 
in detail, we will not discuss further the mentioned points. Instead, our attention will be 
restricted to the computation of the number of zeros n (by using (2)), Y’(z) and Y”(z) (by 
using (12) and (13), respectively). Besides, we will consider the influence of the approximative 
values of Y’(z) and Y’(Z) and the rounding errors appearing in the evaluation of @, @’ and 
W on the accuracy of approximations of the sought zeros of @. Some of these points have 
already been considered in [8] so that we will give in short some necessary remarks. 

As it was noted in [8], the number of zeros n, given by (2), Y’(z) and Y”(z), given by (12) 

and (13), should be computed in practice by applying a suitable sufficiently accurate quadrature 
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rule for contours. In [8] the authors proposed the trapezoidal quadrature rule of the form 

1 Nl 

2Z /G(w) dw = c A~“,W%,,), 
I‘ k=l 

where A,, are the weights and wkm the corresponding nodes of the quadrature rule. It is 
convenient to apply this quadrature rule along the circumference r = {w: 1 w I= R} with nodes 

-.. 
wkm = R exp(iO,,), 

(2k--I)r k 1 
O,, = -- = 9 9=**9 m. 

m 

In some cases considerably better results can be obtained by using complex polynomials (0,) 
orthogonal on the semicircle, introduced in [6]. Using the orthogonal polynomials O, the 
Gauss-Christoffel quadrature rule of Legendre’s type 

/ 

;r 

g(eie) d@ z E ~~m)g(~~m)) 
0 k=l 

(2% 

for integrals over the unit semicircle was constructed in [6]. The nodes ekrn) are the zeros of 
o,& Z) which are all simple and lie in the interior of the upper unit half disk. The weights ~2’~) 
in (291 are obtained by solving the corresponding linear system of equations (see [6] for more 
details). The tabulated values of o-;~) and JJ~~) for various m can be found in [6]. Taking the 
circumference r = {w: 1 w I= R} as the contour of integration, an integral can be computed 
numerically by (29) in the following manner: 

= $creiQg(R ei*) d@ = $crg(R eiQ) d@ 

R 
=- 

[I 
“g( R eiQ) d@ + /“g( R e’(@+“)) d@ 

27r 0 0 1 
= $ 2 uirn)[ g( R@)) +g( -Reim))]. - 

k=l 

It was remarked in [8] that the influence of the approximation to Y’(z) (obtained by an 
appropriate quadrature rule) on the numerical results for the zeros li of @ is very small for 
increasing values of the number of iterations and, consequently, this influence is not of 
particular importance. The authors came to this conclusion considering (6) in the form 

t^i =Zi-Ai-(A;)2[Y’(Z;) +s^l,i] +O((Ai)3)’ (W 

where Ai = @(z#@‘(z;) is Newton’s correction and !?k i = sk i, k = 1, 2. Namely, Y’(Zi) is 
multiplied by the quantity (Ai)’ which is very small (in absolute value) if zi is a sufficiently 
good approximation to the zero pi* 

Similarly, formula (14) can be rewritten in the form 

ii =Z; -Ai - (A;)2 
@“(z;) 

2@‘( Zi) 

+ Y’( Zi) 

(31) 



wherefrom we note that the quantities Y’(z~)~ and Y “(~~1 are multiplied by (Ai)! This means 
that the influence of Y ‘(zi) and Y “( Zi) is even smaller than in the iterative formula (6). 

From the previous consideration we may conclude that the influence of the quadrature 
errors in (6) and (14) is neutralized due to the very small factors ( Ai) and (Aij3, respectively. 
But, in spite of the quadrature errors (if they are reasonably small), the convergence of the 
mentioned methods is practically ensured by the main correction terms; in (30) Newton’s 
method (with quadratic convergence) 

ii 
@tzi) 

=q--Ai=zi--- 

Q ‘(‘i) 

appears, while the main part 

zi = q 
cp”( Zi) @cd 

-4 - (4~229’IL~) =zi - - 
1 @‘(zi) ’ - 2Qr( Z;)2 i 

ilp”( zi)~( Zi) 

I 

in (31) is the well-known Chebyshev’s method of the third order. Nevertheless, taking into 
account the remark given in [8], in order to avoid some critical cases (for example, when one or 
more zeros of Q, lie very close to the boundary r), it is advisable to calculate Y’(z$ and Y “(~~1 
with reasonably sufficient accuracy. 
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