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By a completely regular (“c.r.“) semigroup we mean a semigroup which is a 
union of groups. For an account of these, see [1, Sect. 4.21 or [9, Chap. IV]. 

D. B. McAlister [S, Sect. 31 showed that if C is one of the following four 
classes of semigroups, and X is any set, there exists a free C-semigroup on X: 
(i) inverse semigroups, (ii) c.r. semigroups, (iii) semilattices of groups, (iv) 
completely simple (“c.s.“) semigroups. In each of the four cases, he expresses 
the free C-semigroup on X as the direct limit of a sequence {F, , h,} of semi- 
groups F,, and homomorphisms X,: F, -+ Fntl , with Fl the ordinary free semi- 
semigroup on X. 

That free inverse semigroups exist also follows from the fact, first published 
by B. M. Schein [12], that inverse semigroups, considered as algebras with two 
operations (multiplication and inversion) form a variety (equational class). (See 
[13] for an historical survey and further references.) The same applies to class 
(iii), which is easily seen to be a subvariety (in the foregoing sense) of class (i). 
That the argument applies also to class (ii) was pointed out by Mario Petrich 
[IO]; his argument is repeated in Section 1 below for the sake of completeness. 
Finally, Professor Petrich pointed out in a letter to the author that class (iv) is a 
subvariety of class (ii), and so has free objects; see Section 7 below. We denote by 
sy[sy] the free c.r. [c.s.] semigroup on a set X. For any variety of algebras, 
there is a standard procedure for constructing the free members of the variety; 
see [2] or [3]. A modification of this is developed in Sections 2 and 3 to describe 
3y. 

Let us say that a semigroup S has exponent r (Y an integer >I) if x’+r = x for 
all x in S. The class of semigroups of exponent Y  is a subvariety of the variety of 
all c.r. semigroups, and so has a free member sFptr) on any set X. Green’s 
relations W, dp, and 9 on FFptr) were described (although not in those terms) 
by J. A. Green and D. Rees [4]; see also J. M. Howie 16; IV.41. Their results are 
generalized to Fy in Sections 4-5. 

The structure of free inverse semigroups was given explicitly by H. i. 
Scheiblich [1 I], and that of free semilattices of groups by S. A. Liber [7J. The 
author had hoped to do the same for classes (ii) and (iv). For the latter, he 
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succeeded (Section 7); but, for the former, he succeeded only in the case when X 
has cardinal 2 (Section 6). 

The result of Section 6 is less than fascinating, but it contains one&eresting 
piece of news: the maximal subgroups of 9p are free groups when 1 X 1 = 2. 
Is this true for arbitrary X ? (It would suffice to prove it for all finite X.) Perhaps 
this question can be answered without knowing the precise structure of 9=? 
From the result of Section 7, it is seen to be true for 9-F, for arbitrary X. One 
may also ask: are the maximal subgroups of Fr exp(‘) free groups of exponent r ? 

The author wishes to express his thanks to Professor Petrich for suggesting 
this interesting problem, and for a number of valuable comments in addition 
to those mentioned above; likewise to Professor B. M. Schein for a number 
of corrections. 

1. PRELIMINARIES 

If 5’ is a c.r. semigroup, x E S, and x* denotes the inverse of x in the maximal 
subgroup of S containing x, then 

xx*x = x, xx* = x*x, (x*)* = x. (1.1) 

Conversely, if a semigroup S admits a unary operation x ++ x* satisfying (l.l), 
then x* is an inverse of x commuting with x, so x belongs to a subgroup of S 
[9, Proposition IV.1.21, and hence S is c.r. We may thus regard a c.r. semigroup 
as an algebra equipped with an associative binary operation and a unary operation 
satisfying (1 .l). The class of c.r. semigroups so regarded is equationally defined, 
hence a variety, and so has a free member g? for each set X[2, p. 170; 3, p. 1671. 
Since a homomorphism 4 of one c.r. semigroup S into another one preserves *, 
that is, (x+)* = x*4 for all x in S, it is clear that %y is also a free c.r. semigroup 
on X in the category of semigroups. (The foregoing is due to M. Petrich [lo].) 

We shall find it convenient to introduce a less restrictive class of algebra. 
By a unary semigroup we shall mean an algebra S(*, *) having an associative 
binary operation * and a unary operation *, with no restriction at a11 on *. If S 
and T are unary semigroups, a mapping 4: S -+ T will be called a wary homo- 
morphism if (uw)# = (u$)(w~) and u*+ = (u$)* for all u, w in S. A subset T of a 
unary semigroup S is called a unary subsemigroup if u, w E T imply uw E T and 
u* E T. A subset T of S generates S if no proper unary subsemigroup of S 
contains T. The free unary semigroup on a set X will be denoted by SCf . 

By a slight modification of the standard procedure for describing free algebras 
(see [2] or [3]), we can regard the elements of 9r$ as obtained from X by a finite 
sequence of operations, whereby we either apply * to an expression previously 
formed, or take a finite sequence of such expressions. An example is 
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where x1, xs ,..., xls are elements of X. Such an expression will be called a 
polynomial although this use of the term is a little different from that of Gratzer 
[3, Sect. 81, We then get F’$ as 9$/p, where p is the smallest congruence on 9; 
containing the pairs (ww*w, w), (ww*, w*w), and (w**, w) for all w in 9%. 

It will be necessary in Section 5 below to consider initial or final segments of 
words like (1.2), for example xi(xsx3(x4 or ~~a)*x~~xr~)*, which are meaningless in 
the above context. We shall therefore give a different procedure that arrives at 
the same destination. We define 9; as consisting of formal expressions like 
(1.2), prove that it is indeed the free unary semigroup on X, and then show that 
its elements can be interpreted as polynomials in the above sense. 

2. CONSTRUCTION OF THE FREE UNARY SEMIGROUP Pj ON A SET X 

We begin by adjoining two elements to the set X, namely the symbols ( and )*, 
and then form the free semigroup 9~ on the enlarged set X. We name these 
symbols paren and parenstar, respectively. We define 9% to be the set of all well- 
formed words in St,. By a well-formed word we mean an element w of 9~ 
satisfying the following conditions: 

(WFI) the number of occurrences of paren in w is equal to the number of 
occurrences of parenstar; 

(WF2) in each initial segment of w, the number of parens is at least as 
great as the number of parenstars: 

(WF3) the symbol paren is never immediately followed by parenstar. 

I f  u and er are well-formed words on X, so is their concatenation uw (product 
in 8$& and so is (u)*. Hence F$ is a subsemigroup of Fx, and is moreover a 
unary semigroup, with the unary operation w H (w)*. 

A word in 9~ satisfying only (WF2) and (WF3) will be calledpre-well-formed. 
Thus, any initial segment of a well-formed word is pre-well-formed, and has a 
perfectly good meaning in 9~. Any final segment is epi-well-formed in the 
sense that in each final segment there are at least as many parenstars as parens. 

By the length 1 w / of a word w in =%x we mean its length as a sequence, counting 
parens and parenstars as well as elements of X. In the example (1.2), 1 w 1 = 25. 
We shall often abbreviate (w)* to w*, and ((w)*)* to w**, but note that 1 w* 1 = 
Iwl+2. 

We identify the element x of X with the word of length 1 whose only term is x. 
Clearly the word x is well-formed, hence belongs to g$. To summarize, 9% 
is a unary semigroup containing X and having length-function \ . (: 9s -+ N 
(the natural numbers) satisfying 1 uw 1 = [ u 1 + 1 e, j and 1 u* 1 = 1 u I + 2, for 
all u, e, in 9$ . 
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An element w of 92 is called reducible if w = uv for some u, v in ..Pj , and 
otherwise irreducible. 

LEMMA 2.1. (i) The irreducible elements of 9; are just the elements of X and 
the elements of the form w* with w in 9; . 

(ii) Each element of 9% is uniquely expressible as a product of irreducible 
elements. 

(iii) If w = wlwz a** w, with w1 ,..., w, irreducible, and if w = uv for some 
u, v in 9% , then there exists k in IV (1 < k < m), such that u = w, --a wK and 
v = Wk.+1 ... w, . 

Proof. Let w E %$ . Let wr be the shortest initial segment of w which is 
well-formed (hence ins:), then let w, be the shortest well-formed initial segment 
of the part of w following wr , etc. We arrive at a factorization w = wrwa ,..., w, 
of w with each wi irreducible, and clearly no other such factorization is possible. 
Thus (ii) holds, and (i) and (“‘) iu are easy consequences of (ii). 

THEOREM 2.2. For any set X, g$ is the free unary semigroup on X. 

Proof. First we show that X generates 92 . Let T be a unary subsemigroup 
of 9$ containing X. Let F, be the set of all elements of 9% of length n or less. 
We show by induction that F,, C T for all n E N, hence 9% C T. Since FI = X, 
this is true for n = 1. Assume n > 1 and F,,-l c T, and let w E F,\FneI . By 
Lemma 2.1, either w = u* or w = uv for some u, v in 9% . Clearly 
u, v E F,, C T, and hence w E T. 

Now let 4 be a mapping of X into a unary semigroup S. We are to show that 
there exists a unique unary homomorphism 4: .P$ -+ S extending +. We first 
show by induction that there exists a sequence {&,} of mappings &: F, + S, 
with /or = 4, having the following properties: 

(i) Z/J,, extends $,,, for every m < n; 

(ii) if u, v, uv E F, , then (uv)#, = (u&J(v&J; 

(iii) if u, u* EF,, , then u*$, = (U&J*. 

(We also use * to denote the unary operation on S.) Let n > 1 and assume that 
&-r has been constructed so as to have these three properties. We proceed to 
define &: F, ---f S. If w EF,,-~, define w&, = w#,-r . Let w EF,\F,,-~, so 
1 w 1 = n. If w is irreducible, then w = u*, for some u in 9% , by Lemma 2.1. 
Moreover, u is uniquely determined. For (u)* = (v)* implies u = v, since we 
are in the free semigroup 9~) so we can cancel paren on the left and parenstar 
on the right. We define w#~ = (u&-r)*, which exists since u E Fnez . 

If w is reducible, then w = wlwZ *em w, , with m > 1, with each wi irreducible 
(i = l,..., m), and (wr ,..., w,) uniquely determined, by Lemma 2.1. Clearly 
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1 wi j < n for each i, so we can define w#, = (w&-r) *.. (~~&-i). Thus, in 
both cases, we have defined w& unambiguously. 

Since J,& satisfies (i), and lCIn extends &-r , it is clear that 4, satisfies (i). Let 
u, v, uv EF, . Since &-r satisfies (ii), we may assume uv E F,,JF,-, . Since z/v is 
reducible, UZI = wrwa ..* w, with m > 1 and each wi irreducible. By the last 
part of Lemma 2.1, u = wr ... wk and v = wk+r ... w, for some h such that 
1 < k < m. Then, by definition of &, , and the hypothesis that ~+$-r satisfies (ii), 

(uvh42 = h/L1) ..* b%&Ll> = (Wl *.’ %)hz-1 . (%+1 .‘. %Nn-1 

= wn-1w?z-1) = G%wJ#n>* 

Hence &, satisfies (ii). If u, u* EF, , then we may assume u* EF,\F,-~ , and, 
by definition of #,, , 

u*sLn = (ULl)* = (+J”* 

Hence (iii) holds, and this concludes the inductive argument. 
Because of (i) we can define +!K 9: + S unambiguously by w# = w&, if 

w E F, . For any u, v in F$ , there exists n in IV such that u, v, uv, and u* all 
belong to F, . Hence (uv)# = (u$)(v+) and u*# = (u$)*. + is unique, for if 4’ is 
any unary homomorphism of F$ into S extending 4, the set (w E g$: w$ = w#‘> 
is a unary subsemigroup of 9; containing X, and we have shown above that the 
only such is fl$ itself. 

If w E Fx, we define the content C(w) of w to be the set of elements of X 
appearing in w. Clearly C(uv) = C(u) U C(v) and C((u)*) = C(u) for all u, v 
in gx. 

Let w E 9% . We proceed to “mate” the parens and parenstars in w. We mate 
the first parenstar in w, reading from left to right, with the nearest paren to its 
left, then the next parenstar with the nearest paren to its left, not counting the 
paren already mated, etc. In general, each parenstar in w is mated with the 
nearest unmated paren to its left. Again using the example (1.2), mates are 
indicated by assigning them the same index number: 

From the mating procedure, it is clear that the subword u of w lying between 
two mated symbols is well-formed, and so represents an element of 9=$ . The 
subword (u)* of w is the image of u under the unary operation * on 9; . It 
follows that w can be obtained from C(w) by a finite sequence of operations of two 
kinds: forming products of words already formed, and performing the unary 
operation * on a word already formed. In other words, we may “read” w as 
though it were a polynomial (sect. 1). 

PROPOSITION 2.3. Let Y be a subset of X, and let (Y) be the unary subsemigroup 
of S$generated by Y. Then (i) (Y) = { w~9’$:C(w)CY),and(ii)(Y)z9$. 
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Proof. (i) Let T = {ru E 9%: C(U) C Y}. Clearly, T is a unary subsemigroup 
of %$ containing Y, and hence T 1 (Y). Conversely, let w E T. From the 
remark preceding the proposition, it follows that w E (C(w)). From C(w) C Y, 
we then have w E (Y), so T C (Y}. 

(ii) Let 4 be any mapping of Y into a unary semigroup S. Extend 4 in any 
way to a mapping 6 of X into S. By Theorem 2.2, there exists a unary homo- 
morphism y? of 9”$ into S extending I$. But then # j (Y) is a unary homomor- 
phism of (Y) into S extending $, and is unique since Y generates (Y). Hence 
(I’) is freely generated by Y, and therefore isomorphic with .9”*y . 

3. CONSTRUCTION OF fly 

Define the relations pr , pz , p3 on fl$ as follows: 

p1 = ((ww*w, w): w E F$}, 

pz = {(ww*, W*W): w E 9;>, 

p3 = tcw**, w): WEsy}. 

Let p be the smallest congruence on F”f containing p1 u pz u p3 , and define 
9F = 9$/p. %y is c.r. since each element wp of 9y (w in 9%) has an inverse 
w*p which commutes with it. We denote by ph the natural homomorphism of 
S* onto Rcr s 

; u,&, then upv if and only if we can transform u into v  by a finite 
sequence of elementary transitions [l, p. 181 of the three types corresponding to 
p1 , p3 , and p3 . These do not change the content of the word being transformed. 
Hence upv implies C(u) = C(v), and we can apply the term “content” to the 
elements of 9y without ambiguity. 

In particular, if x, y  E X and xpy, then {x} = C(x) = C(y) = {y}, and we 
conclude x = y. This shows that 7 = pb 1 X is an injection of X into 92. 

THEOREM 3.1. The pair (Fy, 11) is a free completely regular semigroup on the 
set X. 

Proof. We have just seen that 7: X + .%y is injective. Since X generates 
9$ as a unary semigroup, Xq = {xp: x E X} generates 9: = 9$/p as a unary 
semigroup, hence also as a c.r. semigroup. 

Assume that 4 is a mapping of X into a c.r. semigroup S. We are to show that 
there is a unique (unary) homomorphism 0 of 9y into S such that 7 0 8 = 4. 

Since S is a unary semigroup, and 9s the free unary semigroup on X 
(Theorem 2.2), there exists a unary homomorphism 4: 9”f + S extending 4. 
If  WE.P$, then (ww*w)# = (we)* = WI,!+ since S is c.r. Hence 
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pi c ker #. Similarly , pa C ker # and pa c ker I/. Since p is the smallest con- 
gruence on .9$ containing pi V ps U p3 , we conclude that p C ker I$. Hence 
upv implies u# = v#, and consequently we can define 8: FF -+ S by (up)6 = uz,b. 
It is easily seen that 0 is a (unary) homomorphism, and by its definition, we have 
p 0 0 = #. Restricting this to X, we find 7 o 6’ = #. The uniqueness of # follows 
from the fact noted above that X generates SF. 

PROPOSITION 3.2. With the notation of Theorem 3.1, let Y be a subset of X, 
and let (Y7) be the cr. subsemigroup of Fp generated by Y7. Then (Y7) consists 
of all wp in Fp such that C(w) C Y, and (( Y7), 7 / Y) is a free cr. semigroup on Y. 

Proof. (Y)ph is a c.r. subsemigroup of 9y containing Y7, hence containing 
(Y7). (Y7)ph-1 = {w Es=:: wph E (Y7)) is a unary subsemigroup of 92 
containing Y, hence containing (Y). Consequently 

<Y7> 2 <Y7>p”-lph 2 W>ph r, W7), 

and we conclude that (Y)ph = (YT). The proposition now follows from 
Proposition 2.3 by applying the homomorphism ph. 

PROPOSITION 3.3. With the notation of Theorem 3.1 and Proposition 3.2, for 
each x in X we have: 

(i) (q) = {wp ES?: C(w) = {x}}, 

(ii) (x7) E F$, , and 

(iii) (x7) is an in$nite cyclic group. 

Proof. (i) and (ii) are immediate from Proposition 3.2, taking Y = {x}. 
To show (iii), let H be the .%?-class of (x7) containing x7. Since His a group, it is 
a c.r. subsemigroup of(q) containing x7. Since x7 generates (x7), we conclude 
that H = (xr)), and hence (x7) is a group. By (ii), it is freely generated by x/, so 
must be an infinite cyclic group. 

4. GREEN'S RELATION 33 ON SF 

The next proposition is due to A. Horn and N. Kimura [5; Theorem 4.31. We 
include a proof for the sake of completeness. 

PROPOSITION 4.1. Let X be a set, and let P be the semilattice of all non-empty 
finite subsets of X under union. Define K: X + P by XK = {x}. Then (P, K) is a free 
semilattice on X. (We write 9: for P.) 

Proof. Clearly K is injective and XK generates P. Let $ be any mapping of X 
into a semilattice Q. For each element Y = {xi ,..., x,> of P, define Y# = 



FREE REGULAR SEMIGROUPS 441 

WXx24) *** (xn#)- s ince Sz is commutative, Y$ is independent of the order in 
which the elements of Y are listed. Since Sz is also idempotent, it is clear that 
(Y$)(Z#) = (Y u Z)$ for all Y, 2 in P. Hence IJ is a homomorphism of P into Sz 
such that x(K 0 t,b) = {x}# = x+ for all x in X, so K 0 $ = 4. 

THEOREM 4.2. Two elements of FF are ~-equivalent if and only if they have 
the same content. 

Proof. If S is any c.r. semigroup, then [l ; Th. 4.61 Green’s relations 9 and $ 
coincide, and .9 is the finest semilattice congruence on S. The mapping C sending 
an element wp of 9: into its content C(wp) = C(w) is a homomorphism of 
92 onto the semilattice P of finite subsets of X under union. Write (wp)C for 
C(wp). The statement of the theorem is equivalent to the assertion 9 = ker C, 
and this will follow as soon as we show that any homomorphism 0 of 9$r into 
a semilattice Sz must factor through C. 

By Proposition 4.1, there exists a (unique) homomorphism #: P + J2 such 
that K 0 4 = r] o 0. For any x in X we have x(7 0 C) = C(q) = C(x) = (x} = XK, 
so 7 o C = K and 7 0 C 0 4 = K o I+% = 7 0 8. Hence the two homomorphisms 
C 0 # and 6’ of 9F into Q agree on X7. Since XT generates SF, we conclude that 
colJ=e. 

COROLLARY 4.3. To each non-empty Jinite subset Y of X there corresponds a 
~-class Dr of .Fy consisting of all elements of SF having content Y, and the 
mapping which sends Y to D, is an isomorphism of the free semilattice 9;’ on X 
onto the structure semilattice .FF/9 of Pp. 

5. GREEN'S RELATIONS 9%' AND P ON 5-p 

In this section we write N for p and 6 for wp. Let w E 9% , and let wr be an 
initial segment of w, regarded as a word in sx. As noted in Section 2, wr is 
pre-well-formed. By the excess of wi we mean the number of parens in wr minus 
the number of parenstars; it is the number of unmated parens in w, (see Sec- 
tion 2). Let 4 be the well-formed word which results when the unmated 
parens in w, are removed. 

LEMMA 5.1. With the above notation, w N wIv for some v in S$ . Dually, 
if w2 is a final segment of w, and wS is the element of Sri which results when the 
unmatedparenstars in wz are removed, then w N uwS for some u in F$ . 

Proof. We need prove only the first part. If wr is an initial segment of w, 
then w factors into wrvr in 3$$ . If the excess of wi is 0, then @i = wr and q E 9: , 
so we can take v = vu1 . Assuming that the excess of w, is greater than 0, w, has 
the form w, = ~(4, where (is the last unmated paren in wi , and its mate lies in 
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vi , say q = Y)*s. Note that q and Y are well-formed, except that Y may be 
empty, that is, q =)*s. We now have w = p(qr)*s, with qr in 9; . Then 
w -pqr(qr)*(qr)*s, and so w N wzvz with wa = pq and va = r(qr)*(qr)*s. The 
element ws of 9~ differs from wr only in that one unmated paren has been 
removed. This process can be continued until all unmated parens have been 
removed. We then have w N w,v, with w, and er, both in 9;) and so w, = wr 
andwetakev =v,. 

Let w E .9$ . Let wi be the shortest initial segment of w such that C(wr) = 
C(w). By the left indicator of w we mean the element ai which results from wi 
when we remove all the unmated parens in w1 . It has the form UX, where 
u E P$‘, x E X, and C(U) = C(w)\(x). In the terminology of Green and Rees [4], 
u is the “initial” and x is the “initial mark” of w. 

For example, let x1 , x2 , x3 , x be distinct elements of X, and let 4 

w = G4%Xl) *x31 *x*(%4*%) ** 

Then wr = xl(xz((xqxl) *x3 and the left indicator of w is uxa , where u = 

w&4x1) *- 
Dually, by the right indicator of w we mean the element yv of S$ obtained as 

follows. Reading from right to left, y is the first occurrence of the last member of 
C(w) to appear in w, and yv results from the final segment of w beginning with 
y by removing unmated parenstars. In the above example, the right indicator of 
w is xrv, where v = x3xa(xsx,)*x, . 

The following is immediate from Lemma 5.1. 

COROLLARY 5.2. If w E F$ and ux[yv] is its left [right] indicator, then 
w - uxs[w N tyv] for some s[t] in F;‘. 

The 
p,--cr 

X’ 

next proposition shows that the notion of left indicator can be applied to 

PROPOSITION 5.3. Let w, w’ E 9: , and let ux, u’x’ be their respective left 
indicators. Then w N w’ implies II N u’ and x = x’. 

Proof. Clearly it suffices to prove u N u’ and x = x’ when w’ is obtained 
from w by a single elementary transition. 

Let w = wrws , where (as before) wr is the shortest initial segment of w with 
content C(w). Then ux is the word resulting from wr when we remove all the 
unmated parens in w1 . 

Consider first an elementary transition of the form v -+ v(v)*v. If v is a sub- 
word of w, not involving x, the result is to change u into a word II’ N u, leaving 
x unaltered. If v is a subword of ws , u and x are unaffected. If v involves x, then 
(v)*v is inserted in ws , while u and x are unchanged. A similar discussion holds 
for the transition v(v)*v + w, with “inserted in ws “replaced by “removed from 

W2 ” in the last case. 
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Now consider (w)*w + V(V)*. If (v)*w is a subword of wr not involving x, then 
u is changed into a word u’ N u. If it is a subword of ws , then u and x are 
unchanged. Suppose it involves x. Then v = pxq (in 9x), where p and/or q may 
be empty, and w = *.a (pxq)*pxq **. -+ ***pxq(pxq)* ***. Since wr = *me (px, we 
see that the only effect of this transition on w1 is to remove the unmated paren in 
front of p. This, of course, has no effect at all on the left indicator of w. A similar 
discussion holds for w(w)* ---f (w*)w, with “remove” replaced by “insert” in the 
last case. 

The transitions v-t ((w)*)* and ((w)*)* -+ v have similar effects; when v 
involves x, two unmated parens are inserted or removed. 

Of course the left-right dual of Proposition 5.3 holds. 

THEOREM 5.4. Two elements of PF are W[dP]-equiwaknt if and only if they 
hawe the same left [right] indicator. 

Proof. Let w E %$ , and let ux be its left indicator. Then i% is the left 
indicator of 6 (Proposition 5.3). By Corollary 5.2, w N wet for some t in 9;. 
Now C(ux) = C( w , so 6% 9 $ by Theorem 4.2. Since each %class is a com- ) 
pletely simple semigroup, and a W ab for any two elements a, b of such a semi- 
group, it follows that ZE 9 Zt’ = zZ. Hence each element of 9’$ is W-equivalent 
to its left indicator. It follows that two elements with the same left indicator must 
be g-equivalent. 

Conversely, let eZ1 9? rZr, , and let zZ&[&i$] be the left indicator of zZr[z&]. 
Since 6, W z&x”, and 6, W ti& , we have iilx”r W ii& , and hence r&~~ = z&&x 
for some f in the completely simple semigroup DGI . Going back to 9f , ulxl is 
the left indicator of u,x,t, uzx2 is that of itself, and u,x,t N uzxz . By Proposition 
5.3, ur N ua and x1 = x2 , hence z&Z1 = %a, . 

Let X, = {x1, x2 ,..., x3 be a finite subset of X. Write X,,,i for X,,\{x,}. 
Write D,[D,,i] for the Z&class of .F$r consisting of all elements of content 
XJX,,,]. The 9?[dp]- c asses 1 of D, are labelled (one-to-one) by the elements of 
9y of the form z&x”, ,..., IZ,f,[3i;,b, ,..., En&], where C(zZ,) = C(6,) = X,/i . The 
mapping Ci H z&f, is an injection (for each i = l,..., n) of Dnli into D, . The 
sum over i of these mappings is an injection of lJy=, Dnlf into D, the image of 
which is a transversal of the 9%classes of D, . Similar remarks apply to bi F+ ZiGi . 

The &‘-classes of D, are labelled by the set of all pairs (zZ& , f&), i and i 
ranging over (1, 2,..., n>, and zi, and bi over Dn,i . The product z@&$$ belongs 
to the 8-class labelled by (zZ@, , ffPj), and so zii3i;&Ej(ziiHiJ~~)* is the idem- 
potent element in this s-class. 

COROLLARY 5.5. Ewery idempotent element of Sy can be represented by a word 
in F$ of the form uxyv (uxyv)*, where x, y E X and u, w are words in S$ such that 

x I w, Y + C(v), and 

481/59/z-14 
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6. THE STRUCTURE OF 3j? WHEN 1 XI = 2 

It follows from Proposition 3.2 that we would know the structure of s? 
for any set X if we know it for every finite set Y. For if u, v E FF, and Y = 
C(U) u C(v), then u, v E (Y) g 9”“y’. We make a start on this difficult problem by 
determining the structure of g&l . We denote the latter by F, for the sake of 
brevity. Moreover, we identify 2 with x and 7 withy, and write = instead of -. 
This will lead to no confusion since we shall have no need for inductive arguments 
involving elementary transitions. 

By Theorem 4.2, F, has three a-classes: D, , D, , and D,, . By Proposition 3.3, 
D, and D, are infinite cyclic groups generated by x and y, respectively. We shall 
write D, = {xi : FEZ}, D, = {y” : i EZ}; thus x-l = x*, x0 = xx*, etc. D,, 
consists of all words in Fz of content {x, y}, and is a completely simple subsemi- 
group of F, . In fact D,, is an ideal of F, (the Suschkewitsch kernel), and F, 
is an ideal extension of D,, by the O-direct union of two infinite cyclic groups. 

By Theorem 5.4, the 9%classes of D,, are in one-to-one correspondence with 
all possible left indicators, and the latter are readily seen to be the elements 
x”y (i E 72) and y% (i E i2). Dually, the 9-classes are given by the possible right 
indicators yx” and xyi (i E h). 

Let Z be a copy of the set Z of integers, disjoint from Z. Elements of Z will be 
denoted byi,j, k, I,...; thoseofZ byi, j, R, l,...; thoseof.Z~Z byol,/3, y, 6 ,... . 
We index the W- and g-classes of F, by the set Z u Z as follows: 

Ri = xiyFz , Ri = yixF, , 

Li = F,yxi, Li = F,xyi. 

The %-classes of D,, are then denoted as follows: 

Hij = RinLj Hi, = RinLi 

Hii = RinL, H,= RinLj. 

We proceed to obtain a Rees matrix representation for F2 over the group Ho, . 
Let e denote the identity element of Ho; . Inverses in Ho, will usually be denoted 
by superscripts - 1 rather than *. Thus xOyO(xoyO)-1 = x”yO(xoyo)* = e. 

Following the usual procedure, we select, for each 01 in h u a, representative 
elements qa in Hw and Y, in Ha; , and set 

Then 
(a; a!, 8) = Ydq3 (all a in Ho6 and OL, &in Z u z). (6.1) 

and F, = d(H,-,; Z u f, Z v 2; P) with sandwich matrix P = (pB,,), where 

P&J = PEYY * 
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Our choice of the qol and ra is the following: 

qi = exi E H,,i , 

ri = xie E Hi, , 

qi = eyi E Hoi , 

ri = yie E H;6. 

Notice that qo = r,, = e. Then 

pij = qirj = exi+je, 

pii = qiri = exiyje, 

p, = qirj = eyixie, 

pii = qiri z eyi+je. 

(6.2) 

(6.3) 

Although P is not normalized, we do have&, = qg,, = e. Hence 

(a; 0, O)(b; 0,O) = (all; 0; O), 

(e; 0, 0) is the identity element e of HG , and (a; 0, 0)’ = (a-r; 0, a). 
The computations needed below make frequent use of the following: 

yiexj = yixj (all i, j in Z). (6.4) 

We have 

Hence 

yOex0 = y”xoyo(xO~)*xo 

= ( yOx0) *yox”y”x”y”(x”y”) *x0 

= (yoxo)*yoxoyoxo z yoxo. 

We also make frequent use of 

xipoiiyj = x1 Y i (all i, j in H). (6.5) 

This is evident from p,, = ex”yoe = x”yo. We now define 

pi = exie, pi = eyie. (6-6) 

We proceed to express the structure of F, in terms of the elements p, 
(a E Z u 2) and p,,,=~ of the group Ho,: equations (6.7) below give the sandwich 
matrix of D,, , (6.8) give the set products D,D, and D,Dz , and (6.9) give the 
action of D, and D, on D,, . They are easy consequences of (6.1)-(6.6). 
Equations (6.7) and (6.8) are almost immediate, while each of the equations (6.9) 
involves a simple computation, for example: 
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x”(u; 2, 8) =-: xkriaqa = xkyieuq, = xkpooyieuq, 

= xkep,oeyieuq, = r’ip,tippiaqs = (pOtipp; h, /3)- 

Pii = P,+j 3 Pi7 = P&~PT 1 
(i, j E E). 

Pij = PiPj > PC7 = P, ) 
xtJlj = (p,, ; i, j), yixj = (e; i, j), (i, j E Z). 

~~(a; i, 8) = (a; h + i, /3), (a; LY, j)xk = (a; a, j + h), 

~“(a; i, 8) = (pi@; 4 8), (a; 01, j)y” = (apip,- ; CL, k), 

X"(u; Z, 6) = (P&i"; k B>, (ai Or,j)Xk = (uPj ; % h), 

y7qa; i, P) = (a; h + 6 B), (a; 01, j)yk = (a; a, i + k), 

(uEH,,;~,~,KEZ;(II,BE~ZU~). 

(6.7) 

68) 

(6.9) 

In the following lemma (which we use twice), the symbols x, y, p, , etc., are 
not restricted to their meaning so far in this section. 

LEMMA 6.1. Let K be a (c.Y.) semigroup which is a disjoint union D, U D, U M, 
where D,[D,] is an infkite cyclic group generated by x[y], and M is a Rees matrix 
semigroup .A!(G; Z u f, Z u z; P) over a group G, with sandwich matrix P = 
(P,,), (01, B eZ u a. A ssume that PI = (p,: a! E (%\O) u (f\o)} U {f+,~} is a subset 
of G such that the components pm, of P can be expressed in terms of the members p, 
and p,, of PI by equations (6.7), with p, = p,- = e, the identity element of G. 
Assume aZso that equations (6.8) and (6.9) hold. Let Gl be the subgroup of Ggeneruted 
by PI , and let Kl be the C.Y. subsemigroup of K generuted by x and y. Then 

Kl =D,uD,u~(G,;ZuZ,Zu~;P). 

Proof. Let Ml = &(G,; Z u Z, b u f; P). We show first that Kl n MC Ml . 
From (6.8), it is clear that all the products xiyj and y”xi belong to Ml . Assume 
(a; 01, /I) E Ml . From (6.9) it is clear that the products of (a; a, 8) with xk or yk 
on either side also belong to Ml . Putting these two facts together, we conclude 
thatK,nMCMr. 

To show Ml _C Kl n M it suffices to show that Ml C Kl . By (6.8), Kl contains 

(e; Z, j) and (pi; i,j). Since p,, = e, Kl contains (x”yo)--l = (~2; 0, o), hence 

also (p,; i, @(pz; 0, 0) = (e; i, 8). We see successively that Kl contains the 
following: 

(e; i, O)(e; 0, j) = (e; i, j), 

(PG’; O,Q(p, ; (A?> = (e; O,f), 

(e; i, iT)(e; O,?) = (e; i,?), 
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(e; f ,  We; 0,3) = (e; Cj), 

(e; 0, W; (40) = ($9 ; 0, Q, 

(e; 0, i)(e; 0, 0) = (pi ; 0, 0). 

Since Ki also contains (pi; 0, o), it contains (a; 0, 0) for all Q in Pi , hence for all 
a in Gi . That Ki 2 Mr now follows from the two facts that Ki contains a full 
&‘-class of Mr , and meets all X-classes of Mr . Hence Kr n M = MI , and the 
conclusion of the lemma follows. 

COROLLARY 6.2. In F, = 9&, , the group H,,G is generated by the set PI = 
{Pm : 01 E (Z\O) u Q\Q> u ~Pod. 

We proceed now to construct a model for F, . Let 

be a set in one-to-one correspondence with (Z\O) u @\Ti) u ((0, a)}, and indexed 
thereby as shown. Let rbe the free group onl& . Let E be the identity element of 
r, and define rrs = r0 = E. Let Ii’ = (.rr,s) be the (Z u Z) x (Z u E)-matrix over 
.P defined by equations (6.7), replacing p, by z-, and p,, by rras . Let A be the 
Rees matrix semigroup A(P, P u L, Z u Z; n). Let A, and A,, be infinite cyclic 
groups generated by 6 and 7, respectively, disjoint from each other and from A. 
Let @a = A, u A,, U A. Define a binary operation on @a, extending those 
already defined on A, , A,, , and A, by equations (6.9), replacing x by E, y  by 9, 

P, by nu 7 and p, by ~,,6 . 

THEOREM 6.3. Q2 is a completely regular semigroup, and there exists a unique 
isomorphism f3 of F, (= 9&) onto Qp, such that xb’ = .$ andye = 7. 

Proof. It is tedious but straightforward to check the associativity of the binary 
relation defined above on @a . It is then obvious that @a is c.r. Since F, is the free 
c.r. semigroup on {x, y}, the mapping of {x, y} onto (5, q} sending x to 5 and y  to 
7 can be extended uniquely to a homomorphism 6’ of F, into @a . Since l7, 
generates r, it follows from Lemma 6.1 that {E, 7) generates ~0s , and hence 6 
is surjective. 

Denote by H$ the X-class {(a; 01, fi) : a E r} of @a . From #y’ E Hi, and 
(xiyj)O = &j = (7~~~; i, j) C H$ , we see that Hi,0 C Htj . Similarly, H,fI C Hfj . 
Since 0 preserves the relations .% and 9, we also have HsjO C H$ and H,,e C H$ . 
Since 0 is surjective, we have H,,0 = H$ , for all 01, p in Z u z. 

In particular, H,,# = H$, , so e8 = (q 0, 0). By (6.3), p,-, = etiy”e = x”yo; 
and hence, by the Greek version of (6.8) 

poie = (xoyo)e = pq = cnoi; 0,U). 
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By (6.6) and the Greek versions of (6.7) and (6.9), 

pi0 = (exie)O = (c; 0,O) P(E; 0,O) 

= (6; 0, O)(e; i, 0) = (7rg; 0,O) = (5-i; 0,O). 

Similarly, pi0 = (7r;; 0, 0). 
Since xi0 = ner,, = E, the mapping y H (y; 0, 0) is an isomorphism of r onto 

H$ . Hence H$, is freely generated by the elements (r=; 0, 0) and (~~6; 0, 0), -- 
(a E (H\O) U (Z\O)). Since 0 induces a homomorphism of H,,, onto H$, mapping 
p, onto (rE; 0, 0) and p,, onto (nob; 0, a), these elements p, and p, (which 
generate H,,, by Corollary 6.2) must generate H,,, freely. It is then clear that 0 
induces an isomorphism of H,,; onto H$, . Being injective on one Z-class of F, , 

’ 19 is injective on all of F, , and hence is an isomorphism. 

7. THE FREE COMPLETELY SIMPLE SEMIGROUP @F ON A SET X 

It was pointed out to the author by M. Petrich that the class of completely 
simple (“c.s.“) semigroups is the same as the class of c.r. semigroups S satisfying 
the identity 

uu* = uvu(uvu)*, (all U, v in S), (7-l) 

and consequently the same as the class of all unary semigroups satisfying (1.1) 
and (7.1). The class of all C.S. semigroups is therefore a variety, and so has a free 
member Fp on any set X. The existence of 9: was first shown by D. B. 
McAlister [8, Sect. 31. The purpose of this concluding section is to describe 
3y. 

Let o be the smallest congruence on .F$ containing the relations pi , ps , p3 
of Section 3 and the relation 

pa = {(UU*, uvU(uvU)*: u, v E9-g). 

Let Fl = .F!Ju, and let ah be the natural homomorphism of 9% onto Fl . Let 
< = ah ( X. We proceed to show that 5 is one-to-one. 

Let E be the rectangular band on X x X. Let 4: X-t E be defined by 
x$ = (x, x). Since E is a unary semigroup with (x, y)* = (x, y), 4 can be 
extended uniquely to a unary homomorphism 4: F$ + E. Since E is c.s., 
pd C ker 4 (i = 1,2,3,4), hence a C ker$. If x, y E X, and xc = y{, then 
xoy, and hence x4 = y$. But xd; = x4 = (x, x) and y$ = (y, y), so we conclude 
x = y. Hence 5 is one-to-one. 

It now follows from the obvious analog of Theorem 3.1 that (Fl , 1) is a free C.S. 
semigroup on X. Applying this to the above mapping 4 of X into E, there exists 
a unique homomorphism I/J of Fl into E such that 5 o I,!I = $. Let x, y E X. 
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If 4 ~8 rl, then x5+ 2 r&h h ence ~$9 y$, hence (x, x) 9%’ (y, y). Again this 
implies x = y, and we conclude that xc 9 y[ -+ x = y. Dually, xc 9 y[ --+ x = y. 
We have thus shown the following. 

PROPOSITION 7.1. If x and y  are distinct elements of X, then the elements xl and 
y{ lie in distinct %?- and de-classes of F1 . 

LetwE*%, and let x be the first element of X appearing in w, reading from 
left to right. By Lemma 5.1, w N XZI for some v  in 9% , and hence wu = 
(XV)U = (xu)(vu). Since F1 = 9$/u is c.s., this implies wa 9 xu (= x5). I f  
W'ES-t$, with x’ the first element of X in w’, and if wow’, we conclude that 
xc W x1<, hence x = x’ by Proposition 7.1. Consequently it is unambiguous to 
say that the element wu of F1 begins with x, and the following proposition is clear. 

PROPOSITION 7.2. There is a one-to-one correspondence between X and the 
set of C% [64-l classes of F1 such that the B?- [g-l class of F1 corresponding to an 
element x of X consists of all elements of F1 beginning [ending] with x. 

For the remainder of this section, we identify xc with x for each x in X, and 
F1 with Fy. We shall write X = (xi : i E I>, with xi # x9 if i # j in the index set I. 

By Proposition 7.2, we can also use I to index the W- and Y-classes of F1 . 
Thus R,[&] is the 93% [9-l class of F1 consisting of all elements of F1 beginning 
[ending] with xi . As usual, we write Hij = Ri n Li . Since xixi E Hii , the 
identity element of the group Hi, is eii = xixj(xixj)*. Of course eii = xix?, and 
we may write e, for eii . 

LEMMA 7.3. Let S = &r’(G; I, I; T) be a Rees I x I-matrix semigroup without 
zero over a group G with sandwich matrix T = (tj,), (j, k E I). Assume T 
normalized [l; p. 951; that is, tj, = t15 = e for all j in I, where e is the identity 
element of G, and 1 is some$xed element of I. For each i in I, let ui E G, let [i = 
(q; i, i), and let S, be the cr. subsemigroup of S generated by the set {& : i E I}. Let 
G, be the subgroup of G generated by the set (ti, : j, k E I} u {ui : i E I>. Then 
S, = A’(G,; I, I; T). 

Proof. Since each ti E M(G,; I, I; T), we have S, C &(G,; I, I; T). Since S, 
contains EiEj = (uitiiui; i, j), it contains an element in each H-class of M(G,; I, 
I; T), and hence it suffices to show that it contains all the elements (ZQ; 1, 1) 
and (tj,; 1, 1). Bearing in mind that the sandwich matrix T is normalized in the 
1 -row and the 1 -column, we see that S, contains the following elements of S: 

(ul ; 1, 1>-’ = (u;l; 1, l), 

(ul ; 1, l)(u;‘; 1, 1) = (e; 1, 11, 

(e; 1, l)(Ui ; i, i)(e; 1, 1) = (Ui ; 1, l), 
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(C; 1, l)(u, ;j,j> = (e; l,j), 
(% ; k Jz)(u2; 1, 1) = (e; k, I), 

(e; 1, j>(e; k, 1) = (tik ; I, 1). 

Hence S, 2 A’(Gr; I, I; T), and equality follows. 

THEOREM 7.4. Let X = {xi : i E I} be a set . Choose a&$x an element 1 of I, 
and let I’ = I\(l). Let 

Q ={qi:i~I}u{pjk:j,k~I’} 

be a set in one-to-one correspondence with I u (I’ x I’), and indexed thereby as 
shown. Let Fo be the free group on Q. Define pi, = p,, = 1 F (the identity element of 
F,) for all j, k in I, and let P be the I x I-matrix (pjk) over F, . Then there is an 
isomorphism 0 of 9: onto the Rees matrix semz&oup A(Fo; I, I; P) such that 
x,0 = (qi : i, i) for all i in I. 

Proof. Following the usual procedure for representing Fl = SF as a Rees 
I X I-matrix semigroup over H,, , we select, for each i in I, the element eil[eri] 
as the representative of H,r[&], and set 

Then 

(a; i, j) = eilaelj (all a in H,, and i, j in I). 

(a; i, j)(b; k, 1) = (atikb; i, I) 

with tjk = elje,, , and Fl = A(H,,; I, I; T), where T = (tjk). Note that the 
sandwich matrix T is normalized: tjl = enen = e,, = e, , since the idempotents 
en and e,, are in the same 9Cclass, and similarly tli = e, , (all j in I). 

For each i in I, let ui = e,x,e, . We note that u( E H,, and 

(4; i, i) = eilelx,ele,, = ei,xieli = xi . 

By Lemma 7.3, H,, is generated by the set 

tlJ={~~:i~I}u{t~~:j,k~I’). 

Let M denote the Rees matrix semigroup A(F,; I, I; P) defined in the state- 
ment of the theorem. Since Fl is the free completely simple semigroup on X, 
there exists a homomorphism 8: Fl + M such that x,0 = (qi; i, i) for all i in I. 
By Lemma 7.3, the elements (q5; i, i) generate M, and hence 8 is surjective. 

Let Hz denote the &‘-class of M consisting of all (a; i, j) with a in Fo . Since 
x,0 = (qi; i, i), and homomorphisms preserve the W-, Z’-, and Z-relations, we 
see that HijO C Hz . Since 0 is surjective, HiiS = Hz. In particular, 0 induces a 
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group homomorphism of H,, onto HE. If we can show that this is one-to-one, 
then 0 must be one-to-one on all of F1 , and consequently an isomorphism. 

Since eJek.] is the identity element of H,,[H Icl , e,,O[eklO] must be the identity ] 
element of Hf$Hg], so 

Hence 
eIje = (IF; l,j) and e,,B = (IF; k, 1). 

Also 
be = (e,,e,,Y = (IF; l,j>(l,; k 1) = (pjr; 1, 1). 

uie = (eIxieI)e = (IFi 1, I)(&; i, i)(lF; 1, 1) = (&; 1, 1). 

Since the set Q freely generatesFo , this shows that the set U must freely generate 
H,, , and so 0 induces an isomorphism of H,, onto HE. 
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