The Free Completely Regular Semigroup on a Set

A. H. Clifford
Tulane University, New Orleans, Louisiana 70118
Communicated by G. B. Preston

Received June 29, 1978

By a completely regular ("c.r.') semigroup we mean a semigroup which is a union of groups. For an account of these, see [1, Sect. 4.2] or [9, Chap. IV].
D. B. McAlister [8, Sect. 3] showed that if C is one of the following four classes of semigroups, and X is any set, there exists a free C-semigroup on X : (i) inverse semigroups, (ii) c.r. semigroups, (iii) semilattices of groups, (iv) completely simple ("c.s.") semigroups. In each of the four cases, he expresses the free C-semigroup on X as the direct limit of a sequence $\left\{F_{n}, \lambda_{n}\right\}$ of semigroups F_{n} and homomorphisms $\lambda_{n}: F_{n} \rightarrow F_{n+1}$, with F_{1} the ordinary free semisemigroup on X.

That free inverse semigroups exist also follows from the fact, first published by B. M. Schein [12], that inverse semigroups, considered as algebras with two operations (multiplication and inversion) form a variety (equational class). (See [13] for an historical survey and further references.) The same applies to class (iii), which is easily seen to be a subvariety (in the foregoing sense) of class (i). That the argument applies also to class (ii) was pointed out by Mario Petrich [10]; his argument is repeated in Section 1 below for the sake of completeness. Finally, Professor Petrich pointed out in a letter to the author that class (iv) is a subvariety of class (ii), and so has free objects; see Section 7 below. We denote by $\mathscr{F}_{X}^{\text {cr }}\left[\mathscr{F}_{X}^{\text {es }}\right]$ the free c.r. [c.s.] semigroup on a set X. For any variety of algebras, there is a standard procedure for constructing the free members of the variety; see [2] or [3]. A modification of this is developed in Sections 2 and 3 to describe $\mathscr{F}_{X}^{\mathrm{cr}}$.

Let us say that a semigroup S has exponent r (r an integer $\geqslant 1$) if $x^{r+1}=x$ for all x in S. The class of semigroups of exponent r is a subvariety of the variety of all c.r. semigroups, and so has a free member $\mathscr{F}_{X}^{\operatorname{exp(r)}}$ on any set X. Green's relations \mathscr{R}, \mathscr{L}, and \mathscr{D} on $\mathscr{F}{ }_{x}^{\exp (r)}$ were described (although not in those terms) by J. A. Green and D. Rees [4]; see also J. M. Howie [6; IV.4]. Their results are generalized to $\mathscr{F}_{X}^{\mathrm{cr}}$ in Sections 4-5.

The structure of free inverse semigroups was given explicitly by H. E. Scheiblich [11], and that of free semilattices of groups by S. A. Liber [7]. The author had hoped to do the same for classes (ii) and (iv). For the latter, he
succeeded (Section 7); but, for the former, he succeeded only in the case when X has cardinal 2 (Section 6).

The result of Section 6 is less than fascinating, but it contains onejnteresting piece of news: the maximal subgroups of $\mathscr{F}_{X}^{\mathrm{cr}}$ are free groups when $|X|=2$. Is this true for arbitrary X ? (It would suffice to prove it for all finite X.) Perhaps this question can be answered without knowing the precise structure of $\mathscr{F}_{x}^{\mathrm{cr}}$ From the result of Section 7, it is seen to be true for $\mathscr{F}_{X}^{\text {cs }}$, for arbitrary X. One may also ask: are the maximal subgroups of $\mathscr{F}_{X}^{\exp (r)}$ free groups of exponent r ?
The author wishes to express his thanks to Professor Petrich for suggesting this interesting problem, and for a number of valuable comments in addition to those mentioned above; likewise to Professor B. M. Schein for a number of corrections.

1. Preliminaries

If S is a c.r. semigroup, $x \in S$, and x^{*} denotes the inverse of x in the maximal subgroup of S containing x, then

$$
\begin{equation*}
x x^{*} x=x, \quad x x^{*}=x^{*} x, \quad\left(x^{*}\right)^{*}=x . \tag{1.1}
\end{equation*}
$$

Conversely, if a semigroup S admits a unary operation $x \mapsto x^{*}$ satisfying (1.1), then x^{*} is an inverse of x commuting with x, so x belongs to a subgroup of S [9, Proposition IV.1.2], and hence S is c.r. We may thus regard a c.r. semigroup as an algebra equipped with an associative binary operation and a unary operation satisfying (1.1). The class of c.r. semigroups so regarded is equationally defined, hence a variety, and so has a free member $\mathscr{F}_{x}^{\text {cr }}$ for each set $X[2, \mathrm{p} .170 ; 3, \mathrm{p} .167]$. Since a homomorphism ϕ of one c.r. semigroup S into another one preserves *, that is, $(x \phi)^{*}=x^{*} \phi$ for all x in S, it is clear that $\mathscr{F}_{x}^{\text {cr }}$ is also a free c.r. semigroup on X in the category of semigroups. (The foregoing is due to M. Petrich [10].)

We shall find it convenient to introduce a less restrictive class of algebra. By a unary semigroup we shall mean an algebra $S(\cdot, *)$ having an associative binary operation • and a unary operation $*$, with no restriction at all on $*$. If S and T are unary semigroups, a mapping $\phi: S \rightarrow T$ will be called a unary homomorphism if $(u v) \phi=(u \phi)(v \phi)$ and $u^{*} \phi=(u \phi)^{*}$ for all u, v in S. A subset T of a unary semigroup S is called a unary subsemigroup if $u, v \in T$ imply $u v \in T$ and $u^{*} \in T$. A subset T of S generates S if no proper unary subsemigroup of S contains T. The free unary semigroup on a set X will be denoted by \mathscr{F}_{X}^{*}.
By a slight modification of the standard procedure for describing free algebras (see [2] or [3]), we can regard the elements of \mathscr{F}_{X}^{*} as obtained from X by a finite sequence of operations, whereby we either apply * to an expression previously formed, or take a finite sequence of such expressions. An example is

$$
\begin{equation*}
w=x_{1}\left(x_{2} x_{3}\left(x_{4}\right) * x_{5}\left(x_{5} x_{8} x_{7}\left(x_{8} x_{10}\right)^{*} x_{11}\left(x_{12}\right)^{*} x_{13}\right)^{*} x_{14} x_{15}\right)^{*}, \tag{1.2}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{15}$ are elements of X. Such an expression will be called a polynomial although this use of the term is a little different from that of Gratzer [3, Sect. 8]. We then get $\mathscr{F}_{x}^{\mathrm{cr}}$ as $\mathscr{F} \mathscr{F}_{X}^{*} / \rho$, where ρ is the smallest congruence on \mathscr{F}_{X}^{*} containing the pairs $\left(w w^{*} w, w\right)$, $\left(w w^{*}, w^{*} w\right)$, and $\left(w^{* *}, w\right)$ for all w in \mathscr{F}_{X}^{*}.

It will be necessary in Section 5 below to consider initial or final segments of words like (1.2), for example $x_{1}\left(x_{2} x_{3}\left(x_{4} \text { or } x_{13}\right)^{*} x_{14} x_{15}\right)^{*}$, which are meaningless in the above context. We shall therefore give a different procedure that arrives at the same destination. We define \mathscr{F}_{X}^{*} as consisting of formal expressions like (1.2), prove that it is indeed the free unary semigroup on X, and then show that its elements can be interpreted as polynomials in the above sense.

2. Construction of the Free Unary Semigroup \mathscr{F}_{X}^{*} on a Set X

We begin by adjoining two elements to the set X, namely the symbols (and)*, and then form the free semigroup \mathscr{F}_{X} on the enlarged set \bar{X}. We name these symbols paren and parenstar, respectively. We define \mathscr{F}_{X}^{*} to be the set of all wellformed words in \mathscr{F}_{X}. By a well-formed word we mean an element w of $\mathscr{F}_{\mathcal{X}}$ satisfying the following conditions:
(WF1) the number of occurrences of paren in w is equal to the number of occurrences of parenstar;
(WF2) in each initial segment of w, the number of parens is at least as great as the number of parenstars:
(WF3) the symbol paren is never immediately followed by parenstar.
If u and v are well-formed words on \bar{X}, so is their concatenation $u v$ (product in $\left.\mathscr{F}_{X}\right)$, and so is $(u)^{*}$. Hence \mathscr{F}_{X}^{*} is a subsemigroup of \mathscr{F}_{X}, and is moreover a unary semigroup, with the unary operation $w \mapsto(w)^{*}$.

A word in \mathscr{F}_{X} satisfying only (WF2) and (WF3) will be called pre-well-formed. Thus, any initial segment of a well-formed word is pre-well-formed, and has a perfectly good meaning in \mathscr{F}_{X}. Any final segment is epi-well-formed in the sense that in each final segment there are at least as many parenstars as parens.

By the length $|w|$ of a word w in \mathscr{F}_{X} we mean its length as a sequence, counting parens and parenstars as well as elements of X. In the example (1.2), $|w|=25$. We shall often abbreviate $(w)^{*}$ to w^{*}, and $\left((w)^{*}\right)^{*}$ to $w^{* *}$, but note that $\left|w^{*}\right|=$ $|w|+2$.

We identify the element x of X with the word of length 1 whose only term is x. Clearly the word x is well-formed, hence belongs to \mathscr{F}_{X}^{*}. To summarize, \mathscr{F}_{X}^{*} is a unary semigroup containing X and having length-function $|\cdot|: \mathscr{F}_{X}^{*} \rightarrow \mathbb{N}$ (the natural numbers) satisfying $|u v|=|u|+|v|$ and $\left|u^{*}\right|=|u|+2$, for all u, v in \mathscr{F}_{X}^{*}.

An element w of \mathscr{F}_{X}^{*} is called reducible if $w=u v$ for some u, v in \mathscr{F}_{X}^{*}, and otherwise irreducible.

Lemma 2.1. (i) The irreducible elements of \mathscr{F}_{X}^{*} are just the elements of X and the elements of the form w^{*} with wo in \mathscr{F}_{x}^{*}.
(ii) Each element of \mathscr{F}_{X}^{*} is uniquely expressible as a product of irreducible elements.
(iii) If $w=w_{1} w_{2} \cdots w_{m}$ with w_{1}, \ldots, w_{m} irreducible, and if $w=u v$ for some u, v in \mathscr{F}_{x}^{*}, then there exists k in $\mathbb{N}(1 \leqslant k<m)$, such that $u=w_{1} \cdots w_{k}$ and $v=w_{k+1} \cdots w_{m}$.

Proof. Let $w \in \mathscr{F}_{x}^{*}$. Let w_{1} be the shortest initial segment of w which is well-formed (hence in \mathscr{F}_{x}^{*}), then let w_{2} be the shortest well-formed initial segment of the part of w following w_{1}, etc. We arrive at a factorization $w=w_{1} w_{2}, \ldots, w_{m}$ of w with each w_{i} irreducible, and clearly no other such factorization is possible. Thus (ii) holds, and (i) and (iii) are easy consequences of (ii).

Theorem 2.2. For any set X, \mathscr{F}_{X}^{*} is the free unary semigroup on X.

Proof. First we show that X generates \mathscr{F}_{X}^{*}. Let T be a unary subsemigroup of \mathscr{F}_{X}^{*} containing X. Let F_{n} be the set of all elements of \mathscr{F}_{X}^{*} of length n or less. We show by induction that $F_{n} \subseteq T$ for all $n \in \mathbb{N}$, hence $\mathscr{F}_{X}^{*} \subseteq T$. Since $F_{1}=X$, this is true for $n=1$. Assume $n>1$ and $F_{n-1} \subseteq T$, and let $w \in F_{n} \mid F_{n-1}$. By Lemma 2.1, either $w=u^{*}$ or $w=u v$ for some u, v in \mathscr{F}_{x}^{*}. Clearly $u, v \in F_{n-1} \subseteq T$, and hence $w \in T$.

Now let ϕ be a mapping of X into a unary semigroup S. We are to show that there exists a unique unary homomorphism $\psi: \mathscr{F}_{X}^{*} \rightarrow S$ extending ϕ. We first show by induction that there exists a sequence $\left\{\psi_{n}\right\}$ of mappings $\psi_{n}: F_{n} \rightarrow S$, with $\psi_{1}=\phi$, having the following properties:
(i) $\quad \psi_{n}$ extends ψ_{m} for every $m<n$;
(ii) if $u, v, u v \in F_{n}$, then $(u v) \psi_{n}=\left(u \psi_{n}\right)\left(v \psi_{n}\right)$;
(iii) if $u, u^{*} \in F_{n}$, then $u^{*} \psi_{n}=\left(u \psi_{n}\right)^{*}$.
(We also use $*$ to denote the unary operation on S.) Let $n>1$ and assume that ψ_{n-1} has been constructed so as to have these three properties. We proceed to define $\psi_{n}: F_{n} \rightarrow S$. If $w \in F_{n-1}$, define $w \psi_{n}=w \psi_{n-1}$. Let $w \in F_{n} \backslash F_{n-1}$, so $|w|=n$. If w is irreducible, then $w=u^{*}$, for some u in \mathscr{F}_{x}^{*}, by Lemma 2.1. Moreover, u is uniquely determined. For $(u)^{*}=(v)^{*}$ implies $u=v$, since we are in the free semigroup \mathscr{F}_{X}, so we can cancel paren on the left and parenstar on the right. We define $w \psi_{n}=\left(u \psi_{n-1}\right)^{*}$, which exists since $u \in F_{n-2}$.

If w is reducible, then $w=w_{1} w_{2} \cdots w_{m}$, with $m>1$, with each w_{i} irreducible ($i=1, \ldots, m$), and (w_{1}, \ldots, w_{m}) uniquely determined, by Lemma 2.1. Clearly
$\left|w_{i}\right|<n$ for each i, so we can define $w \psi_{n}=\left(w_{1} \psi_{n-1}\right) \cdots\left(w_{m} \psi_{n-1}\right)$. Thus, in both cases, we have defined $w \psi_{n}$ unambiguously.

Since ψ_{n-1} satisfies (i), and ψ_{n} extends ψ_{n-1}, it is clear that ψ_{n} satisfies (i). Let $u, v, u v \in F_{n}$. Since ψ_{n-1} satisfies (ii), we may assume $u v \in F_{n} \backslash F_{n-1}$. Since $u v$ is reducible, $u v=w_{1} w_{2} \cdots w_{m}$ with $m>1$ and each w_{i} irreducible. By the last part of Lemma 2.1, $u=w_{1} \cdots w_{k}$ and $v=w_{k+1} \cdots w_{m}$ for some k such that $1 \leqslant k<m$. Then, by definition of ψ_{n}, and the hypothesis that ψ_{n-1} satisfies (ii),

$$
\begin{aligned}
(u v) \psi_{n} & =\left(w_{1} \psi_{n-1}\right) \cdots\left(w_{m} \psi_{n-1}\right)=\left(w_{1} \cdots w_{k}\right) \psi_{n-1} \cdot\left(w_{k+1} \cdots w_{m}\right) \psi_{n-1} \\
& =\left(u \psi_{n-1}\right)\left(v \psi_{n-1}\right)=\left(u \psi_{n}\right)\left(v \psi_{n}\right) .
\end{aligned}
$$

Hence ψ_{n} satisfies (ii). If $u, u^{*} \in F_{n}$, then we may assume $u^{*} \in F_{n} \backslash F_{n-1}$, and, by definition of ψ_{n},

$$
u^{*} \psi_{n}=\left(u \psi_{n-1}\right)^{*}=\left(u \psi_{n}\right)^{*}
$$

Hence (iii) holds, and this concludes the inductive argument.
Because of (i) we can define $\psi: \mathscr{F}_{X}^{*} \rightarrow S$ unambiguously by $w \psi=w \psi_{n}$ if $w \in F_{n}$. For any u, v in F_{x}^{*}, there exists n in \mathbb{N} such that $u, v, u v$, and u^{*} all belong to F_{n}. Hence $(u v) \psi=(u \psi)(v \psi)$ and $u^{*} \psi=(u \psi)^{*} . \psi$ is unique, for if ψ^{\prime} is any unary homomorphism of F_{X}^{*} into S extending ϕ, the set $\left\{w \in \mathscr{F}_{X}^{*}: w \psi=w \psi^{\prime}\right\}$ is a unary subsemigroup of \mathscr{F}_{X}^{*} containing X, and we have shown above that the only such is \mathscr{F}_{X}^{*} itself.

If $w \in \mathscr{F}_{X}$, we define the content $C(w)$ of w to be the set of elements of X appearing in w. Clearly $C(u v)=C(u) \cup C(v)$ and $C\left((u)^{*}\right)=C(u)$ for all u, v in \mathscr{F}_{X}.

Let $w \in \mathscr{F}_{x}^{*}$. We proceed to "mate" the parens and parenstars in w. We mate the first parenstar in w, reading from left to right, with the nearest paren to its left, then the next parenstar with the nearest paren to its left, not counting the paren already mated, etc. In general, each parenstar in w is mated with the nearest unmated paren to its left. Again using the example (1.2), mates are indicated by assigning them the same index number:

$$
\left.\left.\left.\left.w=x_{1}\left(\stackrel{1}{x} 2_{x_{3}}^{x_{3}\left(x_{4}\right.}\right)^{2}\right)_{5} \stackrel{3}{\left(x_{6} x_{7} x_{8}\right.} \stackrel{4}{\left(x_{9} x_{10}\right.} \stackrel{4}{4}^{*} x_{11} \stackrel{5}{\left(x_{12}\right)}\right)^{5} x_{13}\right)^{*} * x_{14} x_{15}\right)^{*}
$$

From the mating procedure, it is clear that the subword u of w lying between two mated symbols is well-formed, and so represents an element of \mathscr{F}_{x}^{*}. The subword $(u)^{*}$ of w is the image of u under the unary operation ${ }^{*}$ on \mathscr{F}_{x}^{*}. It follows that w can be obtained from $C(w)$ by a finite sequence of operations of two kinds: forming products of words already formed, and performing the unary operation * on a word already formed. In other words, we may "read" w as though it were a polynomial (sect. 1).

Proposition 2.3. Let Y be a subset of X, and let $\langle Y\rangle$ be the unary subsemigroup of \mathscr{F}_{X}^{*} generated by Y. Then (i) $\langle Y\rangle=\left\{w \in \mathscr{F}_{X}^{*}: C(w) \subseteq Y\right\}$, and (ii) $\langle Y\rangle \cong \mathscr{F}_{Y}^{*}$.

Proof. (i) Let $T=\left\{v \in \mathscr{F}{ }_{x}^{*}: C(w) \subseteq Y\right\}$. Clearly, T is a unary subsemigroup of \mathscr{F}_{x}^{*} containing Y, and hence $T \supseteq\langle Y\rangle$. Conversely, let $w \in T$. From the remark preceding the proposition, it follows that $w \in\langle C(w)\rangle$. From $C(w) \subseteq Y$, we then have $w \in\langle Y\rangle$, so $T \subseteq\langle Y\rangle$.
(ii) Let ϕ be any mapping of Y into a unary semigroup S. Extend ϕ in any way to a mapping $\bar{\phi}$ of X into S. By Theorem 2.2, there exists a unary homomorphism ψ of \mathscr{F}_{x}^{*} into S extending $\bar{\phi}$. But then $\psi \mid\langle Y\rangle$ is a unary homomorphism of $\langle Y\rangle$ into S extending ϕ, and is unique since Y generates $\langle Y\rangle$. Hence $\langle Y\rangle$ is freely generated by Y, and therefore isomorphic with \mathscr{F}_{Y}^{*}.

3. Construction of $\mathscr{F}_{x}^{\text {cr }}$

Define the relations $\rho_{1}, \rho_{2}, \rho_{3}$ on \mathscr{F}_{X}^{*} as follows:

$$
\begin{aligned}
& \rho_{1}=\left\{\left(w w^{*} w, w\right): w \in \mathscr{F}_{X}^{*}\right\}, \\
& \rho_{2}=\left\{\left(w w^{*}, w^{*} w\right): w \in \mathscr{F}_{X}^{*}\right\}, \\
& \rho_{3}=\left\{\left(w^{* *}, w\right): w_{w} \in \mathscr{F}_{x}^{*}\right\} .
\end{aligned}
$$

Let ρ be the smallest congruence on $\mathscr{F}{ }_{X}^{*}$ containing $\rho_{1} \cup \rho_{2} \cup \rho_{3}$, and define $\mathscr{F}_{X}^{\mathrm{cr}}=\mathscr{F}_{X}^{*} / \rho . \mathscr{F}_{X}^{\mathrm{cr}}$ is c.r. since each element $w \rho$ of $\mathscr{F}_{X}^{\mathrm{cr}}\left(w\right.$ in $\left.\mathscr{F}_{X}^{*}\right)$ has an inverse $w^{*} \rho$ which commutes with it. We denote by ρ^{k} the natural homomorphism of \mathscr{F}_{X}^{*} onto $\mathscr{F}_{X}^{\text {cr }}$.

If $u, v \in \mathscr{F}_{x}^{*}$, then $u p v$ if and only if we can transform u into v by a finite sequence of elementary transitions [1, p. 18] of the three types corresponding to ρ_{1}, ρ_{2}, and ρ_{3}. These do not change the content of the word being transformed. Hence $u \rho v$ implies $C(u)=C(v)$, and we can apply the term "content" to the elements of $\mathscr{F}_{X}^{\mathrm{cr}}$ without ambiguity.

In particular, if $x, y \in X$ and $x \rho y$, then $\{x\}=C(x)=C(y)=\{y\}$, and we conclude $x=y$. This shows that $\eta=\rho^{\natural} \mid X$ is an injection of X into $\mathscr{F}_{X}^{\mathrm{cr}}$.

Theorem 3.1. The pair $\left(\mathscr{F}_{X}^{\mathrm{cr}}, \eta\right)$ is a free completely regular semigroup on the set X.

Proof. We have just seen that $\eta: X \rightarrow \mathscr{F}_{X}^{\mathrm{cr}}$ is injective. Since X generates \mathscr{F}_{X}^{*} as a unary semigroup, $X \eta=\{x \rho: x \in X\}$ generates $\mathscr{F}_{X}^{\text {cr }}=\mathscr{F}_{X}^{*} / \rho$ as a unary semigroup, hence also as a c.r. semigroup.

Assume that ϕ is a mapping of X into a c.r. semigroup S. We are to show that there is a unique (unary) homomorphism θ of $\mathscr{F}{ }_{X}^{\text {cr }}$ into S such that $\eta \circ \theta=\phi$.

Since S is a unary semigroup, and \mathscr{F}_{X}^{*} the free unary semigroup on X (Theorem 2.2), there exists a unary homomorphism $\psi: \mathscr{F}_{X}^{*} \rightarrow S$ extending ϕ. If $w \in \mathscr{F}_{x}^{*}$, then $\left(w w^{*} w\right) \psi=(w \psi)(w \psi)^{*}(w \psi)=w \psi$, since S is c.r. Hence
$\rho_{1} \subseteq \operatorname{ker} \psi$. Similarly, $\rho_{2} \subseteq \operatorname{ker} \psi$ and $\rho_{3} \subseteq \operatorname{ker} \psi$. Since ρ is the smallest congruence on \mathscr{F}_{X}^{*} containing $\rho_{1} \cup \rho_{2} \cup \rho_{3}$, we conclude that $\rho \subseteq \operatorname{ker} \psi$. Hence $u \rho v$ implies $u \psi=v \psi$, and consequently we can define $\theta: \mathscr{F}_{X}^{c r} \rightarrow S$ by $(u \rho) \theta=u \psi$. It is easily seen that θ is a (unary) homomorphism, and by its definition, we have $\rho \circ \theta=\psi$. Restricting this to X, we find $\eta \circ \theta=\phi$. The uniqueness of ψ follows from the fact noted above that X generates $\mathscr{F}_{X}^{\mathrm{cr}}$.

Proposition 3.2. With the notation of Theorem 3.1, let Y be a subset of X, and let $\langle Y \eta\rangle$ be the c.r. subsemigroup of $\mathscr{F}_{X}^{\mathrm{cr}}$ generated by $Y \eta$. Then $\langle Y \eta\rangle$ consists of all wp in $\mathscr{F}_{X}^{\mathrm{cr}}$ such that $C(w) \subseteq Y$, and $(\langle Y \eta\rangle, \eta \mid Y)$ is a free c.r. semigroup on Y.

Proof. $\langle Y\rangle \rho^{\natural}$ is a c.r. subsemigroup of $\mathscr{F}_{X}^{\mathrm{cr}}$ containing $Y \eta$, hence containing $\langle Y \eta\rangle .\langle Y \eta\rangle \rho^{\natural-1}=\left\{w \in \mathscr{F}_{X}^{*}: w_{\rho}{ }^{\natural} \in\langle Y \eta\rangle\right\}$ is a unary subsemigroup of \mathscr{F}_{X}^{*} containing Y, hence containing $\langle Y\rangle$. Consequently

$$
\langle Y \eta\rangle \supseteq\langle Y \eta\rangle \rho^{\natural-1} \rho^{\natural} \supseteq\langle Y\rangle \rho^{\natural} \supseteq\langle Y \eta\rangle,
$$

and we conclude that $\langle Y\rangle \rho^{\natural}=\langle Y \eta\rangle$. The proposition now follows from Proposition 2.3 by applying the homomorphism ρ^{\natural}.

Proposition 3.3. With the notation of Theorem 3.1 and Proposition 3.2, for each x in X we have:
(i) $\langle x \eta\rangle=\left\{w_{\rho} \in \mathscr{F}_{x}^{\mathrm{cr}}: C(w)-\{x\}\right\}$,
(ii) $\langle x \eta\rangle \cong \mathscr{F}_{\{x\}}^{\mathrm{cr}}$, and
(iii) $\langle x \eta\rangle$ is an infinite cyclic group.

Proof. (i) and (ii) are immediate from Proposition 3.2, taking $Y=\{x\}$. To show (iii), let H be the \mathscr{H}-class of $\langle x \eta\rangle$ containing $x \eta$. Since H is a group, it is a c.r. subsemigroup of $\langle x \eta\rangle$ containing $x \eta$. Since $x \eta$ generates $\langle x \eta\rangle$, we conclude that $H=\langle x \eta\rangle$, and hence $\langle x \eta\rangle$ is a group. By (ii), it is freely generated by $x \eta$, so must be an infinite cyclic group.

4. Green's relation \mathscr{D} on $\mathscr{F}_{X}^{\text {cr }}$

The next proposition is due to A. Horn and N. Kimura [5; Theorem 4.3]. We include a proof for the sake of completeness.

Proposition 4.1. Let X be a set, and let P be the semilattice of all non-empty finite subsets of X under union. Define $\kappa: X \rightarrow P$ by $x \kappa=\{x\}$. Then (P, κ) is a free semilattice on X. (We write $\mathscr{F}_{X}^{s l}$ for P.)

Proof. Clearly κ is injective and $X \kappa$ generates P. Let ϕ be any mapping of X into a semilattice Ω. For each element $Y=\left\{x_{1}, \ldots, x_{n}\right\}$ of P, define $Y \psi=$
$\left(x_{1} \phi\right)\left(x_{2} \phi\right) \cdots\left(x_{n} \phi\right)$. Since Ω is commutative, $Y \psi$ is independent of the order in which the elements of Y are listed. Since Ω is also idempotent, it is clear that $(Y \psi)(Z \psi)=(Y \cup Z) \psi$ for all Y, Z in P. Hence ψ is a homomorphism of P into Ω such that $x(\kappa \circ \psi)=\{x\} \psi=x \phi$ for all x in X, so $\kappa \circ \psi=\phi$.

Theorem 4.2. Two elements of $\mathscr{F}_{X}^{\mathrm{cr}}$ are \mathscr{D}-equivalent if and only if they have the same content.

Proof. If S is any c.r. semigroup, then [1; Th. 4.6] Green's relations \mathscr{D} and \mathscr{J} coincide, and \mathscr{D} is the finest semilattice congruence on S. The mapping C sending an element $w \rho$ of $\mathscr{F}_{X}^{\mathrm{cr}}$ into its content $C\left(w_{\rho}\right)=C(w)$ is a homomorphism of $\mathscr{F}_{X}^{\mathrm{cr}}$ onto the semilattice P of finite subsets of X under union. Write (w_{ρ}) C for $C\left(w_{\rho}\right)$. The statement of the theorem is equivalent to the assertion $\mathscr{D}=\operatorname{ker} C$, and this will follow as soon as we show that any homomorphism θ of $\mathscr{F}_{X}^{\mathrm{cr}}$ into a semilattice Ω must factor through C.

By Proposition 4.1, there exists a (unique) homomorphism $\psi: P \rightarrow \Omega$ such that $\kappa \circ \psi=\eta \circ \theta$. For any x in X we have $x(\eta \circ C)=C(x \eta)=C(x)=\{x\}=x \kappa$, so $\eta \circ C=\kappa$ and $\eta \circ C \circ \psi=\kappa \circ \psi=\eta \circ \theta$. Hence the two homomorphisms $C \circ \psi$ and θ of $\mathscr{F}_{X}^{\mathrm{cr}}$ into Ω agree on $X \eta$. Since $X \eta$ generates $\mathscr{F}_{X}^{\mathrm{cr}}$, we conclude that $C \circ \psi=\theta$.

Corollary 4.3. To each non-empty finite subset Y of X there corresponds a \mathscr{D}-class D_{Y} of $\mathscr{F}_{X}^{\mathrm{cr}}$ consisting of all elements of $\mathscr{F}_{X}^{\mathrm{cr}}$ having content Y, and the mapping which sends Y to D_{Y} is an isomorphism of the free semilattice $\mathscr{F}_{X}^{s l}$ on X onto the structure semilattice $\mathscr{F}_{X}^{\mathrm{cr}} / \mathscr{D}$ of $\mathscr{F}_{X}^{\mathrm{cr}}$.

5. Green's Relations \mathscr{R} and \mathscr{L} on $\mathscr{F}_{X}^{\text {cr }}$

In this section we write \sim for ρ and \tilde{w} for $w \rho$. Let $w \in \mathscr{F}_{X}^{*}$, and let w_{1} be an initial segment of w, regarded as a word in \mathscr{F}_{X}. As noted in Section 2, w_{1} is pre-well-formed. By the excess of w_{1} we mean the number of parens in w_{1} minus the number of parenstars; it is the number of unmated parens in w_{1} (see Section 2). Let \bar{w}_{1} be the well-formed word which results when the unmated parens in w_{1} are removed.

Lemma 5.1. With the above notation, $w \sim \bar{w}_{1} v$ for some v in \mathscr{F}_{X}^{*}. Dually, if w_{2} is a final segment of w, and ${\overline{w_{2}}}_{2}$ is the element of \mathscr{F}_{X}^{*} which results when the unmated parenstars in w_{2} are removed, then $w \sim u \bar{w}_{2}$ for some u in \mathscr{F}_{x}^{*}.

Proof. We need prove only the first part. If w_{1} is an initial segment of w, then w factors into $w_{1} v_{1}$ in \mathscr{F}_{X}. If the excess of w_{1} is 0 , then $\bar{w}_{1}=w_{1}$ and $v_{1} \in \mathscr{F}_{X}^{*}$, so we can take $v=v_{1}$. Assuming that the excess of w_{1} is greater than $0, w_{1}$ has the form $w_{1}=p\left(q\right.$, where (is the last unmated paren in w_{1}, and its mate lies in
v_{1}, say $\left.v_{1}=r\right)^{*}$ s. Note that q and r are well-formed, except that r may be empty, that is, $\left.v_{1}=\right)^{*} s$. We now have $w=p(q r)^{*} s$, with $q r$ in \mathscr{F}_{x}^{*}. Then $w \sim p q r(q r)^{*}(q r)^{*}$ s, and so $w \sim w_{2} v_{2}$ with $w_{2}=p q$ and $v_{2}=r(q r)^{*}(q r)^{*} s$. The element w_{2} of \mathscr{F}_{X} differs from w_{1} only in that one unmated paren has been removed. This process can be continued until all unmated parens have been removed. We then have $w \sim w_{n} v_{n}$ with w_{n} and v_{n} both in \mathscr{F}_{x}^{*}, and so $w_{n}=\bar{w}_{1}$ and we take $v=v_{n}$.

Let $w \in \mathscr{F}_{x}^{*}$. Let w_{1} be the shortest initial segment of w such that $C\left(w_{1}\right)=$ $C(w)$. By the left indicator of w we mean the element \bar{w}_{1} which results from w_{1} when we remove all the unmated parens in w_{1}. It has the form $u x$, where $u \in \mathscr{F}_{X}^{* 1}, x \in X$, and $C(u)=C(w) \backslash\{x\}$. In the terminology of Green and Rees [4], u is the "initial" and x is the "initial mark" of w.

For example, let $x_{1}, x_{2}, x_{3}, x_{4}$ be distinct elements of X, and let

$$
w=x_{1}\left(x_{2}\left(\left(x_{4} x_{1}\right)^{*} x_{3}\right)^{*} x_{4}\left(x_{3} x_{2}\right)^{*} x_{4}\right)^{*} .
$$

Then $w_{1}=x_{1}\left(x_{2}\left(\left(x_{4} x_{1}\right)^{*} x_{3}\right.\right.$ and the left indicator of w is $u x_{3}$, where $u=$ $x_{1} x_{2}\left(x_{4} x_{1}\right)^{*}$.

Dually, by the right indicator of w we mean the element $y v$ of \mathscr{F}_{x}^{*} obtained as follows. Reading from right to left, y is the first occurrence of the last member of $C(w)$ to appear in w, and $y v$ results from the final segment of w beginning with y by removing unmated parenstars. In the above example, the right indicator of w is $x_{1} v$, where $v=x_{3} x_{4}\left(x_{3} x_{2}\right)^{*} x_{4}$.

The following is immediate from Lemma 5.1.
Corollary 5.2. If $w \in \mathscr{F F}_{x}^{*}$ and $u x[y v]$ is its left [right] indicator, then $w \sim u x s[w \sim t y v]$ for some $s[t]$ in $\mathscr{F}_{X}^{* 1}$.

The next proposition shows that the notion of left indicator can be applied to $\mathscr{F}_{X}^{\mathrm{cr}}$.

Proposition 5.3. Let $w, w^{\prime} \in \mathscr{F}_{x}^{*}$, and let $u x, u^{\prime} x^{\prime}$ be their respective left indicators. Then $w \sim w^{\prime}$ implies $u \sim u^{\prime}$ and $x=x^{\prime}$.

Proof. Clearly it suffices to prove $u \sim u^{\prime}$ and $x=x^{\prime}$ when w^{\prime} is obtained from w by a single elementary transition.

Let $w=w_{1} w_{2}$, where (as before) w_{1} is the shortest initial segment of w with content $C(w)$. Then $u x$ is the word resulting from w_{1} when we remove all the unmated parens in w_{1}.

Consider first an elementary transition of the form $v \rightarrow v(v)^{*} v$. If v is a subword of w_{1} not involving x, the result is to change u into a word $u^{\prime} \sim u$, leaving x unaltered. If v is a subword of w_{2}, u and x are unaffected. If v involves x, then $(v)^{*} v$ is inserted in w_{2}, while u and x are unchanged. A similar discussion holds for the transition $v(v)^{*} v \rightarrow v$, with "inserted in w_{2} "replaced by "removed from $w_{2}{ }^{\prime \prime}$ in the last case.

Now consider $(v)^{*} v \rightarrow v(v)^{*}$. If $(v)^{*} v$ is a subword of w_{1} not involving x, then \boldsymbol{u} is changed into a word $\boldsymbol{u}^{\prime} \sim \boldsymbol{u}$. If it is a subword of w_{2}, then u and x are unchanged. Suppose it involves x. Then $v=p x q$ (in \mathscr{F}_{X}), where p and/or q may be empty, and $w=\cdots(p x q)^{*} p x q \cdots \rightarrow p x q(p x q)^{*} \cdots$. Since $w_{1}=\cdots(p x$, we see that the only effect of this transition on w_{1} is to remove the unmated paren in front of p. This, of course, has no effect at all on the left indicator of w. A similar discussion holds for $v(v)^{*} \rightarrow\left(v^{*}\right) v$, with "remove" replaced by "insert"' in the last case.

The transitions $v \rightarrow\left((v)^{*}\right)^{*}$ and $\left((v)^{*}\right)^{*} \rightarrow v$ have similar effects; when v involves x, two unmated parens are inserted or removed.

Of course the left-right dual of Proposition 5.3 holds.

Theorem 5.4. Two elements of $\mathscr{F}_{Y}^{\mathrm{cr}}$ are $\mathscr{R}[\mathscr{L}]$-equivalent if and only if they have the same left [right] indicator.

Proof. Let $w \in \mathscr{F}_{x}^{*}$, and let $u x$ be its left indicator. Then $\tilde{u} \tilde{x}$ is the left indicator of \tilde{w} (Proposition 5.3). By Corollary 5.2, w$\sim u x t$ for some t in \mathscr{F}_{x}^{*}. Now $C(u x)=C(w)$, so $\tilde{u} \tilde{x} \mathscr{D} \tilde{w}$ by Theorem 4.2. Since each \mathscr{D}-class is a completely simple semigroup, and $a \mathscr{R} a b$ for any two elements a, b of such a semigroup, it follows that $\tilde{u} \tilde{x} \mathscr{R} \tilde{u} \tilde{x} \tilde{t}=\tilde{w}$. Hence each element of $\mathscr{F}_{X}^{\mathrm{Cr}}$ is \mathscr{R}-equivalent to its left indicator. It follows that two elements with the same left indicator must be \mathscr{R}-equivalent.

Conversely, let $\tilde{w}_{1} \mathscr{R} \tilde{w}_{2}$, and let $\tilde{u}_{1} \tilde{x}_{1}\left[\tilde{u}_{2} \tilde{x}_{2}\right]$ be the left indicator of $\tilde{w}_{1}\left[\tilde{w}_{2}\right]$. Since $\tilde{v}_{1} \mathscr{R} \tilde{u}_{1} \tilde{x}_{1}$ and $\tilde{w}_{2} \mathscr{R} \tilde{u}_{2} \tilde{x}_{2}$, we have $\tilde{u}_{1} \tilde{x}_{1} \mathscr{R} \tilde{u}_{2} \tilde{x}_{2}$, and hence $\tilde{u}_{2} \tilde{x}_{2}=\tilde{u}_{1} \tilde{x}_{1} z$ for some \tilde{t} in the completely simple semigroup $D_{\tilde{w}_{1}}$. Going back to $\mathscr{F}_{X}^{*}, u_{1} x_{1}$ is the left indicator of $u_{1} x_{1} t, u_{2} x_{2}$ is that of itself, and $u_{1} x_{1} t \sim u_{2} x_{2}$. By Proposition 5.3, $u_{1} \sim u_{2}$ and $x_{1}=x_{2}$, hence $\tilde{u}_{1} \tilde{x}_{1}=\tilde{u}_{2} \tilde{x}_{2}$.

Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite subset of X. Write $X_{n / i}$ for $X_{n} \backslash\left\{x_{i}\right\}$. Write $D_{n}\left[D_{n / i}\right]$ for the \mathscr{D}-class of $\mathscr{F}_{X}^{\text {cr }}$ consisting of all elements of content $X_{n}\left[X_{n / i}\right]$. The $\mathscr{R}[\mathscr{L}]$-classes of D_{n} are labelled (one-to-one) by the elements of $\mathscr{F}_{X}^{\text {cr }}$ of the form $\tilde{u}_{1} \tilde{x}_{1}, \ldots, \tilde{u}_{n} \tilde{x}_{n}\left[\tilde{x}_{1} \tilde{v}_{1}, \ldots, \tilde{x}_{n} \tilde{v}_{n}\right]$, where $C\left(\tilde{u}_{i}\right)=C\left(\tilde{v}_{i}\right)=X_{n / i}$. The mapping $\tilde{u}_{i} \mapsto \tilde{u}_{i} \tilde{x}_{i}$ is an injection (for each $i=1, \ldots, n$) of $D_{n / i}$ into D_{n}. The sum over i of these mappings is an injection of $\bigcup_{i=1}^{n} D_{n / i}$ into D_{n} the image of which is a transversal of the \mathscr{R}-classes of D_{n}. Similar remarks apply to $\tilde{v}_{i} \mapsto \tilde{x}_{i} \tilde{v}_{i}$.

The \mathscr{H}-classes of D_{n} are labelled by the set of all pairs ($\tilde{u}_{i} \tilde{x}_{i}, \tilde{x}_{j} \tilde{v}_{j}$), i and j ranging over $\{1,2, \ldots, n\}$, and \tilde{u}_{i} and \tilde{v}_{i} over $D_{n / i}$. The product $\tilde{u}_{i} \tilde{x}_{i} \tilde{x}_{j} \tilde{v}_{j}$ belongs to the \mathscr{H}-class labelled by $\left(\tilde{u}_{i} \tilde{x}_{i}, \tilde{x}_{j} \tilde{v}_{j}\right)$, and so $\tilde{u}_{i} \tilde{x}_{i} \tilde{x}_{j} \tilde{v}_{j}\left(\tilde{u}_{i} \tilde{x}_{i} \tilde{x}_{j} \tilde{v}_{j}\right)$ is the idempotent element in this \mathscr{H}-class.

Corollary 5.5. Every idempotent element of $\mathscr{F}_{X}^{\mathrm{cr}}$ can be represented by a word in \mathscr{F}_{x}^{*} of the form $u x y v(u x y v)^{*}$, where $x, y \in X$ and u, v are words in \mathscr{F}_{X}^{*} such that

$$
x \notin C(u), \quad y \notin C(v), \quad \text { and } \quad C(u) \cup\{x\}=C(v) \cup\{y\} .
$$

6. The Structure of $\mathscr{F}_{X}^{\text {cr }}$ when $|X|=2$

It follows from Proposition 3.2 that we would know the structure of $\mathscr{F}_{X}^{\mathrm{cr}}$ for any set X if we know it for every finite set Y. For if $u, v \in \mathscr{F}_{X}^{c r}$, and $Y=$ $C(u) \cup C(v)$, then $u, v \in\langle Y\rangle \cong \mathscr{F}_{Y}^{\text {cr. }}$. We make a start on this difficult problem by determining the structure of $\mathscr{F}_{\{x, y\}}^{\mathrm{cr}}$. We denote the latter by F_{2} for the sake of brevity. Moreover, we identify \tilde{x} with x and \tilde{y} with y, and write $=$ instead of \sim. This will lead to no confusion since we shall have no need for inductive arguments involving elementary transitions.

By Theorem 4.2, F_{2} has three \mathscr{D}-classes: D_{x}, D_{y}, and $D_{x y}$. By Proposition 3.3, D_{x} and D_{y} are infinite cyclic groups generated by x and y, respectively. We shall write $D_{x}=\left\{x^{i}: i \in \mathbb{Z}\right\}, D_{y}=\left\{y^{i}: i \in \mathbb{Z}\right\} ;$ thus $x^{-1}=x^{*}, x^{0}=x x^{*}$, etc. $D_{x y}$ consists of all words in F_{2} of content $\{x, y\}$, and is a completely simple subsemigroup of F_{z}. In fact $D_{x y}$ is an ideal of F_{2} (the Suschkewitsch kernel), and F_{2} is an ideal extension of $D_{x y}$ by the 0 -direct union of two infinite cyclic groups.

By Theorem 5.4, the \mathscr{R}-classes of $D_{x y}$ are in one-to-one correspondence with all possible left indicators, and the latter are readily seen to be the elements $x^{i} y(i \in \mathbb{Z})$ and $y^{i} x(i \in \mathbb{Z})$. Dually, the \mathscr{L}-classes are given by the possible right indicators $y x^{i}$ and $x y^{i}(i \in \mathbb{Z})$.

Let $\overline{\mathbb{Z}}$ be a copy of the set \mathbb{Z} of integers, disjoint from \mathbb{Z}. Elements of \mathbb{Z} will be denoted by i, j, k, l, \ldots; those of $\overline{\mathbb{Z}}$ by $\bar{i}, \bar{\jmath}, k, l, \ldots ;$ those of $\mathbb{Z} \cup \overline{\mathbb{Z}}$ by $\alpha, \beta, \gamma, \delta, \ldots$. We index the \mathscr{R} - and \mathscr{L}-classes of F_{2} by the set $\mathbb{Z} \cup \overline{\mathbb{Z}}$ as follows:

$$
\begin{aligned}
R_{i}=x^{i} y F_{2}, & R_{i}=y^{i} x F_{2} \\
L_{i} & =F_{2} y x^{i},
\end{aligned} \quad L_{i}=F_{2} x y^{i} .
$$

The \mathscr{H}-classes of $D_{x y}$ are then denoted as follows:

$$
\begin{array}{ll}
H_{i j}=R_{i} \cap L_{j} & H_{i J}=R_{i} \cap L_{j} \\
H_{i j}=R_{i} \cap L_{j} & H_{i J}=R_{i} \cap L_{j}
\end{array}
$$

We proceed to obtain a Rees matrix representation for F_{2} over the group $H_{0 \overline{0}}$. Let e denote the identity element of $H_{0 \overline{0}}$. Inverses in H_{00} will usually be denoted by superscripts -1 rather than ${ }^{*}$. Thus $x^{0} y^{0}\left(x^{0} y^{0}\right)^{-1}=x^{0} y^{0}\left(x^{0} y^{0}\right)^{*}=e$.

Following the usual procedure, we select, for each α in $\mathbb{Z} \cup \mathbb{Z}$, representative elements q_{α} in $H_{0 \alpha}$ and r_{α} in $H_{\alpha \overline{0}}$, and set

$$
\begin{equation*}
(a ; \alpha, \beta)=r_{\alpha} a q_{\beta} \quad\left(\text { all } a \text { in } H_{0 \overline{0}} \text { and } \alpha, \beta_{\bar{K}} \text { in } \mathbb{Z} \cup \overline{\mathbb{Z}}\right) \tag{6.1}
\end{equation*}
$$

Then

$$
(a ; \alpha, \beta)(b ; \gamma, \delta)=r_{\alpha} a q_{\beta} r_{\gamma} b q_{\delta}=\left(a p_{\beta \gamma} b ; \alpha, \delta\right)
$$

and $F_{2}=\mathscr{M}\left(H_{00} ; \mathbb{Z} \cup \overline{\mathbb{Z}}, \mathbb{Z} \cup \overline{\mathbb{Z}} ; P\right)$ with sandwich matrix $P=\left(p_{\beta \gamma}\right)$, where $p_{\beta \gamma}=q_{\beta} r_{\nu}$.

Our choice of the q_{α} and r_{α} is the following:

$$
\begin{array}{ll}
q_{i}=e x^{i} \in H_{0 i}, & q_{i}=e y^{i} \in H_{0 i} \tag{6.2}\\
r_{i}=x^{i} e \in H_{i \overline{0}}, & r_{\bar{i}}=y^{i} e \in H_{\bar{i} \overline{0}}
\end{array}
$$

Notice that $q_{\overline{0}}=r_{0}=e$. Then

$$
\begin{align*}
& p_{i j}=q_{i} r_{j}=e x^{i+j} e, \\
& p_{i j}=q_{i} r_{j}=e x^{i} y^{j} e, \tag{6.3}\\
& p_{i j}=q_{i} r_{j}=e y^{i} x^{j} e \\
& p_{i j}=q_{i} r_{j}=e y^{i+j} e
\end{align*}
$$

Although P is not normalized, we do have $p_{\overline{0} 0}=q_{\overline{0}} r_{0}=e$. Hence

$$
(a ; 0, \overline{0})(b ; 0, \overline{0})=(a b ; 0 ; \overline{0})
$$

$(e ; 0, \overline{0})$ is the identity element e of H_{00}, and $(a ; 0, \overline{0})^{-1}=\left(a^{-1} ; 0, \overline{0}\right)$.
The computations needed below make frequent use of the following:

$$
\begin{equation*}
y^{i} e x^{j}=y^{i} x^{j} \quad(\text { all } i, j \text { in } \mathbb{Z}) \tag{6.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
y^{0} e x^{0} & =y^{0} x^{0} y^{0}\left(x^{0} y^{0}\right)^{*} x^{0} \\
& =\left(y^{0} x^{0}\right)^{*} y^{0} x^{0} y^{0} x^{0} y^{0}\left(x^{0} y^{0}\right)^{*} x^{0} \\
& =\left(y^{0} x^{0}\right)^{*} y^{0} x^{0} y^{0} x^{0}=y^{0} x^{0} .
\end{aligned}
$$

Hence

$$
y^{i} e x^{j}=y^{i} y^{0} e x^{0} x^{j}=y^{i} y^{0} x^{0} x^{j}=y^{i} x^{j}
$$

We also make frequent use of

$$
\begin{equation*}
x^{i} y_{00} y^{j}=x^{i} y^{j} \quad(\text { all } i, j \text { in } \mathbb{Z}) \tag{6.5}
\end{equation*}
$$

This is evident from $p_{0 \overline{0}}=e x^{0} y^{0} e=x^{0} y^{0}$. We now define

$$
\begin{equation*}
p_{i}=e x^{i} e, \quad p_{i}=e y^{i} e . \tag{6.6}
\end{equation*}
$$

We proceed to express the structure of F_{2} in terms of the elements p_{α} ($\alpha \in \mathbb{Z} \cup \overline{\mathbb{Z}}$) and $p_{0 \overline{0}}$ of the group $H_{0 \overline{0}}$: equations (6.7) below give the sandwich matrix of $D_{x y},(6.8)$ give the set products $D_{x} D_{y}$ and $D_{y} D_{x}$, and (6.9) give the action of D_{x} and D_{y} on $D_{x y}$. They are easy consequences of (6.1)-(6.6). Equations (6.7) and (6.8) are almost immediate, while each of the equations (6.9) involves a simple computation, for example:

$$
\begin{align*}
& x^{k}(a ; \bar{i}, \beta)=x^{k} r_{i} a q_{\beta}=x^{k} y^{i} e a q_{\beta}=x^{k} p_{0 \overline{0}} y^{i} e a q_{\beta} \\
&=x^{k} e p_{0 \overline{0}} e y^{i} e a q_{\beta}=r^{k} p_{00} p_{i} a q_{\beta}=\left(p_{0 \overline{0}} p_{\bar{i}} a ; k, \beta\right) . \\
& p_{i j}=p_{i+j}, p_{i \bar{j}}=p_{i} p_{0 \overline{0}} p_{\bar{J}}, \quad(i, j \in \mathbb{Z}) . \\
& p_{\bar{i} j}=p_{i} p_{j}, p_{\bar{i} \bar{j}}-p_{\overline{i+j}}, \quad(e \bar{l}, j),(i, j \in \mathbb{Z}) . \tag{6.7}\\
& x^{i} y^{j}=\left(p_{0 \overline{0}} ; i, \bar{j}\right), y^{i} x^{j}=(e ; \bar{i}, \\
& x^{k}(a ; i, \beta)=(a ; k+i, \beta), \quad(a ; \alpha, j) x^{k}=(a ; \alpha, j+k), \tag{6.8}\\
& y^{k}(a ; i, \beta)=\left(p_{i} a ; \bar{k}, \beta\right), \quad(a ; \alpha, j) y^{k}=\left(a p_{j} p_{0 \overline{0}} ; \alpha, \bar{k}\right), \\
& x^{k}(a ; \bar{i}, \beta)=\left(p_{0 \overline{0}} p_{\bar{i}} a ; k, \beta\right), \quad(a ; \alpha, j) x^{k}=\left(a p_{\bar{j}} ; \alpha, k\right), \tag{6.9}\\
& y^{k}(a ; \bar{i}, \beta)=(a ; \overline{k+i}, \beta), \quad(a ; \alpha, \bar{j}) y^{k}=(a ; \alpha, \overline{j+\bar{k})}, \\
&\left(a \in H_{0 \overline{0}} ; i, j, k \in \mathbb{Z} ; \alpha, \beta \in \mathbb{Z} \cup \overline{\mathbb{Z}}\right) .
\end{align*}
$$

In the following lemma (which we use twice), the symbols x, y, p_{α}, etc., are not restricted to their meaning so far in this section.

Lemma 6.1. Let K be $a(c . r$.$) semigroup which is a disjoint union D_{x} \cup D_{y} \cup M$, where $D_{x}\left[D_{y}\right]$ is an infinite cyclic group generated by $x[y]$, and M is a Rees matrix semigroup $\mathscr{M}(G ; \mathbb{Z} \cup \overline{\mathbb{Z}}, \mathbb{Z} \cup \overline{\mathbb{Z}} ; P)$ over a group G, with sandwich matrix $P=$ $\left(p_{\alpha \beta}\right),(\alpha, \beta \in \mathbb{Z} \cup \overline{\mathbb{Z}})$. Assume that $P_{1}=\left\{p_{\alpha}: \alpha \in(\mathbb{Z} \backslash 0) \cup(\overline{\mathbb{Z}} \backslash \overline{0})\right\} \cup\left\{p_{00}\right\}$ is a subset of G such that the components $p_{\alpha \beta}$ of P can be expressed in terms of the members p_{α} and p_{00} of P_{1} by equations (6.7), with $p_{0}=p_{\overline{0}}=e$, the identity element of G. Assume also that equations (6.8) and (6.9) hold. Let G_{1} be the subgroup of G generated by P_{1}, and let K_{1} be the c.r. subsemigroup of K generated by x and y. Then

$$
K_{1}=D_{x} \cup D_{y} \cup \mathscr{M}\left(G_{1} ; \mathbb{Z} \cup \overline{\mathbb{Z}}, \mathbb{Z} \cup \overline{\mathbb{Z}} ; P\right)
$$

Proof. Let $M_{1}=\mathscr{M}\left(G_{1} ; \mathbb{Z} \cup \overline{\mathbb{Z}}, \mathbb{Z} \cup \overline{\mathbb{Z}} ; P\right)$. We show first that $K_{1} \cap M \subseteq M_{1}$. From (6.8), it is clear that all the products $x^{i} y^{j}$ and $y^{i} x^{i}$ belong to M_{1}. Assume $(a ; \alpha, \beta) \in M_{1}$. From (6.9) it is clear that the products of $(a ; \alpha, \beta)$ with x^{k} or y^{k} on either side also belong to M_{1}. Putting these two facts together, we conclude that $K_{1} \cap M \subseteq M_{1}$.

To show $M_{1} \subseteq K_{1} \cap M$ it suffices to show that $M_{1} \subseteq K_{1}$. By (6.8), K_{1} contains ($e ; \bar{i}, j$) and ($\left.p_{0 \overline{0}} ; i, j\right)$. Since $p_{\overline{0} 0}=e, K_{1}$ contains $\left(x^{0} y^{0}\right)^{-1}=\left(p_{00}^{-1} ; 0, \overline{0}\right)$, hence also $\left(p_{00} ; i, \overline{0}\right)\left(p_{0 \overline{0}}^{-1} ; 0, \overline{0}\right)=(e ; i, \overline{0})$. We see successively that K_{1} contains the following:

$$
\begin{aligned}
(e ; i, \overline{0})(e ; \overline{0}, j) & =(e ; i, j), \\
\left(p_{0 \overline{0}}^{-1} ; 0, \overline{0}\right)\left(p_{0 \overline{0}} ; 0, \bar{j}\right) & =(e ; 0, \bar{\jmath}), \\
(e ; i, \overline{0})(e ; 0, \bar{j}) & =(e ; i, \bar{\jmath}),
\end{aligned}
$$

$$
\begin{aligned}
(e ; \bar{\imath}, 0)(e ; 0, \bar{j}) & =(e ; \bar{\imath}, \bar{\jmath}) \\
(e ; 0, i)(e ; 0, \overline{0}) & =\left(p_{i} ; 0, \overline{0}\right) \\
(e ; 0, \bar{\imath})(e ; \overline{0}, \overline{0}) & =\left(p_{i} ; 0, \overline{0}\right)
\end{aligned}
$$

Since K_{1} also contains ($\left.P_{00} ; 0, \overline{0}\right)$, it contains $(a ; 0, \overline{0})$ for all a in P_{1}, hence for all a in G_{1}. That $K_{1} \supseteq M_{1}$ now follows from the two facts that K_{1} contains a full \mathscr{H}-class of M_{1}, and meets all \mathscr{H}-classes of M_{1}. Hence $K_{1} \cap M=M_{1}$, and the conclusion of the lemma follows.

Corollary 6.2. In $F_{2}=\mathscr{F}_{\{x, y\}}^{\mathrm{cr}}$, the group H_{00} is generated by the set $P_{1}=$ $\left\{p_{\alpha}: \alpha \in(\mathbb{Z} \backslash 0) \cup(\bar{Z} \backslash \overline{0})\right\} \cup\left\{p_{00} \overline{\}}\right.$.

We proceed now to construct a model for F_{2}. Let

$$
\Pi_{1}=\left\{\pi_{\alpha}: \alpha \in(\mathbb{Z} \backslash 0) \cup(\overline{\mathbb{Z}} \mid \overline{0})\right\} \cup\left\{\pi_{00}\right\}
$$

be a set in one-to-one correspondence with $(\mathbb{Z} \backslash 0) \cup(\overline{\mathbb{Z}} \mid \overline{0}) \cup\{(0, \overline{0})\}$, and indexed thereby as shown. Let Γ be the free group on Π_{1}. Let ϵ be the identity element of Γ, and define $\pi_{0}=\pi_{\overline{0}}=\epsilon$. Let $\Pi=\left(\pi_{\alpha \beta}\right)$ be the $(\mathbb{Z} \cup \overline{\mathbb{Z}}) \times(\mathbb{Z} \cup \overline{\mathbb{Z}})$-matrix over Γ defined by equations (6.7), replacing p_{α} by π_{α} and $p_{\alpha \beta}$ by $\pi_{\alpha \beta}$. Let Δ be the Rees matrix semigroup $\mathscr{M}(\Gamma ; \mathbb{Z} \cup \overline{\mathbb{Z}}, \mathbb{Z} \cup \overline{\mathbb{Z}} ; \Pi)$. Let Δ_{ξ} and Δ_{n} be infinite cyclic groups generated by ξ and η, respectively, disjoint from each other and from Δ. Let $\Phi_{2}=\Delta_{\xi} \cup \Delta_{n} \cup \Delta$. Define a binary operation on Φ_{2}, extending those already defined on Δ_{ξ}, Δ_{n}, and Δ, by equations (6.9), replacing x by ξ, y by η, p_{α} by π_{α}, and $p_{0 \overline{0}}$ by $\pi_{0 \overline{0}}$.

Theorem 6.3. Φ_{2} is a completely regular semigroup, and there exists a unique isomorphism θ of $F_{2}\left(=\mathscr{F}_{\{x, y\}}^{\mathrm{or}}\right)$ onto Φ_{2} such that $x \theta=\xi$ and $y \theta=\eta$.

Proof. It is tedious but straightforward to check the associativity of the binary relation defined above on Φ_{2}. It is then obvious that Φ_{2} is c.r. Since F_{2} is the free c.r. semigroup on $\{x, y\}$, the mapping of $\{x, y\}$ onto $\{\xi, \eta\}$ sending x to ξ and y to η can be extended uniquely to a homomorphism θ of F_{2} into Φ_{2}. Since Π_{1} generates Γ, it follows from Lemma 6.1 that $\{\xi, \eta\}$ generates Φ_{2}, and hence θ is surjective.

Denote by $H_{\alpha \beta}^{\Delta}$ the \mathscr{H}-class $\{(a ; \alpha, \beta): a \in \Gamma\}$ of Φ_{2}. From $x^{i} y^{j} \in H_{i j}$ and $\left(x^{i} y^{j}\right) \theta=\xi^{i} \eta^{j}=\left(\pi_{00} ; i, j\right) \subseteq H_{i J}^{4}$, we see that $H_{i j} \theta \subseteq H_{i j}^{4}$. Similarly, $H_{i j} \theta \subseteq H_{i j}^{4}$. Since θ preserves the relations \mathscr{R} and \mathscr{L}, we also have $H_{i j} \theta \subseteq H_{i j}^{4}$ and $H_{i j} \theta \subseteq H_{i j}^{4}$. Since θ is surjective, we have $H_{\alpha \beta} \theta=H_{\alpha \beta}^{\Delta}$, for all α, β in $\mathbb{Z} \cup \mathbb{Z}$.

In particular, $H_{000} \theta=H_{0 \overline{0}}^{\Delta}$, so $e \theta=(\epsilon ; 0, \overline{0})$. By (6.3), $p_{0 \overline{0}}=e x^{0} y^{0} e=x^{0} y^{0}$; and hence, by the Greek version of (6.8),

$$
p_{00} \theta=\left(x^{0} y^{0}\right) \theta=\xi^{0} \eta^{0}=\left(\pi_{00} ; 0, \overline{0}\right)
$$

By (6.6) and the Greek versions of (6.7) and (6.9),

$$
\begin{aligned}
p_{i} \theta=\left(e x^{i} e\right) \theta & =(\epsilon ; 0, \overline{0}) \xi^{i}(\epsilon ; 0, \overline{0}) \\
& =(\epsilon ; 0, \overline{0})(\epsilon ; i, \overline{0})=\left(\pi_{\overline{0} i} ; 0, \overline{0}\right)=\left(\pi_{i} ; 0, \overline{0}\right)
\end{aligned}
$$

Similarly, $p_{i} \theta=\left(\pi_{i} ; 0,0\right)$.
Since $\pi_{\overline{0} 0}=\pi_{\overline{0}} \pi_{0}=\epsilon$, the mapping $\gamma \mapsto(\gamma ; 0, \overline{0})$ is an isomorphism of Γ onto H_{000}^{Δ}. Hence $H_{0 \overline{0}}^{\Delta}$ is freely generated by the elements ($\pi_{\alpha} ; 0,0$) and ($\pi_{00} ; 0,0$), $(\alpha \in(\mathbb{Z} \mid 0) \cup(\overline{\mathbb{Z}} \mid \overline{0}))$. Since θ induces a homomorphism of $H_{0 \overline{0}}$ onto $H_{0 \overline{0}}^{\Delta}$ mapping p_{α} onto $\left(\pi_{\alpha} ; 0, \overline{0}\right)$ and $p_{0 \overline{0}}$ onto ($\pi_{0 \overline{0}} ; 0, \overline{0}$), these elements p_{α} and $p_{0 \overline{0}}$ (which generate H_{00} by Corollary 6.2) must generate H_{00} freely. It is then clear that θ induces an isomorphism of $H_{0 \overline{0}}$ onto H_{00}^{Δ}. Being injective on one \mathscr{H}-class of F_{2}, θ is injective on all of F_{2}, and hence is an isomorphism.

7. The Free Completely Simple Semigroup $\mathscr{F}_{X}^{\text {cs }}$ on a Set X

It was pointed out to the author by M. Petrich that the class of completely simple ("c.s.") semigroups is the same as the class of c.r. semigroups S satisfying the identity

$$
\begin{equation*}
u u^{*}=u v u(u v u)^{*}, \quad(\operatorname{all} u, v \text { in } S) \tag{7.1}
\end{equation*}
$$

and consequently the same as the class of all unary semigroups satisfying (1.1) and (7.1). The class of all c.s. semigroups is therefore a variety, and so has a free member $\mathscr{F}_{X}^{\mathrm{cs}}$ on any set X. The existence of $\mathscr{F}_{X}^{\mathrm{cs}}$ was first shown by D. B. McAlister [8, Sect. 3]. The purpose of this concluding section is to describe $\mathscr{F}_{X}^{\text {cs }}$.

Let σ be the smallest congruence on \mathscr{F}_{X}^{*} containing the relations $\rho_{1}, \rho_{2}, \rho_{3}$ of Section 3 and the relation

$$
\rho_{4}=\left\{\left(u u^{*}, u v u(u v u)^{*}: u, v \in \mathscr{F}_{x}^{*}\right\}\right.
$$

Let $F_{1}=\mathscr{F}_{X}^{*} / \sigma$, and let σ^{\natural} be the natural homomorphism of \mathscr{F}_{X}^{*} onto F_{1}. Let $\zeta=\sigma^{\natural} \mid X$. We proceed to show that ζ is one-to-one.

Let E be the rectangular band on $X \times X$. Let $\phi: X \rightarrow E$ be defined by $x \phi=(x, x)$. Since E is a unary semigroup with $(x, y)^{*}=(x, y), \phi$ can be extended uniquely to a unary homomorphism $\bar{\phi}: \mathscr{F}_{x}^{*} \rightarrow E$. Since E is c.s., $\rho_{i} \subseteq \operatorname{ker} \bar{\phi}(i=1,2,3,4)$, hence $\sigma \subseteq \operatorname{ker} \bar{\phi}$. If $x, y \in X$, and $x \zeta=y \zeta$, then $x \sigma y$, and hence $x \bar{\phi}=y \bar{\phi}$. But $x \bar{\phi}=x \phi=(x, x)$ and $y \bar{\phi}=(y, y)$, so we conclude $x=y$. Hence ζ is one-to-one.

It now follows from the obvious analog of Theorem 3.1 that $\left(F_{1}, \zeta\right)$ is a free c.s. semigroup on X. Applying this to the above mapping ϕ of X into E, there exists a unique homomorphism ψ of F_{1} into E such that $\zeta \circ \psi=\phi$. Let $x, y \in X$.

If $x \zeta \mathscr{R} y \zeta$, then $x \zeta \psi \mathscr{R} y \zeta \psi$, hence $x \phi \mathscr{R} y \phi$, hence $(x, x) \mathscr{R}(y, y)$. Again this implies $x=y$, and we conclude that $x \zeta \mathscr{R} y \zeta \rightarrow x=y$. Dually, $x \zeta \mathscr{L} y \zeta \rightarrow x=y$. We have thus shown the following.

Proposition 7.1. If x and y are distinct elements of X, then the elements $x \zeta$ and $y \zeta$ lie in distinct \mathscr{R} - and \mathscr{L}-classes of F_{1}.

Let $w \in \mathscr{F}{ }_{X}^{*}$, and let x be the first element of X appearing in w, reading from left to right. By Lemma 5.1, $w \sim x v$ for some v in \mathscr{F}_{x}^{*}, and hence $w v \sigma=$ $(x v) \sigma=(x \sigma)(v \sigma)$. Since $F_{1}=\mathscr{F}_{X}^{*} / \sigma$ is c.s., this implies $w \sigma \mathscr{R} x \sigma(=x \zeta)$. If $w^{\prime} \in \mathscr{F}_{X}^{*}$, with x^{\prime} the first element of X in w^{\prime}, and if $w \sigma w^{\prime}$, we conclude that $x \zeta \mathscr{R} x^{\prime} \zeta$, hence $x=x^{\prime}$ by Proposition 7.1. Consequently it is unambiguous to say that the element wo of F_{1} begins with x, and the following proposition is clear.

Proposition 7.2. There is a one-to-one correspondence between X and the set of \mathscr{R} - [\mathscr{L}-] classes of F_{1} such that the \mathscr{R} - $[\mathscr{L}-]$ class of F_{1} corresponding to an element x of X consists of all elements of F_{1} beginning [ending] with x.

For the remainder of this section, we identify $x \zeta$ with x for each x in X, and F_{1} with $\mathscr{F}_{x}^{\text {cs }}$. We shall write $X=\left\{x_{i}: i \in I\right\}$, with $x_{i} \neq x_{j}$ if $i \neq j$ in the index set I.

By Proposition 7.2, we can also use I to index the \mathscr{R} - and \mathscr{L}-classes of F_{1}. Thus $R_{i}\left[L_{i}\right]$ is the \mathscr{R} - [$\left.\mathscr{L}-\right]$ class of F_{1} consisting of all elements of F_{1} beginning [ending] with x_{i}. As usual, we write $H_{i j}=R_{i} \cap L_{j}$. Since $x_{i} x_{j} \in H_{i j}$, the identity element of the group $H_{i j}$ is $e_{i j}=x_{i} x_{j}\left(x_{i} x_{j}\right)^{*}$. Of course $e_{i i}=x_{i} x_{i}^{*}$, and we may write e_{i} for $e_{i i}$.

Lemma 7.3. Let $S=\mathscr{M}(G ; I, I ; T)$ be a Rees $I \times I$-matrix semigroup without zero over a group G with sandwich matrix $T=\left(t_{j k}\right),(j, k \in I)$. Assume T normalized $[1 ; \mathrm{p} .95]$; that is, $t_{j 1}=t_{1 j}=e$ for all j in I, where e is the identity element of G, and 1 is some fixed element of I. For each i in I, let $u_{i} \in G$, let $\xi_{i}=$ ($u_{i} ; i, i$), and let S_{1} be the c.r. subsemigroup of S generated by the set $\left\{\xi_{i}: i \in I\right\}$. Let G_{1} be the subgroup of G generated by the set $\left\{t_{j k}: j, k \in I\right\} \cup\left\{u_{i}: i \in I\right\}$. Then $S_{1}=\mathscr{M}\left(G_{1} ; I, I ; T\right)$.

Proof. Since each $\xi_{i} \in \mathscr{M}\left(G_{1} ; I, I ; T\right)$, we have $S_{1} \subseteq \mathscr{M}\left(G_{1} ; I, I ; T\right)$. Since S_{1} contains $\xi_{i} \xi_{j}=\left(u_{i} t_{i j} u_{j} ; i, j\right)$, it contains an element in each \mathscr{H}-class of $\mathscr{M}\left(G_{1} ; I\right.$, $I ; T)$, and hence it suffices to show that it contains all the elements $\left(u_{i} ; 1,1\right)$ and $\left(t_{j k} ; 1,1\right)$. Bearing in mind that the sandwich matrix T is normalized in the 1 -row and the 1 -column, we see that S_{1} contains the following elements of S :

$$
\begin{aligned}
\left(u_{1} ; 1,1\right)^{-1} & =\left(u_{1}^{-1} ; 1,1\right), \\
\left(u_{1} ; 1,1\right)\left(u_{1}^{-1} ; 1,1\right) & =(e ; 1,1), \\
(e ; 1,1)\left(u_{i} ; i, i\right)(e ; 1,1) & =\left(u_{i} ; 1,1\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(u_{j}^{-1} ; 1,1\right)\left(u_{j} ; j, j\right) & =(e ; 1, j), \\
\left(u_{k} ; k, k\right)\left(u_{k}^{-1} ; 1,1\right) & =(e ; k, 1) \\
(e ; 1, j)(e ; k, 1) & =\left(t_{j k} ; 1,1\right)
\end{aligned}
$$

Hence $S_{1} \supseteq \mathscr{M}\left(G_{1} ; I, I ; T\right)$, and equality follows.

Theorem 7.4. Let $X=\left\{x_{i}: i \in I\right\}$ be a set. Choose and fix an element 1 of I, and let $I^{\prime}=I \backslash\{1\}$. Let

$$
Q=\left\{q_{i}: i \in I\right\} \cup\left\{p_{j k}: j, k \in I^{\prime}\right\}
$$

be a set in one-to-one correspondence with $I \cup\left(I^{\prime} \times I^{\prime}\right)$, and indexed thereby as shown. Let F_{Q} be the free group on Q. Define $p_{j 1}=p_{1 k}=1_{F}$ (the identity element of F_{o}) for all j, k in I, and let P be the $I \times I$-matrix $\left(p_{j k}\right)$ over F_{Q}. Then there is an isomorphism θ of $\mathscr{F}_{X}^{\text {cs }}$ onto the Rees matrix semigroup $\mathscr{M}\left(F_{Q} ; I, I ; P\right)$ such that $x_{i} \theta=\left(q_{i}: i, i\right)$ for all i in I.

Proof. Following the usual procedure for representing $F_{1}=\mathscr{F}_{x}^{\mathrm{cs}}$ as a Rees $I \times I$-matrix semigroup over H_{11}, we select, for each i in I, the element $e_{i 1}\left[e_{1 i}\right]$ as the representative of $H_{i 1}\left[H_{1 i}\right]$, and set

$$
(a ; i, j)=e_{i 1} a e_{1 j} \quad\left(\text { all } a \text { in } H_{11} \text { and } i, j \text { in } I\right)
$$

Then

$$
(a ; i, j)(b ; k, l)=\left(a t_{j k} b ; i, l\right)
$$

with $t_{j k}=e_{1 j} e_{k 1}$, and $F_{1}=\mathscr{M}\left(H_{11} ; I, I ; T\right)$, where $T=\left(t_{j k}\right)$. Note that the sandwich matrix T is normalized: $t_{j 1}=e_{1 j} e_{11}=e_{11}=e_{1}$, since the idempotents $e_{1 j}$ and e_{11} are in the same \mathscr{R}-class, and similarly $t_{1 j}=e_{1}$, (all j in I).

For each i in I, let $u_{i}=e_{1} x_{i} e_{1}$. We note that $u_{i} \in H_{11}$ and

$$
\left(u_{i} ; i, i\right)=e_{i 1} e_{1} x_{i} e_{1} e_{1 i}=e_{i 1} x_{i} e_{1 i}=x_{i}
$$

By Lemma 7.3, H_{11} is generated by the set

$$
U=\left\{u_{i}: i \in I\right\} \cup\left\{t_{j k}: j, k \in I^{\prime}\right\}
$$

Let M denote the Rees matrix semigroup $\mathscr{M}\left(F_{Q} ; I, I ; P\right)$ defined in the statement of the theorem. Since F_{1} is the free completely simple semigroup on X, there exists a homomorphism $\theta: F_{1} \rightarrow M$ such that $x_{i} \theta=\left(q_{i} ; i, i\right)$ for all i in I. By Lemma 7.3, the elements ($q_{i} ; i, i$) generate M, and hence θ is surjective.

Let $H_{i j}^{M}$ denote the \mathscr{H}-class of M consisting of all $(a ; i, j)$ with a in F_{Q}. Since $x_{i} \theta=\left(q_{i} ; i, i\right)$, and homomorphisms preserve the $\mathscr{R}-, \mathscr{L}$-, and \mathscr{H}-relations, we see that $H_{i j} \theta \subseteq H_{i j}^{M}$. Since θ is surjective, $H_{i j} \theta=H_{i j}^{M}$. In particular, θ induces a
group homomorphism of H_{11} onto H_{11}^{M}. If we can show that this is one-to-one, then θ must be one-to-one on all of F_{1}, and consequently an isomorphism.

Since $e_{1 j}\left[e_{k 1}\right]$ is the identity element of $H_{1 j}\left[H_{k 1}\right], e_{1 j} \theta\left[e_{k 1} \theta\right]$ must be the identity element of $H_{1 j}^{M}\left[H_{k 1}^{M}\right]$, so

$$
e_{1 j} \theta=\left(1_{F} ; 1, j\right) \quad \text { and } \quad e_{k 1} \theta=\left(1_{F} ; k, 1\right)
$$

Hence

$$
t_{j k} \theta-\left(e_{1 k} e_{k 1}\right) \theta=\left(1_{F} ; 1, j\right)\left(1_{F} ; k, 1\right)=\left(p_{j k} ; 1,1\right) .
$$

Also

$$
u_{i} \theta=\left(e_{1} x_{i} e_{1}\right) \theta=\left(1_{F} ; 1,1\right)\left(q_{i} ; i, i\right)\left(1_{F} ; 1,1\right)=\left(q_{i} ; 1,1\right) .
$$

Since the set Q freely generates F_{Q}, this shows that the set U must freely generate H_{11}, and so θ induces an isomorphism of H_{11} onto H_{11}^{M}.

References

1. A. H. Clifford and G. B. Preston, "The Algebraic Theory of Semigroups, Vol. I," Amer. Math. Soc., Providence, R.I., 1961.
2. P. M. Cohn, "Universal Algebra," Harper \& Row, New York, 1965.
3. G. Grätzer, "Universal Algebra," Van Nostrand, Princeton, N.J., 1968.
4. J. A. Green and D. Rees, On semigroups in which $x^{r}=x$, Proc. Cambridge Philos. Soc. 48 (1952), 35-40.
5. A. Horn and N. Kimura, The category of semilattices, Algebra Universalis 1 (1971) 26-38.
6. J. M. Howie, "An Introduction to Semigroup Theory," Academic Press, London/ New York, 1976.
7. S. A. Liber, On free algebras of normal closures of varieties, (Russian), Ordered Sets and Lattices (Saratov) No. 2 (1974), 51-53.
8. D. B. McAlister, A homomorphism theorem for semigroups, J. London Math. Soc. 43 (1968), 355-366.
9. M. Petrich, "Introduction to Semigroups," Merrill, Columbus, Ohio, 1973.
10. M. Petrich, Certain varieties and quasivarieties of completely regular semigroups, Canad. J. Math. 29 (1977), 1171-1197.
11. H. E. Scheiblich, Free inverse semigroups, Semigroup Forum 4 (1972), 351-359.
12. B. M. Schein, On the theory of generalized groups (Russian), Dokl. Akad. Nauk SSSR 153 (1963), 296-299.
13. B. M. Schein, Free inverse semigroups are not finitely presentable, Acta Math. Acad. Sci. Hungar. 26 (1975), 41-52.
