Three-connected graphs whose maximum nullity is at most three

Hein van der Holst

Department of Mathematics and Computer Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

Received 30 May 2007; accepted 24 March 2008

Submitted by S. Fallat

Abstract

For a graph $G = (V, E)$ with vertex-set $V = \{1, 2, \ldots, n\}$, let $\mathcal{S}(G)$ be the set of all $n \times n$ real-valued symmetric matrices A which represent G. The maximum nullity of a graph G, denoted by $M(G)$, is the largest possible nullity of any matrix $A \in \mathcal{S}(G)$. Fiedler showed that a graph G has $M(G) \leq 1$ if and only if G is a path. Johnson et al. gave a characterization of all graphs G with $M(G) \leq 2$. Independently, Hogben and van der Holst gave a characterization of all 2-connected graphs with $M(G) \leq 2$.

In this paper, we show that k-connected graphs G have $M(G) \geq k$, that k-connected partial k-graphs G have $M(G) = k$, and that for 3-connected graphs G, $M(G) \leq 3$ if and only if G is a partial 3-path.

© 2008 Elsevier Inc. All rights reserved.

AMS classification: 05C50; 05C83; 15A03; 15A18

Keywords: Minimum rank; Nullity 3; Symmetric matrix; Graph minor; Strong Arnold property

1. Introduction

Let $G = (V, E)$ be a graph with $V = \{1, 2, \ldots, n\}$. (In this paper all graphs are assumed to be simple.) Define $\mathcal{S}(G)$ as the set of all $n \times n$ real-valued symmetric matrices $A = [a_{i,j}]$ with $a_{i,j} \neq 0$, $i \neq j$ if and only if $ij \in E$. The maximum nullity of G, denoted by $M(G)$, is the largest possible nullity of any matrix $A \in \mathcal{S}(G)$. For example, $M(K_n) = n - 1$, $n \geq 2$, and a matrix that attains this value is the matrix all whose entries are 1. By $mr(G)$ we denote the

E-mail address: H.v.d.Holst@tue.nl

0024-3795/S - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2008.03.018
smallest possible rank of any matrix \(A \in \mathcal{S}(G) \). If the graph \(G \) has \(n \) vertices, then \(M(G) + \text{mr}(G) = n \).

Fiedler [9] showed that the paths are the only graphs \(G \) for which \(M(G) \leq 1 \). Johnson et al. [12] characterized all graphs \(G \) with \(M(G) \leq 2 \). Independently, Hogben and van der Holst [10] characterized all 2-connected graphs \(G \) with \(M(G) \leq 2 \). It is easy to see that a graph \(G \) has \(\text{mr}(G) \leq 1 \) if and only if \(G \) is the union of a complete graph and possibly some isolated vertices. Barrett et al. [3] characterized all graphs \(G \) for which \(\text{mr}(G) \leq 2 \) as those for which six specific graphs do not occur as induced subgraphs.

In this paper we first show that \(k \)-connected graphs \(G \) have \(M(G) \geq k \) (in fact we prove a theorem stronger than this) and that \(k \)-connected partial \(k \)-paths \(G \) have \(M(G) = k \); see Section 3 for the definition of partial \(k \)-paths. Then we characterize all 3-connected graphs \(G \) with \(M(G) \leq 3 \). We will see that these graphs are exactly the 3-connected partial 3-paths. Above, we mentioned already that 3-connected partial 3-paths \(G \) have \(M(G) = 3 \). An outline of the reverse direction is as follows. If a graph \(G \) has \(M(G) \leq 3 \), then \(\xi(G) \leq 3 \), where \(\xi(G) \) is the graph parameter introduced by Barioli et al. in [2]. If \(\xi(G) \leq 3 \), then \(G \) has no minor isomorphic to a graph in a certain collection of five graphs. Finally, if \(G \) is 3-connected and has no minor isomorphic to a graph in this collection of five graphs, then \(G \) is a partial 3-path.

The outline of the paper is as follows. In Section 2, the graph parameter \(\xi(G) \) is studied. We prove that \(k \)-connected graphs \(G \) have \(\xi(G) \geq k \) and present the values of \(\xi(G) \) on some graphs \(G \). In Section 3, we study partial \(k \)-paths. An important result here is that \(k \)-connected partial \(k \)-paths \(G \) have \(M(G) = \xi(G) = k \). As a corollary of this result, we show that certain graphs are not partial 3-paths. In Section 4, we give the characterizations of 3-connected graphs \(G \) that have \(M(G) \leq 3 \).

2. The graph parameter \(\xi(G) \)

In the proof of the characterization of all 3-connected graphs \(G \) with \(M(G) \leq 3 \), we use the graph parameter \(\xi(G) \), introduced by Barioli, Hogben, and Fallat in [2]. The definition of this parameter depends on the Strong Arnold property. The definition of the Strong Arnold property is as follows. Let \(N_G \) denote the set of all \(n \times n \) symmetric matrices \(X = [x_{i,j}] \) with \(x_{i,i} = 0 \) for all \(i \in V \) and \(x_{i,j} = 0 \) for all \(ij \in E \). A matrix \(A \in \mathcal{S}(G) \) has the Strong Arnold property if \(X \in N_G \) and \(AX = 0 \) implies that \(X = 0 \). The parameter \(\xi(G) \) is defined as the maximum nullity over all matrices \(A \in \mathcal{S}(G) \) having the Strong Arnold property.

Let \(G \) be a graph. If \(e \) is an edge of \(G \), then contracting \(e \) means that we delete \(e \) and identify the two endpoints of \(e \). A minor of a graph \(G \) is a graph that can be obtained from a subgraph of \(G \) by contracting a collection of edges. If \(G \) has a minor isomorphic to \(H \), we also say that \(G \) has an \(H \)-minor. One of the properties of \(\xi(G) \), which \(M(G) \) lacks, is stated in the following theorem.

Theorem 1 [2, Corollary 2.5]. If \(G' \) is a minor of \(G \), then \(\xi(G') \leq \xi(G) \).

The parameter \(\nu_1^S(G) \), which was introduced by Colin de Verdière in [7], is defined as the maximum nullity over all positive semi-definite matrices \(A \in \mathcal{S}(G) \) having the Strong Arnold property. Also \(\nu_1^S(G) \) has the property that \(\nu_1^S(G') \leq \nu_1^S(G) \) if \(G' \) is a minor of \(G \). Another parameter introduced by Colin de Verdière is \(\mu(G) \), see [5,6]. Each of the parameters \(\mu(G) \) and \(\nu_1^S(G) \) forms a lower bound for \(\xi(G) \).
Since \(\xi(G) \leq M(G) \), the graph parameter \(\xi(G) \) can be used to find a lower bound for \(M(G) \). For example, if \(G \) has a \(K_k \)-minor, \(k \geq 2 \), then \(M(G) \geq k - 1 \), as \(\xi(K_k) = k - 1 \leq \xi(G) \).

For a graph \(G = (V, E) \) and \(S \subseteq V \), \(G - S \) denotes the graph obtained from \(G \) by deleting all vertices in \(S \).

A graph \(G \) is connected if every two vertices of \(G \) are connected by a path. A graph \(G = (V, E) \) is \(k \)-connected if \(|V| > k \) and \(G - S \) is connected for each \(S \subseteq V \) with \(|S| < k \). For example, \(K_{2,2,2} \), the graph with vertex-set \(\{v_1, v_2, \ldots, v_6\} \) such that each pair of vertices \(i, j \) with \(i \) and \(j \) in distinct sets in \(\{\{v_1, v_2\}, \{v_3, v_4\}, \{v_5, v_6\}\} \) is connected by an edge, is 4-connected.

In the proof of Theorem 14, we will use the following theorem.

Theorem 2 Menger’s Theorem cf. [8]. Let \(G = (V, E) \) be a \(k \)-connected. Then for any \(B \subseteq V \) and \(a \in V \setminus B \), there are \(k \) vertex-disjoint paths between \(a \) and \(B \).

An orthogonal representation of \(G = (V, E) \) in \(\mathbb{R}^d \) is an assignment \(f : V \to \mathbb{R}^d \) such that \(f(i) \) and \(f(j) \) are orthogonal for every pair of distinct nonadjacent vertices \(i \) and \(j \). An orthogonal representation is in general position if every set of \(d \) representing vectors is linear independent. An orthogonal representation \(f \) is faithful if \(f(i) \) and \(f(j) \) are orthogonal if and only if \(i \) and \(j \) are nonadjacent. Lovász, Saks, and Schrijver proved the following theorem, which is essentially a combination of Theorem 1.2 and Corollary 1.4 in [13] (see [14] for a correction of [13]):

Theorem 3. For a graph \(G \) with \(n \) vertices, \(G \) is \((n - d) \)-connected if and only if \(G \) has a general-position faithful orthogonal representation in \(\mathbb{R}^d \).

If the graph \(G \) has vertex-set \(V = \{1, 2, \ldots, n\} \), then a faithful orthogonal representation \(f \) gives rise to a positive semi-definite matrix \(A = [a_{i,j}] \in \mathcal{S}(G) \) whose entries are defined by \(a_{i,j} = f(i)^T f(j) \). Hence, from Theorem 3 it follows that there is a positive semi-definite matrix \(A \in \mathcal{S}(G) \) with nullity \(\geq k \) if \(G \) is \(k \)-connected. In fact, we can prove more. A similar proof for \(\psi_1^C(G) \geq k \) if \(G \) is \(k \)-connected can be found in [11].

Theorem 4. Let \(G = (V, E) \) be a graph with \(V = \{1, 2, \ldots, n\} \). If \(G \) is a \(k \)-connected graph, then \(\xi(G) \geq \psi_1^R(G) \geq k \).

Proof. Since \(G \) is \(k \)-connected, there is a general-position faithful orthogonal representation \(f \) of \(G \) in \(\mathbb{R}^{n-k} \). Define \(A = [a_{i,j}] \in \mathcal{S}(G) \) by \(a_{i,j} = f(i)^T f(j) \). We show that \(A \) has the Strong Arnold property. This then implies that \(\psi_1^R(G) \geq k \). Let \(X = [x_{i,j}] \in N_G \) such that \(AX = 0 \). Since \(f \) is in general-position, for each subset of \(n - k \) vertices \(\{v_1, v_2, \ldots, v_{n-k}\} \) of \(V \), the set \(\{f(v_1), f(v_2), \ldots, f(v_{n-k})\} \) is linearly independent. Hence each nonzero vector \(x \in \ker(A) \) has at least \(n - k + 1 \) nonzero entries. So each nonzero column of \(X \) has at least \(n - k + 1 \) nonzero entries. Suppose \(X \) has a nonzero column, say the \(i \)th column. Then \(x_{i,i} = 0 \) and \(x_{i,j} = 0 \) for each vertex \(j \) adjacent to \(i \). Since \(G \) is \(k \)-connected, vertex \(i \) has degree at least \(k \). Hence the \(i \)th column of \(X \) has at least \(k + 1 \) zero. This contradicts that the \(i \)th column has at least \(n - k + 1 \) nonzero entries. Thus, \(X \) is the all-zero matrix, and so \(A \) has the Strong Arnold property. \(\square \)

A \(\Delta Y \)-transformation on a triangle \(C \) in a graph \(G \) is the transformation which deletes the edges of \(C \), adds a new vertex \(v \) and connects \(v \) to each of the vertices of \(C \) by an edge. If we apply a \(\Delta Y \)-transformation on \(K_{2,2,2} \), we obtain a graph denoted by \(Q_3 Y \Delta \). The graph \(Q_3 \) can
be obtained from $Q_3Y\Delta$ by another ΔY-transformation; see Fig. 1 for a picture of the graphs Q_3, $Q_3Y\Delta$, and $K_{2,2,2}$.

Lemma 5 [10]. Let G be a graph and let G' be obtained from G by a ΔY-transformation. Then $\xi(G') \geq \xi(G)$.

Lemma 6 [2, Observation 1.7 and Example 1.12]. $\xi(K_5) = 4$, $\xi(K_4) = 3$, $\xi(K_{3,3}) = 4$, and $\xi(K_{2,3}) = 3$.

By T_3 we denote the graph obtained from $K_{2,2,2}$ by deleting the edges of a triangle.

Lemma 7 ([10, Lemma 2.2]). $\xi(T_3) = 3$.

Lemma 8. $\xi(K_{2,2,2}) = 4$, $\xi(Q_3) = 4$, and $\xi(Q_3\Delta) = 4$.

Proof. Since $K_{2,2,2}$ is 4-connected, $\xi(K_{2,2,2}) \geq 4$. By [3], $\text{mr}(K_{2,2,2}) = 2$, that is, $M(K_{2,2,2}) = 4$, and so $\xi(K_{2,2,2}) = 4$. By Lemma 5, $\xi(Q_3\Delta) \geq 4$ and $\xi(Q_3) \geq 4$. To see that $\xi(Q_3) \leq 4$, suppose to the contrary that $\xi(Q_3) > 4$. Then there exists a matrix $B \in S(G)$ with nullity > 4. Let S be the vertices of a cycle of size 4 in Q_3. Since B has nullity > 4, there is a nonzero vector $x \in \ker(B)$ with $x_S = 0$. Let v be a vertex with $x_v \neq 0$, and let $u \in S$ be the vertex adjacent to v. Let B_u be the uth row of B. From $B_u x = 0$, it follows that $x_v = 0$. This contradiction shows that each $B \in S(G)$ has nullity ≤ 4. Hence $\xi(Q_3) = 4$. Hence $\xi(Q_3\Delta) = 4$ also. □

3. Partial k-paths

A k-tree is defined recursively as follows:

1. A complete graph with $k + 1$ vertices is a k-tree.
2. If $G = (V, E)$ is a k-tree and v_1, \ldots, v_k form a clique in G with k vertices, then $H = (V \cup \{v\}, E \cup \{(v_i, v)| 1 \leq i \leq k\})$ with v a new vertex, is a k-tree.

A partial k-tree is a subgraph of a k-tree. A graph has tree-width $\leq k$ if it is a partial k-tree.
Equivalently, the tree-width of a graph \(G \) can also be defined as follows. A tree-decomposition of a graph \(G = (V, E) \) is a pair \((T, \mathcal{W}) \) where \(T \) is a tree and \(\mathcal{W} = \{ W_t | t \in V(T) \} \) is a family of subsets of \(V \) with the properties.

(i) \(\bigcup \{ W_t | t \in V(T) \} = V \),

(ii) every edge of \(G \) has both ends in some \(W_t \), and

(iii) if \(t_1, t_2, t_3 \in V(T) \) and \(t_2 \) lies on the path from \(t_1 \) to \(t_3 \), then \(W_{t_1} \cap W_{t_3} \subseteq W_{t_2} \).

The subsets \(W_t \) are called the bags of the tree-decomposition. The width of a tree-decomposition is \(\max(\{ |W_t| - 1 | t \in V(T) \}) \), and the tree-width of \(G \) is the minimum width of any tree-decomposition of \(G \).

A tree-decomposition \((T, \mathcal{W}) \) of width \(k \) is called smooth if for all \(t \in V(T) \), \(|W_t| = k + 1 \), and for all \(st \in E(T), |W_s \cap W_t| = k \); see e.g. [4]. Any tree-decomposition of width \(k \) of a graph \(G \) can be transformed to a smooth tree-decomposition of width \(k \) by applying the following transformations on the tree-decomposition until none is possible.

- If \(W_s \subseteq W_t \) for some \(st \in E(T) \), then contract the edge \(st \) in \(T \) and take for the new vertex \(t' \), \(W_{t'} := W_t \).
- If for a vertex \(t \in V(T), |W_t| < k + 1 \), then choose a vertex \(v \in W_s \setminus W_t \), where \(s \) is adjacent to \(t \), and add \(v \) to \(W_t \).
- If for adjacent vertices \(s, t \in V(T), |W_s \setminus W_t| > 1 \), then subdivide the edge \(st \), let \(r \) be the new vertex, choose a vertex \(v \in W_s \setminus W_t \) and a vertex \(w \in W_t \setminus W_s \), and let \(W_r := (W_s \setminus \{ v \}) \cup \{ w \} \).

If \((T, \mathcal{W}) \) is smooth and for each \(W_t \) and each pair of vertices \(\{ v, w \} \) in \(W_t \) we add an edge between \(v \) and \(w \) if there is none, then the resulting graph is a \(k \)-tree. If \(G \) is a \(k \)-tree, as defined at the beginning of this section, then a smooth tree-decomposition of width \(k \) can be obtained by using as the bags each set \(V_1, \ldots, V_k \), \(v \) used in the construction of \(G \) as a \(k \)-tree.

If \(G \) has tree-width \(\leq k \), then each of its minors has tree-width \(\leq k \). Hence, if \(H \) is a minor of \(G \) and \(H \) has tree-width \(\geq k \), then \(G \) has tree-width \(\geq k \). For example, \(K_3 \) has tree-width 2, and so each graph that has a \(K_3 \)-minor has tree-width \(\geq 2 \). Conversely, if a graph has no \(K_3 \)-minor, then it has no cycles, so is a forest. A forest has tree-width \(\leq 1 \). Hence, a graph \(G \) has tree-width \(\leq 1 \) if and only if \(G \) has no \(K_3 \)-minor. For graphs with tree-width \(\leq 2 \), we have the following: a graph \(G \) has tree-width \(\leq 2 \) if and only if \(G \) has no \(K_4 \)-minor. For graphs with tree-width \(\leq 3 \), the following theorem holds; see Fig. 2 for a picture of the graphs \(V_8 \) and \(C_5 \times K_2 \).

Theorem 9 [1]. A graph \(G = (V, E) \) has tree-width \(\leq 3 \) if and only if \(G \) has no \(K_5, K_{2,2,2}, V_8 \), and no \(C_5 \times K_2 \)-minor.

At the moment of this writing no such characterization is known for graphs that have tree-width \(\leq 4 \). For results on graphs that have tree-width \(\leq 4 \), we refer to Sanders [15].

A \(k \)-path is a \(k \)-tree with at most \(k + 1 \) vertices or exactly two vertices of degree \(k \). A partial \(k \)-path is a subgraph of a \(k \)-path. A 2-connected partial 2-path is the same as a linear singly edge articulated cycle graph (LSEAC), a type of graphs introduced by Johnson et al. [12], and it is the same as a linear 2-tree, a type of graphs introduced by Hogben and van der Holst [10].

If \(H = (W, F) \) is a subgraph of a graph \(G = (V, E) \), we denote by \(N_G(H) \) the set of all vertices in \(V \setminus W \) that are adjacent to a vertex in \(W \). If \(v \) is a vertex of \(G \), then by \(N_G(v) \) we denote the set of all vertices in \(V \setminus \{ v \} \) that are adjacent to \(v \).

We use the following lemma in Theorem 14.
Lemma 10. Let \((T, \mathcal{W})\) be a smooth tree-decomposition of width \(k\) of a \(k\)-connected graph \(G\). Let \(W_t\) be a bag of \((T, \mathcal{W})\). Then \(|N_G(K)| = k\) for each component \(K\) of \(G - W_t\).

Proof. Let \(H\) be the graph obtained from \((T, \mathcal{W})\) by adding for each bag \(W_t\) and each pair of vertices \(\{v, w\}\) of \(W_t\) an edge between \(v\) and \(w\) if there is none. Then \(H\) is a \(k\)-tree and \(G\) is a subgraph of \(H\). Since each component \(K\) of \(G - W_t\) is a subgraph of a component \(L\) of \(H - W_t\), and \(N_G(K) \subseteq N_H(L)\), we see that \(|N_G(K)| \leq |N_H(L)| \leq k\). Since \(G\) is \(k\)-connected, \(|N_G(K)| = k\) for each component \(K\) of \(G - W_t\). □

Lemma 11. If \(G = (V, E)\) is a \(k\)-connected partial \(k\)-path, then \(G\) is a subgraph of a \(k\)-path \(H = (W, F)\) with \(W = V\).

Proof. Let \(H\) be a \(k\)-path which has \(G\) as a subgraph.

If \(v\) is a vertex of degree \(k\) in \(H\), then \(v\) is a vertex of \(G\), for otherwise we could take \(H - v\) for \(H\).

Suppose \(v\) is a vertex of degree \(> k\) in \(H\) and \(v\) is not a vertex in \(G\). Let \(v_1\) and \(v_2\) be the vertices of degree \(k\) in \(H\). There is a vertex-cut \(S\) of size \(< k\) in \(H - v\) such that \(v_1\) and \(v_2\) belong to different components of \(H - S\). Then \(v_1\) and \(v_2\) also belong to different components in \(G - S\). Since \(S\) is a vertex-cut of size \(< k\) in \(G\), this contradicts the \(k\)-connectivity of \(G\). □

Theorem 12. If \(G = (V, E)\) is a \(k\)-connected partial \(k\)-path, then \(M(G) = \xi(G) = k\).

Proof. By Theorem 4, \(\xi(G) \geq k\).

We now show that \(M(G) \leq k\). From this it follows that \(k \leq \xi(G) \leq M(G) \leq k\), and so \(k = \xi(G) = M(G)\).

As \(G\) is a partial \(k\)-path, it is a subgraph of a \(k\)-path \(H = (W, F)\). By Lemma 11, we may assume that \(W = V\). Let \(v\) be a vertex of degree \(k\) in \(H\). Then \(v\) has also degree \(k\) in \(G\). Let \(S\) be a subset of \(N_G(v)\) of size \(k - 1\).

Suppose, to the contrary, that \(M(G) > k\). Then there is an \(A = [a_{i,j}] \in \mathcal{S}(G)\) with nullity \(> k\). We can find a nonzero vector \(x \in \ker(A)\) with \(x_v = 0\) and \(x_S = 0\). We will show that \(x = 0\), contradicting that \(x\) is nonzero.
Let A_v be the vth row of A. Since $x_v = 0$, it follows from $A_v x = 0$ that $x_{NG(v)} = 0$.

We can order the $(k + 1)$-cliques in H as C_1, \ldots, C_t such that $v \in C_1$ and building up H we sequentially add C_2, \ldots, C_t. Let C_i be a $(k + 1)$-clique in H such that $x_{C_i} \neq 0$, while $x_{C_j} = 0$ for $j < i$. First suppose that $i = t$. Let u be a vertex in C_i such that $x_u = 0$, and let w be the vertex in C_i such that $x_w \neq 0$. In G, u is adjacent to w, for otherwise G would not be k-connected. However, from $A_u x = 0$, it follows that $x_w = 0$, a contradiction. Suppose now that $i < t$; let $R = C_{i-1} \cap C_{i+1}$. So $x_R = 0$. In G there is an edge connecting the two vertices u, w of $C_i \setminus R$, for otherwise G would not be k-connected. We may assume that $u \in C_{i-1}$, and so $x_u = 0$. From $A_u x = 0$, it follows that $x_w = 0$, contradicting that $x_{C_i} \neq 0$. □

Since $K_5, K_{2,2,2}, K_{3,3}, Q_3,$ and $Q_3 Y \Delta$ are 3-connected, we obtain from Theorem 12 and Lemmas 6 and 8.

Corollary 13. None of the graphs $K_5, K_{2,2,2}, K_{3,3}, Q_3,$ and $Q_3 Y \Delta$ is a partial 3-path.

4. Characterization of 3-connected graphs G with $M(G) \leq 3$

We are now ready for the characterization of 3-connected graphs G with $M(G) \leq 3$. From Theorem 4 it follows that 3-connected graphs G with $M(G) \leq 3$ have $M(G) = 3$.

Theorem 14. For a 3-connected graph $G = (V, E)$ the following are equivalent:

(i) G is a partial 3-path;

(ii) $M(G) = \xi(G) = 3$;

(iii) G has no K_5, $K_{2,2,2}$, $K_{3,3}$, Q_3, and no $Q_3 Y \Delta$-minor.

Proof. (i)⇒(ii) If G is a partial 3-path, then, by Theorem 12, $M(G) = \xi(G) = 3$.

(ii)⇒(iii) If $\xi(G) = 3$, then, by Lemmas 6 and 8, none of the graphs $K_5, K_{2,2,2}, K_{3,3}, Q_3,$ and $Q_3 Y \Delta$ is isomorphic to a minor of G.

(iii)⇒(i) Suppose that G is a graph with no K_5, $K_{2,2,2}$, $K_{3,3}$, Q_3, and no $Q_3 Y \Delta$-minor. As $K_{3,3}$ is a minor of V_8 and Q_3 is a minor of $C_5 \times C_2$, G has no $K_5, K_{2,2,2}, V_8$, and no $C_5 \times C_2$-minor. Hence G has a tree-decomposition (T, \mathcal{Y}) of width 3, by Theorem 9; we may assume that (T, \mathcal{Y}) is smooth. We call a bag W_s bad if $G - W_s$ has more than two components. Take a smooth tree-decomposition (T, \mathcal{Y}) such that the number of bad bags is minimal. Suppose to the contrary that this number is not zero; take a bad bag W_s.

By Lemma 10, $|N_G(K)| = 3$ for each component K of $G - W_s$.

Suppose that there are distinct components K_1 and K_2 of $G - W_s$ such that $N_G(K_1) = N_G(K_2)$. Let w be the vertex of $W_s - N_G(K_1)$ since G is 3-connected, there are three vertex-disjoint paths of length ≥ 1 from w to $N_G(K_1)$ by Menger’s theorem. Contracting each of these paths to an edge, and contracting K_1 and K_2 each to a vertex shows that G has a $K_{3,3}$-minor. This contradiction shows that there are at most four components in $G - W_s$.

If there are four components K_1, K_2, K_3, K_4 in $G - W_s$, then contracting each K_i to a vertex shows that G has a Q_3-minor. Hence there are at most three components in $G - W_s$.

Suppose now that there are three components K_1, K_2, K_3 in $G - W_s$. For $i = 1, 2, 3$, let A_i be the subgraph induced by $K_i \cup N_G(K_i)$. Let w be the common vertex of A_1, A_2, A_3. First suppose that the subgraphs $A_i - \{w\}, i = 1, 2, 3$, contain a cycle. In each $A_i - \{w\}$, choose a cycle C_i. Since G is 3-connected, there are vertex-disjoint paths P_i^1, P_i^2, P_i^3 from C_i to $N_G(K_i)$,
by Menger’s theorem; let \(P_i^1 \) and \(P_i^2 \) be the paths connecting \(C_i \) to \(N_G(K_i) \setminus \{w\} \), and let \(P_i^3 \) be the path connecting \(C_i \) to \(w \). Remove all edges from \(A_i \) that do not belong to \(C_i, P_i^1, P_i^2, \) and \(P_i^3 \). Contracting each of the edges on the paths \(P_i^1 \) and \(P_i^2 \), and contracting all but one edge on the path \(P_i^3 \) yields a graph that contains a \(Q_3 \Delta \)-minor.

Hence at least one of the subgraphs \(A_1 - \{w\} \), \(A_2 - \{w\} \), \(A_3 - \{w\} \) contains no cycle; without loss of generality we may assume that \(A_1 - \{w\} \) contains no cycle. Hence \(A_1 - \{w\} \) is a tree. Since \(G \) is 3-connected, \(A_1 - \{w\} \) is a path \(u_1u_2\ldots u_m \) connecting the vertices of \(N_G(K_1) \setminus \{w\} \). We assume that \(u_1 \in N_G(K_2) \) and \(u_m \in N_G(K_3) \). Let \(v \) be the vertex in \(N_G(K_2) \cap N_G(K_3) \setminus \{w\} \). Let \(T_1, \ldots, T_r \) be the components of \(T - s \) such that for each vertex \(t \in V(T_i), i = 1, \ldots, r, \) \(W_t \subseteq A_2 \). For \(i = 1, \ldots, r \), let \(t_i \) be the vertex of \(T_i \) adjacent to \(s \). Define similarly \(T'_1, \ldots, T'_r \) and \(t'_1, \ldots, t'_r \), except with \(A_3 \) instead of \(A_2 \). Let \(S \) be the tree obtained from \(T_1, \ldots, T_r, T'_1, \ldots, T'_r \) and a path \(P = p_1p_2\ldots p_{m-1} \) of length \(m - 1 \) by connecting the vertices \(t_i, i = 1, \ldots, r \) to \(p_1 \), and the vertices \(t'_i, i = 1, \ldots, r' \) to \(p_{m-1} \). Define \(W'_{p_i} = \{u_i, u_{i+1}, v, w\} \) for \(i = 1, \ldots, m - 1 \) and \(W'_t = W_t \) for \(t \in V(T), t \neq s \). Let \(\mathcal{W} = \{W'_t | t \in V(S)\} \). Then \((S, \mathcal{W}) \) is a smooth tree-decomposition of \(G \) with fewer bad bags, contradicting the assumption that \((T, \mathcal{W}) \) is a tree-decomposition with a minimum number of bad bags.

Hence \((T, \mathcal{W}) \) has no bad bags. For each bag \(W_t \), add an edge between each pair of vertices of \(W_t \) if there is none. The graph we obtain is a 3-path, and so \(G \) is a partial 3-path.

References