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With the completion of the many genomes, genetics is positioned to meet physiology. In this review, we summarize the com-
ing of “systems metabolism” in mammals through the use of the mouse, as a model system to study metabolism. Building on
mouse genetics with increasingly sophisticated clinical and molecular phenotyping strategies has enabled scientists to now
tackle complex biomedical questions, such as those related to the pathogenesis of the common metabolic disorders. The
ultimate goal of such strategies will be to mimic human metabolism with the click of a mouse.

Mice are valuable experimental models for biomedical research,
as they are nearly genetically identical to humans, with many
biochemical and physiological pathways being conserved.
Compared to other vertebrate models, the genetic technologies
required to introduce mutations and interrogate the mouse ge-
nome are the most developed. To scrutinize the polygenic net-
works underlying complex diseases, however, mouse resources
that are optimized to study the actions of isolated genetic loci on
a fixed background will be insufficient on their own. For exam-
ple, predisposition to the metabolic syndrome is inherited in
a non-Mendelian fashion stressing genetic heterogeneity and
multigenetic pathogenesis (Nandi et al., 2004). With the reawak-
ening as to the extraordinary genetic resources and phenotypic
diversity archived in extant inbred strains, however, a foundation
is in place for tracking down these complex traits and quantita-
tive trait loci (QTL). Moreover, environmental factors can impact
on the manifestations of the genotype (incomplete penetrance)
or produce a phenotype that mimics the genetically produced
phenotype (phenocopy; Paigen, 2003). Problems due to inher-
ent genetic and environmental heterogeneity can be minimized
in the mouse as the genetic background, and environmental fac-
tors can be rigorously controlled. These features combined earn
the mouse the status of the preferred model to study complex
biomedical problems, with the expectation that they will help to
elucidate the pathogenesis of common metabolic diseases
such as obesity, type 2 diabetes (T2DM), and atherosclerosis. In
this review, we summarize how the judicious use of mouse models
can propel metabolic research toward “systems metabolism,”
ultimately helping to better understand human metabolism.

Genetically engineered mouse models (GEMMs)

and reverse genetics

Reverse genetic strategies have been truly powerful in under-
standing molecular pathways, since the phenotypes induced
by gene ablation or knockout experiments represent the most
effective route to acquire information on gene function (Figure 1).
The values and inherent limitations of simple gene-driven strat-
egies of “one gene, one protein, one phenotype” are elegantly
portrayed by the efforts to dissect the genetics of insulin resis-
tance and B cell dysfunction. Many GEMMs have been created

using embryonic stem (ES) cell technology to evaluate candi-
date “diabetogenes” (Nandi et al., 2004), a strategy most suc-
cessful at elaborating complex “wiring” diagrams that trace
the path from environmental stimuli through cell surface recep-
tors, downstream targets, to gene expression changes. How-
ever, many of the phenotypes of the homozygous null mutations
were extreme and/or did not model the complexity of the meta-
bolic syndrome. For example, IR knockout (IR™'~) mice died
because of developmental effects (Accili et al., 1996), which pre-
cluded analysis of adult mice. Likewise, GLUT4™"~ mice ex-
hibited only moderate insulin resistance and were not overtly di-
abetic, suggesting compensatory mechanisms (Katz et al., 1995).
Monogenic GEMMs furthermore ignore the polygenic nature of
metabolic diseases, resulting from genetic and environmental
factors impacting at multiple levels in signaling cascades. Oligo-
genic mouse models remedied some of these shortcomings.
For example, IR and IRS1 compound heterozygote mice devel-
oped severe insulin resistance in muscle and liver (Kido et al.,
2000), a phenotype not observed in either mouse model alone.
This demonstrated that each predisposing allele, although hav-
ing a modest effect alone, plays a prominent role in a sensitized
background. Such oligo- or polygenic mouse models also dem-
onstrated that interactions among genetic loci could either cre-
ate strong positive or negative (protective) effects in the predis-
position of diabetes.

Realization that metabolic diseases do not only involve many
genes but also many organs necessitated engineering the
mouse genome with spatial and temporal controls (Figure 1).
This requires the generation of premutant mice whereby the
allele of interest is flanked by recognition sites for DNA recom-
binases such as Cre (loxP sites) or Flp (Frt sites; Branda and
Dymecki, 2004). When such premutant mice are bred with trans-
genic mice that express the corresponding DNA recombinase
in a tissue-specific fashion, the gene of interest is inactivated
only in that particular tissue. An added sophistication of spa-
tially controlled mutagenesis is the inclusion of temporal con-
trol, which is achieved by using ligand-activated chimeric re-
combinases composed of the fusion of the recombinase with
the ligand binding domain of a nuclear receptor (Metzger and
Chambon, 2001).
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Figure 1. Genetically engineered mouse models
(GEMMs)

Gene targeting can be restricted in a tissue and/or
temporal manner through generation of “premutant”
mice (e.g., “floxed” or flanked with loxP sites) which
are then bred with transgenic mice that express the
corresponding DNA recombinase (e.g., Cre), allow-
ing for gene deletion to occur in a given tissue (right
top panel) and at a given time (left top panel).
Gene-trap mutagenesis involves the random inser-
tion of gene-trap vectors into the genome, whereas
ethylnitrosourea (ENU) is used as an in vivo mutagen
to generate point mutations. Gene silencing is possi-
ble through RNAI, a method which uses siRNAs or
shRNAs, which can be delivered either by direct ad-
@ ministration or via transgenic, homologous recom-
bination, or viral delivery technologies, respectively.
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Employing spatially and temporally controlled mutagenesis
revealed that metabolic perturbation in one tissue encroaches
on the metabolism of another. This tissue communication and
crosstalk allows for metabolic flexibility, with respect to the
use or production of metabolic fuel. Understanding this may ul-
timately reveal the genetic determinants that limit the degree of
metabolic flexibility, thus promoting metabolic diseases in hu-
mans (Bickel, 2004). One example of a spatially controlled
mouse mutant included the muscle-specific IR™~ mice, which
did not develop systemic insulin resistance; a surprising ob-
servation considering that the muscle is the primary insulin-
dependent glucose-disposing tissue (Bruning et al., 1998).
These mice escaped insulin resistance by compensating with in-
sulin sensitization of the adipose tissue, shifting glucose utiliza-
tion from muscle toward adipose tissue. An equivalent example
on the “lipid side” was the liver-specific ablation of the escort
protein, sterol regulatory element binding protein (SREBP)
cleavage-activating protein (Kuriyama et al., 2005). The resulting
selective reduction in SREBP-1 activation, which diminished

liver fatty acid synthesis, was compensated for on a molecule-
for-molecule basis by adipose tissue such that total body fatty
acid synthesis remained unchanged.

The advantage of adding a temporal dimension to spatial-
specific gene ablation was illustrated by studies with peroxi-
some proliferator-activated receptor y 2 (PPARy2). Mice with
a selective disruption of the PPARy2 gene in adipose tissue
were lipodystrophic, underscoring its predominant role in adipo-
genesis (He et al., 2003; Koutnikova et al., 2003). Although these
mice revealed that the specific absence of PPARYy in fat impacts
“nonadipose” tissues such as bone (Cock et al., 2004), they did
not expose the vital role of PPARY in differentiated adipocytes.
Selective ablation of PPARY2 in adipocytes of adult mice, by an
inducible Cre recombinase, induced mature adipocytes to
die within a few days; however, these cells were replaced days
later with newly differentiated PPARy-expressing adipocytes
(Imai et al., 2004), revealing the importance of PPARY in adipo-
cyte survival. Tissue-specific overexpression of transgenes can
also be achieved through several strategies, with or without
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temporal control, based on the use of tissue-specific promoters.
For instance, when FOXC2 was overexpressed in adipose tis-
sue, mice remained lean and insulin sensitive despite a high-
fat diet (Cederberg et al., 2001). This was in part due to in-
creased metabolic efficiency as white adipose tissue acquired
brown fat-like features.

Genetic engineering strategies that generate point mutations
or chromosomal alterations that mimic human mutations are
also relevant for modeling the genetic structure of human pop-
ulations in the mouse. For example, the P467L mutation in the
ligand binding domain of PPARY in humans causes severe insu-
lin resistance and hypertension; when this mutation was recre-
ated in mice a critical role for PPARY in blood pressure control
became evident (Tsai et al., 2004). Likewise, a S112A knockin
mouse confirmed a modulatory role for phosphorylation on
PPARYy function (Rangwala et al., 2003). The transchromosomic
mouse line, Tc1, which is a model of trisomy 21 and Down’s syn-
drome in humans, demonstrated the success of the mouse even
for dissecting complex human aneuploidies (O’'Doherty et al.,
2005).

In order to increase the efficacy of functional gene annotation,
high throughput mutagenesis methods, such as gene trapping
and gene silencing by RNAI, are now becoming commonplace.
Gene-trap mutagenesis enables the random generation of loss-
of-function mutations and many of the vectors allow for the si-
multaneous evaluation of the expression of the trapped gene.
Several large-scale gene-trap efforts are underway to generate
a public resource of mutagenized ES cells (Austin et al., 2004;
Auwerx et al., 2004). However, to move toward saturation muta-
genesis of the mouse genome and to isolate mutations in genes
not expressed in ES cells or that are refractory to gene trapping
other techniques such as classical gene-targeting and targeted-
trapping strategies will still be required (Skarnes, 2005). Al-
though the time-consuming validation to verify effective gene
inactivation upon gene-trapping may pose a bottleneck when
these trapped ES cells are converted into mice, this technique
holds promise to define new genes involved in metabolism.

RNA interference (RNAI) is an alternative method to silence
gene expression that is accomplished either with sequence-
specific short interfering RNAs (siRNA) or through the transcrip-
tion of short hairpin RNAs (shRNA) (Dykxhoorn et al., 2003; Fig-
ure 1). Although RNAIi has become the experimental tool of
choice for genome-scale analyses of gene function in mamma-
lian cells, siRNA and shRNA technologies when combined with
viral delivery also have potential in vivo. One domain, in which
RNAi-generated mouse models may be valuable, concerns
genes that yield very stable mRNAs and are difficult to inhibit
with gene-based strategies. siRNAs also show promise as
a therapeutic approach to silence disease-causing genes, par-
ticularly those that encode so-called “nondruggable” targets.
One example has been the use of chemically modified siRNAs
to silence endogenous apolipoprotein B (apoB) mRNA, in liver
and jejunum, resulting in decreased plasma apoB and choles-
terol levels in treated mice (Soutschek et al., 2004). It is, how-
ever, unlikely that RNAi technology will replace gene targeting
or trapping to generate mouse models, since despite numerous
advantages, many shortcomings still exist. For example, siRNA
delivery must be optimized to improve subcellular localization,
decrease genotoxic effects (IFN response), diminish off-target
effects, and increase consistency of silencing. Validation of
RNAi-generated mouse models is also problematic, as issues
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of tissue specificity, degree and duration of silencing, and toxic-
ity are critical.

Forward genetic strategies

Forward genetics is centered on phenotype-driven gene discov-
ery that exploits mouse models with subtle genetic variations re-
sulting from allelic variants. The enthusiasm for these models
over reverse genetic strategies has been the random nature of
the mutations, which covers the full gamut from point mutations
to deletions and to rearrangements and thus produces a full
spectrum of changes in protein structure and function. Initially,
a large number of these mouse models resulted from spontane-
ous mutations that yielded striking phenotypes, such as the
obesity-associated metabolic problems, caused by mutations
in the genes encoding leptin (Halaas et al., 1995) and its receptor
(Chen et al., 1996). In an effort to provide a broader supply of
spontaneous-like mutations, strategies including chemical and
radiation mutagenesis of sperm or ES cells have been adopted,
with ethylnitrosourea (ENU) being the mutagen of choice
(O’Brien and Frankel, 2003; Figure 1). Although with ENU muta-
genesis the generation of mutant mice is fast, the real success of
this technique rests in the implementation of validated pheno-
typing resources relevant to the trait/disease of interest. Once
a mutant phenotype has been identified, the underlying gene
must then be identified to make the connection between gene
and function. This task remains timely and costly, as mutants
must be backcrossed to other inbred strains to identify cosegre-
gating markers. Furthermore, random mutagenesis screens to
identify recessive mutations have until recently been rather
complex and costly. This may change with the use of ES cells
that are deficient in the Bloom’s syndrome gene, which expe-
dites conversion of heterozygous into homozygous mutants
(Guo et al., 2004; Yusa et al., 2004). So far, the value of ENU mu-
tants has mainly been limited to the identification of dominant
mutations that give rise to monogenic diseases. For example,
a large-scale ENU mutagenesis screen for dominant traits iden-
tified 12 mutations in the glucokinase gene, a maturity onset di-
abetes of the young type 2 (MODY2) gene (Inoue et al., 2004;
Toye et al., 2004). Since glucokinase_/_ mice are embryonic le-
thal, this collection of glucokinase mutants is useful for dissect-
ing the pathogenesis of MODY2.

Genetic reference populations (GRPs)

Perhaps the most “refreshing” mouse resource for investigating
complex diseases is the construction of mouse crosses using
inbred mice and the subsequent QTL mapping. Inbred mice
have an inherent wealth of variation due to past spontaneous
mutation events, which have been preserved through system-
atic and uninterrupted brother-sister matings (Paigen, 2003). In-
bred mice are appealing since they are genetically identical
within a strain but are diverse between strains. Crosses usually
expose subtle variations affecting many traits of biomedical in-
terest. The Complex Trait Consortium was formed to systemat-
ically exploit large-scale resources with the ultimate aim to par-
tition these strain differences in hundreds of quantitative traits to
sets of biologically related genes or loci with the ultimate aim the
identification of genomic regions and genes associated with
these traits (Threadgill et al., 2002). However, mapping QTLs
based solely on the parental strain phenotypes will not be effec-
tive enough in that many genetic contributors to complex dis-
eases will be missed (Li et al., 2005). This is because the power
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and accuracy to detect QTLs depend on multiple factors, in-
cluding genetic diversity of the parents, marker density, trait her-
itability, and size of cross. In any single or double cross, recom-
bination events and mapping resolution is thus limited, as we
can only detect loci that show allelic variation between two
strains. Such complex mouse genetic approaches, however,
are continually evolving to offer the necessary variability, power,
or resolution. For instance, the use of multiple crosses, which
improves the power and resolution, is nicely demonstrated
when data from a genome-wide analysis of HDL QTLs collected
from multiple crosses (four single crosses involving five strains)
was computationally combined in a metacross analysis (Li
et al., 2005). This metacross analysis identified four significant
QTLs, including some that were either significant or nearly so
in each single cross and substantially narrowed some of the
QTL regions.

Another advancement has been the generation of large-scale
GRPs of recombinant inbred (RI) mouse lines that have a higher
rate of polymorphism between strains. GRPs are genetically
well-defined mouse strains derived by systematically inbreed-
ing, for at least 20 generations, the F2 from a cross of two dis-
tinct inbred strains and ultimately representing an ~50:50 ge-
netic mixture of the progenitor strains (Churchill et al., 2004;
Williams et al., 2001; Figure 2). Thus, the strains that make up
a GRP are not mutants or engineered mice; they are normal lines
that have a level of variation more similar to that among human
populations. Importantly, GRPs are a renewable resource which
only needs to be genotyped once since the strains are genet-
ically identical. However, at present there are too few GRPs
with limited QTL power. For example, a recent study compared
QTL analyses for aortic fatty lesion size and plasma lipid levels
among high-fat-fed parental mice (C57BL/6 and DBA, >10 ani-
mals/group), BXD RI strains (18 strains, two to four animals/
group), and B6D2F2 mice (~140 animals) (Colinayo et al.,
2003). No differences in plasma lipids or lesion formation were
observed between the two parental strains. In contrast, there
were significant differences among the 18 BXD RI strains
when the same traits were evaluated, confirming the presence
of multigenic determinants. However, QTL analysis did not re-
veal significant linkages for either of these traits. In contrast, in
the B6D2F2 population there were significant changes in lipids
and aortic lesion size, enabling the mapping of three loci with
suggestive linkage to aortic lesion size. Such results show the
limitations of current RI lines and spurred interest to create as
many as 1000 new RI mouse lines with hopes to cover much
of the genetic variation present in natural populations (Churchill
et al., 2004; Threadgill et al., 2002). From these RI strains, it
will be possible to generate an unlimited combinatorial diversity
using the F1 progeny to generate recombinant inbred crosses
(RIX).

Further sophistication of Rl strains include recombinant con-
genic strains (RCS), whereby two parental inbred strains are ini-
tially crossed, but the resulting progeny are then backcrossed
with one of the parental strains prior to sib-pair matings (Fig-
ure 2). Instead of the mix of progenitor genomes approaching
half and half, the genome of RCS is mainly representative of
one parent. One example includes the mice generated by com-
bining independent diabetes risk-conferring QTLs from two un-
related parental strains, the New Zealand obese (NZO) and non-
obese nondiabetic mice (Reifsnyder and Leiter, 2002). These
mice lack the extreme metabolic phenotype characteristic of

the parental NZO mice and are more akin to T2DM in that the di-
abesity is differentially expressed among the RCS. Importantly,
allelic variants controlling these differences could be character-
ized. RCS are mainly beneficial when a single gene explains the
majority of variance in a trait, otherwise RI strains have the ad-
vantage.

Chromosome substitution strains (CSS) are another useful
and permanent resource. A CSS panel partitions the variation
between two strains by chromosome (Figure 2; Singer et al.,
2004). CSS are constructed by successive backcrosses be-
tween a donor strain and a host strain. Progeny carrying a non-
recombinant copy of a given chromosome are selected and
backcrossed to produce progenitors that are homosomic for
the desired chromosome. A complete CSS panel (22 strains,
one for each autosome, the sex chromosomes, and the mito-
chondria) has been derived from the inbred A/J and C57BL/6J
strains as donor and host, respectively. These CSS lines were
used to dissect genetic factors affecting 53 complex traits re-
lated to sterol levels, diet-induced obesity, anxiety and amino
acid levels, and readily provided evidence for 150 QTLs. Eight
of the inferred QTLs were then analyzed by fine-mapping strat-
egies, which identified in each of the cases a QTL in a specific
location on the substituted chromosomes (Singer et al., 2004).

Genetical genomics and phenogenomics

The power to decipher the molecular networks underlying the
multifactorial origin of complex diseases is further boosted by
applying “omics” approaches to mouse models. When com-
bined, the omics strategies verge on systems biology in such
a way that functional genomics, proteomics, and metabolomics
parallel the hierarchy of transcription, translation, and pro-
duction of small molecules. One example is “genetical
genomics” or “expression genetics,” which pairs traditional ge-
netic mapping techniques with advanced microarray technol-
ogy (see below; Damerval et al., 1994; Jansen and Nap, 2001;
Klose et al., 2002; Brem et al., 2002; Chesler et al., 2003; Schadt
et al., 2003).

With all the successes in genetic manipulation of the mouse
genome, the real bottleneck to systems metabolism is mouse
phenogenomic strategies, which rely on efficient and vigilant
mouse phenotyping. It is now recognized that the phenotype
of a mouse is highly dependent on both genetic and environ-
mental factors. Thus, all experiments must begin with careful
consideration of strain background, as this influences almost
all variables and biases the resulting phenotype (Paigen et al.,
1985; Seong et al., 2004). This becomes highly significant
when one considers the huge number of studies performed in
gene-targeted or gene-trapped mice on anonhomogeneous ge-
netic background. If the background strain of the phenotyped
mouse is different from the one used to generate the GEMM,
mice must be backcrossed for multiple generations (>9) to avoid
confounding factors contributed by flanking donor chromo-
somal DNA. Alternatively, flanking donor chromosomal DNA
can be monitored by using a marker-assisted selection protocol
and “speed backcrossing” to generate congenic strains in
half the time compared to “traditional backcrossing” (Collins
et al., 2003). Although confounding factors in the analysis of
mice with single gene defects, strain-specific differences are a
treasure trove when one aims to study genotype/phenotype cor-
relations of complex traits.
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Figure 2. Recombinant inbred strains (RI) and
mouse crosses

A) Rl strains (e.g., BXD panel) are derived by system-
atic inbreeding of F2 mice, from a cross of two dis-
tinct inbred strains, such as DBA (D) and C57BL/6
(B), for multiple generations, as indicated by arrows.
Their genome is a mosaic of the two parental strains.
RIX mapping involves generating F1 crosses be-
tween individual Rl strains from a particular RI panel
such as BXD that results in a higher density of recom-
bination. RCS are a variation on RI. Following the ini-
tial outcross of mice of two inbred strains, F2 are
backcrossed to mice of one of the parental strains
for one or two generations prior to sibling matings.
Whereas Rl strains represent a 50:50 genetic mixture
of the progenitor strains, the genome of RCS are de-
rived predominantly from one parent. A CSS panel
usually consists of 22 mouse strains, each of which
carries a single chromosome substituted from the
donor strain, onto the host background. In this theo-
retical example, DBA is the donor and C57BL/6 is the
host. They are constructed by successively back-
crossing to the host strain progeny identified in
each generation as carrying a nonrecombinant
copy of the desired donor chromosome until the
progeny are heterosomic for the desired chromo-
some on an otherwise host background. These prog-
eny are then intercrossed to produce progeny homo-
somic for the desired chromosome.

B) In this theoretical example, expression levels of
a given gene are confined between the extreme
changes in expression seen in the knockout (KO)
and transgenic (TG) lines of this gene. The level of ge-
netic variation in GRPs, mouse crosses, and CSS
results in changes in gene expression level that are
subtler and cover a wider spectrum (e.g., BXD panel).

-
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In addition to genetic factors, environmental factors have
a major impact on the outcome of phenotyping tests. Some of
these factors have become experimental tools to challenge met-
abolic pathways (e.g., diet and exercise). Many others, however,
have become standard “housekeeping” items, in that their order
and consistency must be maintained. Typical housekeeping
items include the animal housing and handling conditions,
such as the number of animals per cage, diurnal rhythm, the
blood collection procedure, age, and gender of the mice
(Champy et al., 2004). Cage-housing density significantly im-
pacts many metabolic variables, as illustrated by increased glu-
cose levels in animals caged in pairs as compared to those

housed in groups of four (Champy et al., 2004). Finer house-
keeping details, such as the timing of blood collection, should
also be critically controlled since metabolic parameters are
affected by nychthemeral variation in activity and food intake
(higher at night) and hormone levels (Champy et al., 2004).
Even though it is clear that the potential variables in phenotyping
should be driven down so that mainly gene-elicited, environ-
mentally defined mutant phenotypes are measured, it is surpris-
ing that only recently the impact of these important confounding
factors has been realized. These shortcomings led the Eumor-
phia program to standardize and validate many phenotyping
tests, linking them to standardized operating procedures
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Table 1. Examples of metabolic phenotyping tests and their standard operating procedures (SOPs)

Phenotype test

SOP website link®

Energy expenditure Body weight, food, and water intake
Body composition

Cold test

Cholesterol
Triglycerides
Free fatty acids
Lipoproteins
Apolipoproteins
Bile Acids

Serum parameters

Glucose tolerance Intraperitoneal glucose tolerance test
Meal tolerance test

Oral glucose tolerance test

Ex vivo General histology techniques
H&E staining

Oil Red O staining

http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_005_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_002_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_001_0.pdf

http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/3_002_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/3_003_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/3_004_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/3_A01_0.pdf

http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_004_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_007_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/4_008_0.pdf

http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_001_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_016_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf

2These protocols and others can be found on the EMPReSS website (http://www.empress.har.mrc.ac.uk/EMPReSS/serviet/EMPReSS.Frameset) (Green et al., 2005).
A list of authors and contributors to EMPReSS SOPs and phenotype data is found at http://www.empress.har.mrc.ac.uk/EMPReSS/area/authors.pdf.

(SOPs), to ensure comparable test outcomes between different
laboratories and ensure more robust and high-quality pheno-
types (Tables 1 and 2; Green et al., 2005). Despite these efforts,
however, obtaining exactly the same outcomes wherever and
whenever testing takes place is still challenging given the inevi-
table variability in biological systems as a consequence of
“noise” in gene expression, even under supposedly identical
conditions within populations (Raser and O’Shea, 2005).
Subtle metabolic phenotypes, as revealed by meticulous and
standardized phenotyping, are perhaps the most relevant since
they reflect the insidious nature of common metabolic diseases
in men. For example, the liver X receptor (LXR) was initially
suspected to control cholesterol homeostasis through QTL-
mapping studies that linked Cyp7a1i, the rate-limiting enzyme
in bile acid synthesis and an LXR target gene, with the control
of serum HDL levels and cholesterol absorption (Machleder
et al., 1997; Schwarz et al., 2001). However, the full “homeo-
static potential” of these genes was not fully appreciated until
LXR™~ mice, which are seemingly normal on regular chow,

were reported to accumulate cholesterol in their livers when
fed a cholesterol-rich diet (Peet et al., 1998). This was explained
by their inability to stimulate bile acid synthesis and cholesterol
excretion in response to cholesterol loading, underscoring the
crucial dependence of Cyp7a1l regulation on LXR (Peet et al.,
1998) and its competence factor the nuclear receptor, liver re-
ceptor homolog-1 (LRH-1; Goodwin et al., 2000; Lu et al.,
2000). As bile-acid-pool size increases, a feedback mechanism
is evoked, which involves the activation of another nuclear re-
ceptor, farnesoid X receptor (FXR), leading to the induction of
the short heterodimer protein (SHP; Sinal et al., 2000). Elevated
SHP then inactivates LRH-1 and LXR, leading to promoter-spe-
cific repression of Cyp7a1l, thus completing an elaborate auto-
regulatory loop, which maintains hepatic cholesterol homeosta-
sis (Brendel et al., 2002; Goodwin et al., 2000; Lu et al., 2000).
However, only when SHP™~ mice were pharmacologically chal-
lenged with synthetic or natural FXR agonists was it shown that it
takes even more than FXR, SHP, and LRH-1 to inhibit bile-acid
synthesis (Kerr et al., 2002; Wang et al., 2002). Using the same

Table 2. Mouse genome-related internet resources

Description

Website

Edinburgh Mouse Atlas (emap) and gene expression database (emage)

EMPReSS —European mouse phenotyping resource of standardized screens (SOPs)?

EU Eumorphia program?

European Mouse Mutant Archive (EMMA)—transgenic mouse repository
Festing’s Inbred Strain Characteristics

Insitut Clinique de la Souris (ICS)

International Mouse Strain Resource —aims to list all publicly available mouse strains'

Mouse Genome Informatics — provides integrated access to data on the genetics,
genomics, and biology of the laboratory mouse

Mouse Knockout and Mutation Database —searchable database for phenotypic
information related to GEMMs

Mymouse.org—aims to facilitate international collaborative research among
mouse users

Online Mendelian Inheritance in Man (OMIM)—catalogs human phenotypes and
genotypes and relevant mouse models

TBASE —database for transgenic and knockout mice

The GeneNetwork—bioinformatic resources for systems genetics and complex
trait analysis in mouse, rat, and Arabidopsis®

US Mouse Phenome Project®

Whole Mouse Catalog—information website

http://genex.hgu.mrc.ac.uk
http://www.empress.har.mrc.ac.uk/EMPReSS/serviet/EMPReSS.Frameset
http://www.eumorphia.org

http://www.emma.rm.cnr.it

http://www.informatics.jax.org

http://www-mci.u-strasbg.fr/

http://www.informatics.jax.org/imsr/index.jsp
http://www.informatics.jax.org

http://www.biomednet.com/db/mkmd
http://www.mymouse.org
http://www.ncbi.nlm.nih.gov

http://tbase.jax.org/
http://www.genenetwork.org/

http://www.jax.org/phenome
http://www.rodentia.com/wmc

2Internet resources highlighted in text.
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http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/3_A01_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/pdf/15_026_0.pdf
http://www.empress.har.mrc.ac.uk/EMPReSS/servlet/EMPReSS.Frameset
http://www.empress.har.mrc.ac.uk/EMPReSS/area/authors.pdf
http://genex.hgu.mrc.ac.uk
http://www.empress.har.mrc.ac.uk/EMPReSS/servlet/EMPReSS.Frameset
http://www.eumorphia.org
http://www.emma.rm.cnr.it
http://www.informatics.jax.org
http://www-mci.u-strasbg.fr/
http://www.informatics.jax.org/imsr/index.jsp
http://www.informatics.jax.org
http://www.biomednet.com/db/mkmd
http://www.mymouse.org
http://www.ncbi.nlm.nih.gov
http://tbase.jax.org/
http://www.genenetwork.org
http://www.jax.org/phenome
http://www.rodentia.com/wmc
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Figure 3. Exploitation of complex information for
systems biology approaches

A) The metabolic reconstruction of lipid homeostasis
according to the combined analysis of QTL mapping,
GEMNMs, and pharmacological studies.

B) The “computed” lipid network using the GeneNet-
work function association network, which transforms
gene-expression correlations of a user-defined list of
genes into a network of statistical associations. The
list of genes was derived from those identified by
wet biology (see [A]), and the genetic correlations
were based on the liver-gene expression database
of the B6BTBRF2 mouse cross. The lines between
the nodes represent Pearson correlation coeffi-
cients, with higher absolute values being of greater
significance as reflected in the color of the line.
For detailed information, see text and http://www.
genenetwork.org). Abbreviations are given in the
text except for the following: ABC, ATP binding cas-
sette protein; CAR, constitutive androstane receptor;
PXR, pregnane X receptor; HMGCoAR, 3-hydroxy-
3-methylglutaryl-coenzyme A reductase; LDL-R,
low-density lipoprotein receptor; HNF, hepatic nu-
clear factor; and FAS, fatty acid synthase.
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-05t0-04and 0.4t0 0.5 0.5
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series of knockout mice, the importance of FXR/SHP/LXR to
control SREBP-1c and triglyceride metabolism was also dem-
onstrated (Watanabe et al., 2004; Figure 3A). Mice deficient in
the transcription intermediary factor 2 (TIF2) also presented a si-
lent metabolic phenotype (Picard et al., 2002). TIF2~/~ are nor-
mal under chow-fed conditions but are remarkably protected
against diet-induced obesity due to enhanced adaptive thermo-
genesis, identifying this p160 coregulator as a modulator of en-
ergy homeostasis. Similarly, the phenotype of mice that express
an activated form of PPARB/3 in skeletal muscle was only re-
vealed subsequent to endurance exercise training (Wang
et al., 2004). In fact, PPARB/d promoted oxidative muscle fiber
transformation and mitochondrial biogenesis, enabling trans-
genic mice to run longer. Since all these phenotypes were only
unveiled after challenges (diet in LXR™~ and TIF2™/~, pharma-
cological in SHP™~, and exercise in PPARB/3 ™'~ mice), it is in-

0 0.7

0.7to 1.0

herent that many genes involved in metabolic control are envi-
ronmentally sensitive.

Systems metabolism: Putting it all together

Systems biology, as applied to metabolism, aims to convert
metabolic parts to metabolic systems. The success of recon-
structing metabolic networks will rely on at least two things,
how comprehensively we define the metabolic parts in our data-
bases and how well we model these into systems. High through-
put strategies have quickly advanced our capacity to catalog
various metabolic parts based on interactions between genes
and their gene products in terms of genetic control, transcrip-
tional regulation, expression correlations, sequence homology,
and protein:protein interactions. Incorporation of data sets de-
rived from the analysis of GRPs and traditional GEMMs will also
advance the reconstruction of metabolic networks. The GEMMs
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Figure 4. Exploitation of complex information for systems biology approaches

Computational architecture can be based on a modular structure consisting of nodes, or genes, their gene products or phenotype, and edges, or some type of interaction.
The edges, depicted simplistically as colored lines, represent multiple and diverse interactions. A three node interconnection pattern is shown as an example, which is then
synthesized into enriched multicolor network motifs. These motifs can be combined to form network themes or classes of higher-order recurring interconnection patterns
that encompass multiple occurrences of network motifs. These network themes can then be collapsed and assembled into thematic maps to provide a bird’s-eye view of
the functional relationships between diverse subsystems of the overall biochemical networks. These maps are closely tied to specific biological phenomena. Applying these
strategies at multiple levels allows for the building of systems cell, systems tissue, systems network, and finally systems system, inherent structures of higher organisms.

cover the “simplest” basis of disease because they represent an
isolated genetic event causing a phenotype, whereas the com-
plex models of GRPs incorporate the natural range of genetic
variation to precipitate disease. However, in order to truly con-
vert parts to networks and systems, most of our datasets have
to become “full of life” and incorporate the reality that only sub-
sets of these interactions are active at any given point in time
under any one particular biological condition. Thus, in order to
encapsulate condition-dependent network structures, dynamic
enviro-, chemico- and pharmacogenomics data sets derived
from exposing mice to environmental (e.g., diet) and chemical
(e.g., drugs) challenges, are needed. However, as this requires
gathering, storing, and analyzing information of a diverse nature,
crossdisciplinary communication and collaboration needs to be
improved concurrently with the evolution of the cyberinfrastruc-
ture that supports the subsequent integration of these diverse
and large-scale metabolic databases into metabolic systems.
Existing bioinformatic tools readily support access and storage
of information, but the ability and ease to abstract, integrate,
graph, and translate this information into knowledge is still devel-
oping. Itis hoped that in the end the derivation of static networks,
their rewiring to fit dynamic conditions, and the ability to extract
empirical rules underpinning metabolic organizational principles
will be accessible for all biologists (Hey and Trefethen, 2005).
One practical scheme of how complex information can be ex-
ploited for systems biology approaches is summarized in Fig-
ure 4. The trait databases, supported from any population,
from any tissue, from any species, and of any type, serve as
the building blocks for the reconstruction of metabolic networks.
Current computational architecture is based on modular struc-
tures, defined as nodes, which can represent genes, their
gene products and phenotypes, and edges, which represent
some type of interaction. The edges, depicted simplistically as
colored lines, can represent multiple and diverse interactions
all the way from genetic control, transcriptional regulation, ex-
pression correlation, and sequence homology to protein:protein
interactions. In its “simplest” form, a module can be based on
single biological interactions such as those generated by asso-
ciation-networking graphing functions, which graphically trans-
form differentially expressed or correlated genes, the nodes,
into a network of statistical associations or interactions, the
edges (see Figure S1 in the Supplemental Data available with
this article online). For example, we can input a partial list of
genes identified as regulators of cholesterol homeostasis by
wet biology (Figure 3A) and then compute a lipid-gene network

using statistically significant gene expression correlations found
in the liver of a genetical genomic data set from a B6BTBRF2
mouse cross (Figure 3B; www.genenetwork.org). In fitting with
prior literature, in this network there are strong genetic interac-
tions between LRH-1 and Cyp7al, ABCA1 and LXR, and
SREBP-2 and LXR (Davis et al. [2002] and references within).
There are, however, also obvious differences in the placement
of these nodes as compared to that derived by wet biology
(compare Figures 3A and 3B). This differential rewiring likely re-
flects the modular nature of biological systems and condition-
dependent interactions, which, for example, allows for different
metabolic compensation in GEMMs and GRPs.

Beyond the modular type analysis is set-type enrichment
analysis (SEA) that can be used to evaluate the representation
of any a priori-defined module in a given set. Statistical overrep-
resentation of a set can reveal motifs (Aderem, 2005). For exam-
ple, a gene-set enrichment analysis (GSEA), determines
whether any modular gene set is statistically enriched or over-
represented in a list of genes (Mootha et al., 2003). In the case
of GEMMs, the list of genes represents differentially expressed
genes between wild-type and mutant mice, whereas in the case
of GRPs it could correspond to genes whose expression levels
correlate with the gene of interest. The theory is that quantitative
gene expression patterns may correspond to functional gene
categories within one tissue or even more so, across many dif-
ferent but functionally related tissues (Hughes et al., 2000).
GSEA is commonly performed according to gene ontology
(GO)-, Biocarta-, and/or KEGG-a priori-defined modules which
statistically place genes of interest in structured networks ac-
cording to molecular function, biological processes, cellular
components, and higher-order functional meanings (Figure S2).
These types of analyses serve as global-positioning tools that
orient the researcher in some meaningful direction in the exten-
sive metabolic atlas inherent of higher organisms. SEA can also
be applied to the systematic detection of cis-regulatory, trans-
regulatory, and protein:protein-interacting domains using the
concept MotifADE, or motifs associated with differential expres-
sion (Giallourakis et al., 2005; Mootha et al., 2004). Such a strat-
egy predicts that modular genes share both a similar expression
profile and a similar profile of motifs that either controls their
transcription (e.g., regulatory elements in genomic DNA) or their
interaction with other proteins (e.g., protein-interaction do-
mains) or DNA. These motifs, either predefined or determined
de novo, can be computationally detected in the promoter or
protein sequences of a list of genes using enrichment-type
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algorithms. Ideally, the culmination of multiple SEAs can help to
build and later to navigate the metabolic networks.

Another type of analysis aimed at defining genetic modules
and networks is genetical genomics or expression genetics,
which involves carrying out genome wide analyses of gene-ex-
pression data and then treating individual transcript abundan-
ces as quantitative traits to identify QTL(s) that influence their
expression levels. The genetic regions or loci that are revealed
are termed expression QTL (eQTL; Damerval et al., 1994; Jan-
sen and Nap, 2001; Klose et al., 2002; Brem et al., 2002; Chesler
et al., 2003; Schadt et al., 2003). eQTL mapping has established
that the basis for the variation in transcript abundance is highly
heritable and can be influenced by a locus at or near its own lo-
cus (cis-acting QTL) or by a completely different genomic loci
(trans-acting QTL). Once an eQTL is found, these chromosomal
regions can be translated into lists of causal and reactive genes
for the trait of interest. One potential “filtering” step is to focus
on those genes whose expression level correlates with the trait
of interest and that are located in the QTL region. Another ap-
proach is to cluster groups of correlated gene-expression traits
to reveal shared eQTLs or hot spots, an idea that stems from the
fact that modular genes share both a similar expression profile
and by extension QTLs. These chromosomal regions in turn
point toward regulatory elements that affect the expression lev-
els of groups of genes and could provide explanations as to how
expression levels of different genes in the same pathway are
correlated/regulated. In such an analysis, traits are clustered
along one axis by phenotypic similarity, whereas the genomic
localization of the QTLs maps, chromosome by chromosome,
are represented on the other axis by heat maps that indicate the
probability of linkage. The list of traits that is clustered can be of
any nature. Chromosomal locations where these genes share
common eQTLs or hot spots generally appear as colored lines
along the cluster tree and can be readily identified (Figure S3).

Particularly powerful is the combination of eQTL data ana-
lyses with complex-trait QTL data since cQTL mapping on its
own often includes gross clinical measurements that are far re-
moved from their causative biological processes. The identifica-
tion of a common chromosomal location for cis-acting eQTLs
and disease-trait cQTLs can be used to nominate genes in the
disease-susceptibility locus, which can bypass the requirement
for fine mapping of the region (Schadt et al., 2003). For example,
eQTL analysis was performed on a cohort of high-fat-fed
C57BL/6XDBA F2 mice to define the obesity trait subcutaneous
fat pad mass (FPM; Schadt et al., 2003). The most differentially
expressed sets of genes in these mice comprising the upper
(FPM-high) and lower (FPM-low) percentiles were compiled,
and five hot spots or regions significantly enriched with eQTL
were identified. In these, more than 50% of the genes in the
FPM set were genetically linked. Furthermore, in the FPM-high
group, two distinct expression patterns were identified, indicat-
ing “causative” heterogeneity. Thus, defining metabolic pheno-
types according to patterns of gene expression or molecular
phenotype allows for the classification of subpopulations that
are homogenous with respect to the underlying causes of met-
abolic disease. Computational analysis aimed at providing likeli-
hood-based tests for causality to extract information of possible
upstream modulators of gene transcripts from cis- and trans-
acting eQTL and cQTL data is continuing to evolve and holds
great promise for unraveling complex traits, including obesity
(Li et al., 2005; Schadt et al., 2005).

REVIEW

Several insights on how to subsequently multidimensionally
model the biological interactions beyond statistical terms into
a unifying network obedient to fundamental mechanical and
physicochemical principles have been put forth at the level
of unicellular organisms such as S. cerevisiae. In S. cerevisiae,
five color-coded data sets were recently decomposed into three
or four node-interconnection patterns representing multiple in-
teraction types and were then synthesized into enriched multi-
color network motifs (Herrgard and Palsson, 2005; Zhang
et al., 2005; Figure 4). These motifs were then combined to
form network themes or classes of higher-order recurring inter-
connection patterns that encompass multiple occurrences of
network motifs. Similarly, genetic interaction networks from
two primary data sources, genetic and physical interactions,
have been assembled into within-pathway models defined by
dense interactions within a single group of proteins (Kelley and
Ideker, 2005). Between-pathway models were then built from
within-pathways, which were defined by enriched or dense ge-
netic interactions connecting two separate nonoverlapping
groups of proteins, where each group was densely connected
by physical interactions. By collapsing these network themes
and/or between-pathway models and then assembling them
into thematic maps, a bird’s-eye view of functional relationships
between diverse subsystems of the overall biochemical net-
works can be revealed. These thematic maps can be interpreted
as closely tied to specific biological phenomena and representa-
tive of more fundamental network design principles. For exam-
ple, many of the transcription factors and protein complexes
are often linked to the same biological process, and conversely
complexes of related function are often linked to the same tran-
scription factor (Herrgard and Palsson, 2005; Zhang et al., 2005).

These types of computational strategies are well on their way
to being successful at a “systems cell” level, in that they will be
able to synthesize and decompose the over 150,000 functions
and physical interactions in yeasts into integrated biological net-
works within a single yeast cell. In higher organisms, there are
additional challenges to consider, in that systems cells must
be built into the context of systems organs, systems networks,
and finally into systems systems. For instance, a hepatocyte is
part of the liver, which coordinates with other organs and their
networks the fate of metabolism on a whole-organism basis. Al-
though we can envision a similar computational development to
model metabolism in complex organisms, computational meta-
bolic navigation in mammals is still several mouse clicks away.
Although systems biology approaches are still in their develop-
ment stages, several user-friendly internet resources already
exist that support these types of efforts (Table 1 summarizes
several useful mouse resources). To demonstrate their potential,
we invite the reader to navigate an example found in the Supple-
mental Data.

Future prospects

Techniques in mouse genetics and phenomics have rapidly
evolved over the past decade, which with the renaissance of in-
tegrative physiology positioned scientists well for the emer-
gence of the discipline systems biology. Such systems biology
approaches hold great promise in the area of metabolism. The
efficient conversion of metabolic parts to metabolic systems
will depend on the integration of discovery-based and hypo-
thesis-driven phenogenomic approaches, which rely on the
study of mouse models derived from both reverse- and
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forward-genetic strategies and complex models of GRPs. A sta-
ble marriage of in silico with wet biology that allows for reitera-
tive testing of the computationally identified networks will be
crucial for the success of systems biology approaches. Such in-
tegrated approaches will become indispensable future resour-
ces to understand complex metabolic networks. It is expected
that such insight will ultimately translate into better diagnostic
and therapeutic strategies for metabolic diseases, which have
acquired epidemic proportions.

Supplemental data

Supplemental Data include three figures and can be found with this article
online at http://www.cellmetabolism.org/cgi/content/full/2/6/349/DC1/.
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