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Abstract

We give equivalent forms of the Askey–Wilson polynomials expressing them with the help of the
Al-Salam–Chihara polynomials. After restricting parameters of the Askey–Wilson polynomials to complex
conjugate pairs we expand the Askey–Wilson weight function in the series similar to the Poisson–Mehler
expansion formula and give its probabilistic interpretation. In particular this result can be used to calculate
explicit forms of ‘q-Hermite’ moments of the Askey–Wilson density, hence enabling calculation of all mo-
ments of the Askey–Wilson density. On the way (by setting certain parameter q to 0) we get some formulae
useful in the rapidly developing so-called ‘free probability’.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to present some properties of the Askey–Wilson (briefly AW) poly-
nomials and their weight function. This is the function that makes these polynomials orthogonal.
As it is well known (see e.g. [15]) the AW polynomials are characterized by 5 parameters one of
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which is special, traditionally denoted by q , often called a base. In majority of cases −1 < q � 1.
The parameter q plays a special rôle that will be exposed in the sequel. The remaining 4 param-
eters can be either real or complex but forming conjugate pairs. If products of all pairs of these
4 parameters have absolute values less than 1 then there exists a positive measure on a compact
segment that makes the AW polynomials orthogonal. If absolute values of all parameters are
less than 1 then this measure has a density. If all 4 parameters are complex and are in conjugate
pairs then the AW weight can be scaled to be the probability density having nice probabilis-
tic interpretation. This density for q = 1 is nothing else but one of the conditional densities of
certain 3-dimensional jointly Normal distribution. We will explain it in the sequel. Because of
these interpretations our main concern will be with the complex parameter case. In particular our
main result will allow expansion of the AW density in certain series of the so-called q-Hermite
polynomials. The expansion is analogous to the Poisson–Mehler series.

However to present briefly and clearly our results we have to refer to the q-series theory
and some of its basic notions. Although the q-series theory has links with combinatorics, non-
commutative analysis and probability theory it is not widely known. That is why we will recall
some notions and facts concerning it. Our considerations and calculations are simple and in fact
elementary.

Traditionally the AW polynomials (see e.g. [4] or [15] or [18]) are defined through the finite
q-hypergeometric series. More precisely the n-th AW polynomial Dn is defined by

Dn(x|a, b, c, d, q) = (ab, ac, ad)n

an(abcdqn−1)n
4φ3

(
q−n, abcdqn−1, ae−iθ , aeiθ

ab, ac, ad, q

∣∣∣q, q

)
,

where 4φ3 is the q-hypergeometric series defined by

rφs

(
a1, . . . , ar

b1, . . . , bs, q

∣∣∣q, y

)
=

∞∑
k=0

(a1, . . . , ar )k

(b1, . . . , bs, q)k
(−1)s+1−rq(s+1−r)(k

2)yk,

where
(
n
k

)
is the binomial coefficient and x = cos θ . (a1, . . . , ar )k and (b1, . . . , bs, q)k as well as

(ab, ac, ad)n and (abcdqn−1)n are explained at the beginning of the next section.
The above mentioned form is difficult to use and analyze by those who do not work in the

special function theory. On the other hand due to pioneering works of Bożejko et al. [5] and
also of Bryc et al. [6–11], the Askey–Wilson polynomials and some of their subclasses have
nice, clear and classical probabilistic interpretation. Hence interest in this family of polynomials
has not only been among specialists in special functions or those working in the theory orthog-
onal polynomials, but also among specialists in the probability theory both non-commutative
and classical. Not to mention people working in quantum mechanics or quantum groups (see
e.g. [14]).

By setting q = 0 we enter the world of rapidly developing so-called ‘free probability’ (see
e.g. [22,23,19]).

The family of probabilistic models, where the AW polynomials and densities appear, has 5 pa-
rameters and is very versatile. Hence it can be used in a brief descriptions of various, complicated
statistical models.

We will express the Askey–Wilson polynomials as certain combinations of simpler polyno-
mials (the Al-Salam–Chihara polynomials introduced in Section 2). Especially simple form of
the AW polynomials will be obtained in the special case of complex, grouped in conjugate pairs,
parameters.
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The paper is organized as follows. Notation and known results of the q-series theory that will
be of help in further calculations are presented in Section 2. Next Section 3 presents our main
results. The following short Section 4 presents some immediate open problems. The lengthy
proofs of some of the results are collected in the last Section 5.

2. Auxiliary results

Assume that −1 < q � 1. We will use traditional notation of the q-series theory i.e. [0]q = 0,
[n]q = 1 + q + · · · + qn−1, [n]q ! = ∏n

i=1[i]q , with [0]q ! = 1,

[
n

k

]
q

=
{ [n]q !

[n−k]q ![k]q ! , n � k � 0,

0, otherwise.

It will be also helpful to use the so-called q-Pochhammer symbol defined for n � 1 by

(a;q)n =
n−1∏
i=0

(
1 − aqi

)
, with (a;q)0 = 1, (a1, a2, . . . , ak;q)n =

k∏
i=1

(ai;q)n.

Often (a;q)n as well as (a1, a2, . . . , ak;q)n will be abbreviated to (a)n and (a1, a2, . . . , ak)n,
if it will not cause misunderstanding.

In particular it is easy to notice that (q)n = (1 − q)n[n]q ! and that

[
n

k

]
q

=
{

(q)n
(q)n−k(q)k

, n � k � 0,

0, otherwise.

Let us remark that [n]1 = n, [n]1! = n!, [
n
k

]
1 = (

n
k

)
, (a;1)n = (1 − a)n and

[n]0 =
{

1 if n � 1,

0 if n = 0,
[n]0! = 1,

[
n

k

]
0
= 1, (a;0)n =

{
1 if n = 0,

1 − a if n � 1.

In the sequel we will use the following two simple properties of the q-Pochhammer symbol.

Lemma 1.

i) For −1 < q � 1, a ∈ R, n � 0:
∑n

i=0

[
n
i

]
q
ai(a)n−i = 1,

ii) For −1 < q � 1, a, b ∈ R, n � 0:
∑n

i=0(−1)iq(i
2)

[
n
i

]
q
(a)ib

i(abqi)n−i = (b)n.

Proof. An easy proof based on the so-called q-binomial theorem (compare Thm. 10.2.1 of [2]
or Thm. 12.2.5 of [15]) is shifted to Section 5. �

Let us define the following sets of polynomials.
The q-Hermite polynomials defined by

hn+1(x|q) = 2xhn(x|q) − (
1 − qn

)
hn−1(x|q), (2.1)
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for n � 1, with h−1(x|q) = 0, h0(x|q) = 1. The polynomials hn are also often called continuous
q-Hermite polynomials. However we will more frequently use the following transformed form
of polynomials hn, namely the polynomials:

Hn(x|q) = (1 − q)−n/2hn

(
x
√

1 − q

2

∣∣∣q)
.

We will call them also q-Hermite. The name is justified since one can easily show that Hn(x|1) =
Hn(x), where Hn denotes the n-th ordinary, so-called probabilistic Hermite polynomial. More
precisely the polynomials {Hn}n�−1 satisfy 3-term recurrence (2.2), below:

Hn+1(x) = xHn(x) − nHn−1(x), (2.2)

with H0(x) = H1(x) = 1. Hence they are orthogonal with respect to the measure with the density
equal to exp(−x2/2)/

√
2π .

The polynomials {Hn(x|q)} satisfy the following 3-term recurrence

Hn+1(x|q) = xHn(x|q) − [n]qHn−1(x), (2.3)

with H−1(x|q) = 0, H1(x|q) = 1.
We shall also use the following polynomials called Al-Salam–Chihara (ASC polynomials).

As before, in the literature connected with the special functions or orthogonal polynomials as the
ASC polynomials function polynomials defined recursively:

Qn+1(x|a, b, q) = (
2x − (a + b)qn

)
Qn(x|a, b, q)

− (
1 − abqn−1)(1 − qn

)
Qn−1(x|a, b, q), (2.4)

with Q−1(x|a, b, q) = 0, Q0(x|a, b, q) = 1.
We will more often use these polynomials re-scaled, with new parameters ρ and y defined by

a =
√

1 − q

2
ρ1

(
y − i

√
4

1 − q
− y2

)
, b =

√
1 − q

2
ρ1

(
y + i

√
4

1 − q
− y2

)
,

such that y2 � 4/(1 − q), |ρ| < 1. In the formula above i stands for the imaginary unit.
More precisely we will consider the polynomials

Pn(x|y,ρ, q) = Qn

(
x
√

1 − q/2
∣∣∣√1 − q

2
ρ

(
y − i

√
4

1 − q
− y2

)
,

√
1 − q

2
ρ

(
y + i

√
4

1 − q
− y2

)
, q

)
. (2.5)

One shows that polynomials {Pn} satisfy the following 3-term recurrence:

Pn+1(x|y,ρ, q) = (
x − ρyqn

)
Pn(x|y,ρ, q) − (

1 − ρ2qn−1)[n]qPn−1(x|y,ρ, q), (2.6)
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with P−1(x|y,ρ, q) = 0, P0(x|y,ρ, q) = 1. The polynomials {Pn} have nice probabilistic inter-
pretation see e.g. [7]. To support intuition let us remark that

Pn(x|y,ρ,1) = (
1 − ρ2)n/2

Hn

(
x − ρy√
1 − ρ2

)
.

The polynomials (2.3) satisfy the following very useful identity originally formulated for the
continuous q-Hermite polynomials hn (can be found in e.g. [15, Thm. 13.1.5]) and here, below
presented for the polynomials Hn:

Hn(x|q)Hm(x|q) =
min(n,m)∑

j=0

[
m

j

]
q

[
n

j

]
q

[j ]q !Hn+m−2j (x|q). (2.7)

Let us denote for simplicity the following real subsets:

S(q) =
{ [−2/

√
1 − q,2/

√
1 − q ] if |q| < 1,

R if q = 1,
(2.8)

and the following family of quadratic, auxiliary, polynomials:

wk(x, y|ρ,q) = (
1 − ρ2q2k

)2 − (1 − q)ρqk
(
1 + ρ2q2k

)
xy + (1 − q)ρ2(x2 + y2)q2k, (2.9)

k = 0,1,2, . . . . Notice that ∀k � 0: wk(x, y|ρ,q) = w0(x, y|ρqk, q) and that wk(x, y|0, q) = 1.
It is known (see e.g. [6], but also [15, Thm. 13.1.3] with an obvious modification for the

polynomials Hn) that the q-Hermite polynomials are monic and orthogonal with respect to the
measure that has the density given by

fN(x|q) =
√

1 − q(q)∞
2π

√
4 − (1 − q)x2

∞∏
k=0

((
1 + qk

)2 − (1 − q)x2qk
)
IS(q)(x), (2.10)

defined for |q| < 1, x ∈ R, where

IA(x) =
{

1 if x ∈ A,

0 if x /∈ A.

We will set also

fN(x|1) = 1√
2π

exp
(−x2/2

)
. (2.11)

Similarly it is known (e.g. from [7] and also [15, formula (15.1.5)] after re-scaling polynomi-
als Qn to Pn) that the polynomials {Pn(x|y,ρ, q)}n�−1 are monic and orthogonal with respect
to the measure that for q ∈ (−1,1] and |ρ| < 1 has the density. For |q| < 1 this density is given
by

fCN(x|y,ρ, q) = fN(x|q)

∞∏ (1 − ρ2qk)

wk(x, y|ρ,q)
IS(q)(x), (2.12a)
k=0
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for x ∈ R, y ∈ S(q) and for q = 1 is given by

fCN(x|y,ρ,1) = 1√
2π(1 − ρ2)

exp

(
− (x − ρy)2

2(1 − ρ2)

)
,

with x, y ∈ R.
It is known (see e.g. [15, formula (13.1.10)]) that for |q| < 1:

sup
x∈S(q)

∣∣Hn(x|q)
∣∣ � sn(q)(1 − q)−n/2, (2.13)

where

sn(q) =
n∑

i=0

[
n

i

]
q

. (2.14)

We will be studying the following density

φ(x|y,ρ1, z, ρ2, q) = fN(x|q)
(ρ2

1 , ρ2
2)∞

(ρ2
1ρ2

2)∞

∞∏
k=0

wk(y, z|ρ1ρ2, q)

wk(x, y|ρ1, q)wk(x, z|ρ2, q)
, (2.15)

where the polynomials wk(s, t |ρ,q) are defined by (2.9).
For q = 1 we set

φ(x|y,ρ1, z, ρ2,1) = 1√
2π

(1−ρ2
1 )(1−ρ2

2 )

1−ρ2
1ρ2

2

exp

(
−

(x − yρ1(1−ρ2
2 )+zρ2(1−ρ2

1 )

1−ρ2
1ρ2

2
)2

2
(1−ρ2

1 )(1−ρ2
2 )

1−ρ2
1ρ2

2

)
, (2.16)

that is φ(x|y,ρ1, z, ρ2,1) is the density of the Normal distribution

N

(
yρ1(1 − ρ2

2) + zρ2(1 − ρ2
1)

1 − ρ2
1ρ2

2

,
(1 − ρ2

1)(1 − ρ2
2)

1 − ρ2
1ρ2

2

)
.

We have the following important but easy remark.

Remark 1. i) φ(x|y,ρ1, z, ρ2, q) = fCN (z|x,ρ2,q)fCN (x|y,ρ1,q)fN (y|q)
fCN (z|y,ρ1ρ2,q)fN (y|q)

, hence in particular φ(x|y,

0, z, ρ2, q) = fCN(x|z,ρ2, q).

ii) φ(x|y,ρ1, z, ρ2, q) = ψ(
√

1−q
2 x|a, b, c, d, q) where

a =
√

1 − q

2
ρ1

(
y − i

√
4

1 − q
− y2

)
, (2.17)

b =
√

1 − q

2
ρ1

(
y + i

√
4

1 − q
− y2

)
, (2.18)



P.J. Szabłowski / Journal of Functional Analysis 261 (2011) 635–659 641
c =
√

1 − q

2
ρ2

(
z − i

√
4

1 − q
− z2

)
, (2.19)

d =
√

1 − q

2
ρ2

(
z + i

√
4

1 − q
− z2

)
(2.20)

and ψ(t |a, b, c, d, q) is a normalized (that is multiplied by a constant so that its integral
is 1) weight function of the AW polynomials. Compare e.g. [4] or [15]. Again in the formu-
lae (2.17), . . . , (2.20) i denotes the imaginary unit.

From assertion i) of the remark above it follows that the properties of the density φ are
closely related to the properties of the densities fCN and fN . Hence now we will recall prop-
erties of these densities and related to them families of the polynomials {Hn(x|q)}n�−1 and
{Pn(x|y,ρ, q)}n�−1 that are crucial for the main results of this paper. We will collect them in
the following two propositions:

Proposition 1.

i) For n,m � 0:

∫
S(q)

Hn(x|q)Hm(x|q)fN(x|q)dx =
{

0 when n �= m,

[n]q ! when n = m.

ii) For n � 0:

∫
S(q)

Hn(x|q)fCN(x|y,ρ, q) dx = ρnHn(y|q).

iii) For n,m � 0:

∫
S(q)

Pn(x|y,ρ, q)Pm(x|y,ρ, q)fCN(x|y,ρ, q) dx =
{

0 when n �= m,

(ρ2)n[n]q ! when n = m.

iv)
∫

S(q)

fCN(x|y,ρ1, q)fCN(y|z,ρ2, q)fN(y|q)dy = fCN(x|z,ρ1ρ2, q).

v) For |t |, |q| < 1:

∞∑
i=0

si(q)t i

(q)i
= 1

(t)2∞
,

∞∑
i=0

s2
i (q)t i

(q)i
= (t2)∞

(t)4∞
,

convergence is absolute, where si(q) is defined by (2.14).
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vi) For (1 − q)max(x2, y2) � 4, |ρ| < 1:

fCN(x|y,ρ, q) = fN(x|q)

∞∑
n=0

ρn

[n]q !Hn(x|q)Hn(y|q), (2.21)

convergence is absolute in ρ, y and x and uniform in x and y.
vii) ∀x, y ∈ S(q):

0 < C(y,ρ, q) � fCN(x|y,ρ, q)

fN(x|q)
� (ρ2)∞

(ρ)4∞
.

Proof. i) It is formula (13.1.11) of [15] with an obvious modification for the polynomials Hn

instead of hn (compare (2.1)) and the normalized weight function (i.e. fN). ii) Exercise 15.7
of [15] also in [6]. iii) Formula (15.1.5) of [15] with an obvious modification for the polynomials
Pn instead of Qn and the normalized weight function (i.e. fCN). iv) See (2.6) of [7]. v) Exer-
cise 12.2(b) and 12.2(c) of [15]. vi) It is the famous Poisson–Mehler formula (see e.g. [15], for
the simple proof of it see [21]).

vii) The upper limit follows directly (2.21) and assertion v). To get the lower one let us notice

that from (2.12) we have fCN (x|y,ρ,q)
fN (x|q)

= ∏∞
k=0

1−ρ2qk

wk(x,y|ρ,q)
. Now let us notice also that

wk(x, y|ρ,q) = (1 − q)ρ2q2k
(
x − (

ρ−1q−k + ρqk
)
y/2

)2

+ (
1 − ρ2q2k

)2(1 − (1 − q)y2/4
)
� 0.

As a nonnegative quadratic form this expression assumes its maximum value for x ∈ S(q) at the
ends of this interval, so

(
1 − ρ2q2k

)2 − (1 − q)ρqk
(
1 + ρ2q2k

)
xy + (1 − q)ρ2(x2 + y2)q2k

�
(
1 − ρ2q2k

)2 + 2(1 − q)
(
1 + ρ2q2k

)∣∣yρqk
∣∣ + 4ρ2q2k + (1 − q)ρ2y2q2k

= (
1 + ρ2q2k

)2 + 2(1 − q)
(
1 + ρ2q2k

)∣∣yρqk
∣∣ + (1 − q)ρ2y2q2k.

Hence

fCN(x|y,ρ, q)

fN(x|q)
� (ρ2)∞∏∞

k=0(1 + ρ2q2k)2 + 2(1 − q)(1 + ρ2q2k)|yρqk| + (1 − q)ρ2y2q2k

df= C(y,ρ, q). �
Remark 2. From the assertion v) of the lemma above it follows that φ(x|y,ρ1, z, ρ2, q)

is the conditional density of X|Y,Z if the joint density of (Y,X,Z) is equal to
fN(y|q)fCN(x|y,ρ1, q)fCN(z|x,ρ2, q). It is so since then the marginal density of (Y,Z) is
equal to fN(y|q)fCN(z|y,ρ1ρ2, q) (which follows directly from assertion iv) of Proposition 1).

Properties of the polynomial sets {Hn(x|q)}n�−1 and {Pn(x|y,ρ, q)}n�−1 are collected in
the second proposition below.
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We will use also the following, auxiliary set of polynomials {Bn(x|q)}n�−1 defined by

Bn+1(y|q) = −qnyBn(y|q) + qn−1[n]qBn−1(y|q); n � 0, (2.22)

with B−1(y|q) = 0, B0(y|q) = 1. The polynomials {Bn}n�−1 with this normalization were intro-
duced and some of their basic properties were exposed in [7]. However they were known earlier
with different scaling and normalization (see e.g. [3] or [16] where polynomials hn(y|q−1) are
analyzed). In particular it was shown in [7] that Bn(x|1) = inHn(ix). We will need also these
polynomials with an another scaling and normalization and also some additional properties of
them. Namely we will need ‘continuous version’ of these polynomials:

bn(y|q) = (1 − q)n/2Bn(2y/
√

1 − q|q).

It is elementary to notice that the polynomials bn satisfy 3-term recurrence:

bn+1(y|q) = −2qnybn(y|q) + qn−1(1 − qn
)
bn−1(y|q), n � 0 (2.23)

with b−1(y|q) = 0, b0(y|q) = 1. Further let us notice (comparing (2.23) and (2.1)) that

(−1)nq−(n
2)bn(y|q) = hn

(
y|q−1). (2.24)

Proposition 2.

i) ∀n � 0: Pn(x|y,ρ, q) = ∑n
j=0

[
n
j

]
ρn−jBn−j (y|q)Hj (x|q),

ii) ∀n > 0:
∑n

j=0

[
n
j

]
Bn−j (x|q)Hj (x|q) = 0,

iii) ∀n � 0: Hn(x|q) = ∑n
j=0

[
n
j

]
ρn−jHn−j (y|q)Pj (x|y,ρ, q).

Proof. i) and ii) are proved in [7]. iii) follows after inserting Pj given by i), changing the order of
summation and applying ii). However iii) was known earlier, was given by formula (4.7) in [17]
for polynomials hn and Qn(x|a, b, q). �

We will also need the following additional properties of polynomials {Hn(x|q)}
and {Bn(x|q)}.
Lemma 2.

i) n � 0:

Bn(x|q) = (−1)nq(n
2)

�n/2�∑
k=0

[
n

k

]
q

[
n − k

k

]
q

[k]q !q−k(n−k)Hn−2k(x|q).

Let us denote In,m(x|q) = ∑n
i=0

[
n
i

]
q
Bn−i (x|q)Hi+m(x|q), then

ii) n,m � 1:

In,m(x|q) = −
n∑[

m

k

]
q

[
n

k

]
q

[k]q !In−k,m−k(x|q),
k=1
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iii) n,m � 0:

In,m(x|q) =
{0 if n > m,

(−1)nq(n
2) [m]q !

[m−n]q !Hm−n(x|q) if n � m,

iv) ∀n,m � 1:

Hm(x|q)Bn(x|q) = (−1)nq(n
2)

�(n+m)/2�∑
i=0

[
n

i

]
q

[
n + m − i

i

]
q

[i]q !q−i(n−i)Hn+m−2i (x|q).

Proof. i) follows basically the formula (13.3.6) in [15] after necessary re-normalization and re-
scaling. iv) follows i) and (2.7). Lengthy, detailed proofs of ii) and iii) are shifted to Section 5. �

Since the case q = 0 is important to the newly emerging so-called “free probability” (see e.g.
nomography [22]) let us see how the considered above sets of polynomials look for q = 0. To do
this let us introduce the so-called Chebyshev polynomials of the second kind Un(x) defined e.g.
by the following three term recurrence:

2xUn(x) = Un+1(x) + Un−1(x), (2.25)

for n � 0 with U−1(x) = 0, U0(x) = 1.

Remark 3. Let us set q = 0, then S(0) = [−2,2]; ∀n � 0, we have for n � 1:

i) Hn(x|0) = Un(x/2),
ii) Qn(x|a, b,0) = Un(x) − (a + b)Un−1(x) + abUn−2(x),

iii) Pn(x|y,ρ,0) = Un(x/2) − ρyUn−1(x/2) + ρ2Un−2(x/2),
iv) B−1(y|0) = b−1(y|0) = 0, B0(y|0) = b0(y|0) = 1,

Bn(y|0) =
{−y if n = 1,

1 if n = 2,

0 if n � 3
and bn(y|0) =

{−2y if n = 1,

1 if n = 2,

0 if n � 3,

v) fN(x|0) = 1
2π

√
4 − x2IS(0) and

fCN(x|y,ρ,0) = (1 − ρ2)
√

4 − x2

2πw0(x, y|ρ,0)
IS(0),

for |ρ| < 1, y ∈ S(0),

vi) φ(x|y,ρ1, z, ρ2,0) = (1 − ρ2
1)(1 − ρ2

2)w0(y, z|ρ1ρ2,0)
√

4 − x2

(1 − ρ2
1ρ2

2)w0(x, y|ρ1,0)w0(x, z|ρ2,0)

1

2π
IS(0),

where w0(x, y|ρ1,0) is given by (2.9).

Proof. To get i) compare (2.25) with x replaced by x/2 and (2.3) for q = 0. To get ii) again
compare (2.25) and (2.4) for q = 0 and notice that these recursions are the same, however with
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different initial values. To get iv) we notice that for q = 0 and n � 3 we get 0. For n < 3 we get
these values directly from (2.22). iii) follows iv) and assertion i) of Proposition 2 or of course
from ii) using (2.5). To get v) and vi) we insert q = 0 in (2.10), (2.12) and (2.15). �
3. Main results

We will start this section with the presentation of an alternative form of the AW polynomials.
Let {Dn(x|a, b, c, d, q)}n�−1 be the sequence the AW polynomials such that Dn has coeffi-
cient by xn equal to 2n. Thus the polynomials {Dn} are orthogonal with respect to the density
ψ(x|a, b, c, d, q) mentioned in Remark 1. Let the polynomials An be defined by the change of
variables and parameters by the relationship:

An(x|y,ρ1, z, ρ2, q) = Dn(x
√

1 − q/2|a, b, c, d, q),

with a, b, c, d related to y, ρ1, z, ρ2 by (2.17)–(2.20). We have:

Theorem 1.

i) ∀n � 1:

Dn(x|a, b, c, d, q)

= (ab, cd)n

(abcdqn−1)n

n∑
j=0

[
n

j

]
q

bn−j (x|q)

j∑
i=0

[
j

i

]
q

Qi(x|a, b, q)Qj−i (x|c, d, q)

(ab)i(cd)j−i

,

where the polynomials {Qn(x|a, b, q)} and {bn(x|q)} are defined by respectively (2.4)
and (2.23).

ii) ∀n � 1:

An(x|y,ρ1, z, ρ2, q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n

n∑
j=0

[
n

j

]
q

Bn−j (x|q)

j∑
i=0

[
j

i

]
q

Pi(x|y,ρ1, q)Pj−i (x|z,ρ2, q)

(ρ2
1)i(ρ

2
2)j−i

,

where the polynomials {Pn(x|y,ρ, q)} and {Bn(x|q)} are defined by respectively (2.6)
and (2.22).

iii) ∀n � 1:

An(x|y,ρ1, z, ρ2, q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n

n∑
m=0

(−1)mq(m
2)

[
n

m

]
ρm

1
Pn−m(x|z,ρ2, q)Pm(y|x,ρ1, q)

(ρ2
2)n−m(ρ2

1)m
.
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Proof. i) We will use two facts concerning forms of the generating functions of the polyno-
mials Dn and Qn. Namely in [15, formula (15.2.6)] and [18, formula (3.1.13)] we have the
following formula adopted for the polynomials Dn

∑
n�0

(abcdqn−1)nDn(x|a, b, c, d, q)

(ab, cd, q)n
tn = 2φ1

(
aeiθ , beiθ

ab

∣∣∣q, te−iθ

)
2φ1

(
c−iθ , de−iθ

cd

∣∣∣q, teiθ

)
,

where x = cos θ . On the other hand in [18] we have the following formula (3.8.14)

∑
n�0

Qn(x|a, b, q)

(ab, q)n
tn = 1

(teiθ )∞
2φ1

(
aeiθ , beiθ

ab

∣∣∣q, te−iθ

)
,

again with x = cos θ . Noting that cos(−θ) = cos(θ) we see that

(
te−iθ , teiθ

)
∞

∑
i�0

Qn(x|a, b, q)

(ab, q)n
tn

∑
i�0

Qn(x|c, d, q)

(cd, q)n
tn

= 2φ1

(
aeiθ , beiθ

ab

∣∣∣q, te−iθ

)
2φ1

(
c−iθ , de−iθ

cd

∣∣∣q, teiθ

)
.

Now it remains to notice that (te−iθ , teiθ )∞ = ∏∞
k=0(1 − 2xtqk + t2q2k), confront it with the

formulae (2.22) and (2.23) and given in [7] generating function of the polynomials Bn(x|q) and
thus deduce that

(
te−iθ , teiθ

)
∞ =

∑
n�0

bn(x|q)tn

(q)n
.

Next we apply twice the Cauchy formula for the multiplication of power series.
ii) Let us change parameters to ones given by (2.17)–(2.20) and let us also redefine the

variable x by introducing instead the variable ξ = 2x/
√

1 − q and defining the polynomi-
als An(ξ |y,ρ1, z, ρ2, q) = 2−npn(x, a, b, c, d|q)/(abcdqn−1)n where a, b, c, d are given
by (2.17)–(2.20).

iii) The proof of this formula is longer and thus is shifted to Section 5. �
As a corollary we get the following property of the ASC polynomials.

Corollary 1. ∀n � 1:

n∑
m=0

(−1)mq(m
2)

[
n

m

]
q

ρm
1

Pn−m(x|z,ρ2, q)Pm(y|x,ρ1, q)

(ρ2
2)n−m(ρ2

1)m
,

n∑
m=0

(−1)mq(m
2)

[
n

m

]
q

ρm
2

Pn−m(x|y,ρ1, q)Pm(z|x,ρ2, q)

(ρ2
1)n−m(ρ2

2)m
.

Proof. Follows symmetry exposed in assertion ii) of the theorem. �
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Corollary 2. For q = 0 we get

D1(x|a, b, c, d,0) = 2x − a + b + c + d − abc − bcd − acd − abd

1 − abcd
,

D2(x|a, b, c, d,0) = 4x2 − 2(a + b + c + d)x + ab + ac + ad + bc + bd + cd − 1 − abcd

and generally for n > 2

Dn(x|a, b, c, d,0) =
n∑

i=0

Qi(x|a, b,0)Qn−i (x|c, d,0)

(ab;0)i(cd;0)n−i

− 2x

n−1∑
i=0

Qi(x|a, b,0)Qn−1−i (x|c, d,0)

(ab;0)i(cd;0)n−1−i

+
n−2∑
i=0

Qi(x|a, b,0)Qn−2−i (x|c, d,0)

(ab;0)i(cd;0)n−2−i

,

where Qi(x|a, b,0) and (a;0)i are defined by assertion ii) of Remark 3 and formulae from the
beginning of Section 2. Similarly

A1(x|y,ρ1, z, ρ2,0) = x − yρ1(1 − ρ2
2) + zρ2(1 − ρ2

1)

1 − ρ2
1ρ2

2

and for n � 2

An(x|y,ρ1, z, ρ2,0)

(1 − ρ2
1)(1 − ρ2

2)
=

n∑
m=0

ρm
1

Pn−m(x|z,ρ2,0)Pm(y|x,ρ1,0)

(ρ2
2 ;0)n−m(ρ2

1 ;0)m

−
n−1∑
m=0

ρm
1

Pn−1−m(x|z,ρ2,0)Pm(y|x,ρ1,0)

(ρ2
2 ;0)n−1−m(ρ2

1 ;0)m
,

where Pm(x|y,ρ,0) are given by assertion iii) of Remark 3.

The main results of the paper concern calculating values of the functions defined by

Cn(y, z|ρ1, ρ2, q) =
∫

S(q)

Hn(x|q)φ(x|y,ρ1, z, ρ2, q) dx,

n � 1. These functions have on one hand nice probabilistic interpretation. Namely
assuming that certain 3-dimensional random vector (Y,X,Z) has density equal to
fCN(z|x,ρ2, q)fCN(x|y,ρ1, q)fN(y|q), then

Cn(y, z|ρ1, ρ2, q) = E
(
Hn(X|q)

∣∣Y = y, Z = z
)
, (3.1)
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for almost all (with respect to measure with density fCN(y|z,ρ1ρ2, q)fN(z|q)) (y, z) ∈
S(q) × S(q). This fact implies in particular that for almost all (y, z) ∈ S(q) × S(q) we have
|Cn(y, z|ρ1, ρ2, q)| � sn(q)

(1−q)n/2 .

Remark 4. In [20] it has been shown that functions Cn are polynomials in y and z of order at
most n. More precisely it has been shown that

Cn(y, z|ρ1, ρ2, q) =
�n/2�∑
r=0

n−2r∑
l=0

A
(n)
r,−�n/2�+r+lHl(y|q)Hn−2r−l (z|q),

where there are �n+2
2 ��n+3

2 � constants (depending only on n, q , ρ1, ρ2) A
(n)
r,s ; r = 0, . . . , �n/2�,

s = −�n/2� + r, . . . ,−�n/2� + r + n − 2r . However the exact general form of these constants
was not found (except for the cases n = 1,2,3,4).

As announced in the introduction, in the present paper we will, express the polynomials Cn in
terms of the polynomials Hn and (or) Pn.

Namely we will prove the following theorem:

Theorem 2. ∀n � 1, |q| < 1, |ρ1|, |ρ2| < 1:

Cn(y, z|ρ1, ρ2, q) = 1

(ρ2
1ρ2

2)n

�n/2�∑
k=0

(−1)kq(k
2)

[
n

2k

]
q

[
2k

k

]
q

[k]q ! (3.2)

× ρ2k
2 ρ2k

1

(
ρ2

1 , ρ2
2

)
k

n−2k∑
j=0

[
n − 2k

j

]
q

(
ρ2

1qk
)
j

(
ρ2

2qk
)
n−2k−j

× ρ
n−2k−j

1 ρ
j

2 Hj(z|q)Hn−2k−j (y|q). (3.3)

Before presentation of the proof let us make two immediate remarks.

Remark 5. Notice that for, say ρ1 = 0 we get Cn(y, z|0, ρ2, q) = ρn
2 Hn(z|q) which agrees nicely

with the probabilistic interpretation of the function Cn given above. Compare also assertion ii)
of Proposition 1. It is so since Cn(y, z|0, ρ, q) = E(Hn(X|q)|Z = z) = ρnHn(z|q) a.s., (fN) if
(Y,Z) ∼ fCN(y|z,ρ, q)fN(z|q) as shown in [6].

Remark 6. Keeping in mind the probabilistic interpretation of the functions Cn given in (3.1),
notice that the assertion of Theorem 2 enables calculation of all moments of the AW density for
complex parameters. Recently S. Corteel at al. in [13] announced that she is going to calculate
these moments by some combinatorial methods.

The proof of this theorem is based on the following lemma that in another form and with the
different proof (based heavily on the assertion i) of Lemma 2) was presented in [20]. Notice that
assertion i) of this lemma is in fact a generalization of an old result of Carlitz [12] (see also [1]
or partially [15, Exercise 12.3(d)]). Besides, in this lemma we present an alternative form of the
function Cn this time expressed through polynomials Hn and Pn.
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Lemma 3. Let us denote for m,k � 0 γm,k(x, y|ρ,q) = ∑∞
i=0

ρi

[i]q !Hi+m(x|q)Hi+k(y|q). Then

i) γm,k(x, y|ρ,q) = γ0,0(x, y|ρ,q)

k∑
s=0

(−1)sq(s
2)

[
k

s

]
q

ρsHk−s(y|q)Pm+s(x|y,ρ, q)/
(
ρ2)

m+s
,

ii) Cn(y, z|ρ1, ρ2, q) =
n∑

s=0

[
n

s

]
q

ρn−s
1 ρs

2

(
ρ2

1

)
s
Hn−s(y|q)Ps(z|y,ρ1ρ2, q)/

(
ρ2

1ρ2
2

)
s
.

Proof. The proof is shifted to Section 5. �
As a corollary we get another property of the ASC polynomials:

Corollary 3. For m � 0

Pm(y|x,ρ, q)/
(
ρ2)

m
=

m∑
s=0

(−1)s
[
m

s

]
q

q(s
2)ρsHm−s(y|q)Ps(x|y,ρ, q)/

(
ρ2)

s
.

Proof. Note that γm,k(x, y|ρ,q) = γk,m(y, x|ρ,q). From assertion ii) of Lemma 3 it follows
that on one hand γ0,m(x, y|ρ,q) = γ0,0(x, y|ρ,q)Pm(y|x,ρ, q)/(ρ2)m. On the other hand from
assertion i) it follows that

γ0,m(x, y|ρ,q) = γ0,0(x, y|ρ,q)

m∑
s=0

(−1)sq(s
2)

[
m

s

]
q

ρsHm−s(y|q)Ps(x|y,ρ, q)/
(
ρ2)

s
. �

As another consequence of Theorem 2 and assertions v) and vii) of Proposition 1 we get the
following theorem:

Theorem 3. ∀ − 1 < q � 1, x, y, z ∈ S(q), |ρ1|, |ρ2| < 1,

φ(x|y,ρ1, z, ρ2, q) = fN(x|q)

∞∑
i=0

1

[i]q !Hi(x|q)Ci(y, z|ρ1, ρ2, q), (3.4)

where convergence is absolute and almost uniform on compact sets.

Proof. Is shifted to Section 5. �
4. Open problems

Notice that ∀n � 1:∫
S(q)

(
Hn(x) − Cn(y, z|ρ1, ρ2, q)

)
φ(x|y,ρ1, z, ρ2, q) dx

=
∫

An(x|y,ρ1, z, ρ2, q)φ(x|y,ρ1, z, ρ2, q) dx = 0.
S(q)
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Hence there must exist polynomials Fn,i(y, z|ρ1, ρ2, q) such that: ∀n � 1:

An(x|y,ρ1, z, ρ2, q) =
n∑

i=1

Fn,i(y, z|ρ1, ρ2, q)
(
Hi(x) − Ci(y, z|ρ1, ρ2, q)

)
.

(1) One would like to find these polynomials.
(2) We have Fn,n(y, z|ρ1, ρ2, q) = 1 (both {Hn(x) − Cn(y, z|ρ1, ρ2, q)} and {An(x|y,ρ1,

z, ρ2, q)} are monic). When say ρ2 = 0 (the ASC case) we have

Pn(x|y,ρ1, q) =
n∑

i=1

[
n

i

]
q

ρn−i
1 Bn−i (y|q)

(
Hi(x) − ρi

1Hi(y|q)
)
,

which is in fact combination of assertions i) and ii) of Proposition 2. Thus one would like to
ask if the functions Fn,i(y, z|ρ1, ρ2, q) also depend on n − i?

(3) It was shown in [7] that

n∑
j=0

[
n

j

]
q

Bn−j (y|q)Hj (y|q) = 0

for y ∈ S(q) and n � 1. Is the same true for the general case. Namely is it true that: ∀n � 1,
y, z ∈ S(q)

n∑
j=0

Fn,j (y, z|ρ1, ρ2, q)Ci(y, z|ρ1, ρ2, q) = 0?

(4) If q = 1 we have

1√
2π(1 − ρ2)

∫
R

Hn(x) exp

(
− (x − ρm)

2(1 − ρ2)

)
dx = ρnHn(m)

hence following observation (2.16) we deduce that the rôle of the parameter ρ is now played

by

√
ρ2

1+ρ2
2−2ρ2

1ρ2
2

1−ρ2
1ρ2

2
and of m by

yρ1(1−ρ2
2 )+zρ2(1−ρ2

1 )√
1−ρ2

1ρ2
2

√
ρ2

1+ρ2
2−2ρ2

1ρ2
2

. Thus

Cn(y, z|ρ1, ρ2,1) =
(√

ρ2
1 + ρ2

2 − 2ρ2
1ρ2

2

1 − ρ2
1ρ2

2

)n

Hn

(
yρ1(1 − ρ2

2) + zρ2(1 − ρ2
1)√

1 − ρ2
1ρ2

2

√
ρ2

1 + ρ2
2 − 2ρ2

1ρ2
2

)
. (4.1)

Is it also true for |q| < 1 with an obvious modification that Hn(x) is replaced by Hn(x|q).
Most certainly not, but may be Cn(y, z|ρ1, ρ2, q) can be presented as a linear combination
of expression of this type, more compact than (3.2), (3.3). The problem is connected with the
problem of expressing Hn(αx+βy|q) as a linear combination of Hi(x|q)Hj (y|q), i+j � n.
It has known, nice form for q = 1 and neither nice nor known form for all n � 1 and other
values of q .
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5. Proofs

Proof of Lemma 1. i) Let us denote Dn(a) = ∑n
k=0

[
n
k

]
q
(a)n−ka

k . Let

φ(t, a) =
∞∑

n=0

tn

(q)n
Dn(a)

be a characteristic function of the sequence {Dn(a)}. We have

φ(t, a) =
∞∑

n=0

tn

[n]q !
n∑

i=0

[
n

i

]
q

(a)ian−i =
∞∑
i=0

t i

(q)i
(a)i

∞∑
n=i

tn−i

(q)n−i

an−i = 1

(at)∞

∞∑
i=0

t i

(q)i
(a)i

= 1

(at)∞
(at)∞
(t)∞

= 1

(t)∞
=

∑
n�0

tn

(q)n
,

by q-binomial theorem. So Dn(a) = 1. Convergence was for |q|, |a|, |t | < 1. Thus Dn(a) for
|a| < 1 is constant, but since it is a polynomial we deduce that Dn(a) is constant for all com-
plex a.

ii) Using the expansion formula
∑N

k=0(−1)k
[
N
k

]
q
q(k

2)xk = (x)N ,

n∑
i=0

(−1)iq(i
2)

[
n

i

]
q

(a)ib
i(abqi)n−i =

n∑
i=0

(−1)iq(i
2)

[
n

i

]
q

bi(a)i

n−i∑
k=0

(−1)kq(k
2)

[
n − i

k

]
q

akbkqki

=
n∑

s=0

(−1)sq(s
2)

[
n

s

]
q

bs

s∑
k=0

[
s

k

]
q

ak(a)s−k

=
n∑

s=0

(−1)sq(s
2)

[
n

s

]
q

bs = (b)n

by i) and the expansion formula. �
Proof of Lemma 2. ii) First let us recall that by assertion ii) of Proposition 2 we have
In,0(x|q) = 0 for n � 1. Next we have

I0,m(x|q) = Hm(x|q), I1,m(x|q) = −xHm(x|q) + Hm+1(x|q) = −[m]qHm−1(x|q).

To prove ii) we apply the formula

Hn(x|q)Hm(x|q) = Hn+m(x|q) +
min(n,m)∑

k=1

[
m

k

]
q

[
n

k

]
q

[k]q !Hn+m−2k(x|q)

and get
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In,m(x|q) =
n∑

i=0

[
n

i

]
q

Bn−i (x|q)Hi+m(x|q)

= Hm(x|q)In,0(x|q) −
n∑

i=1

[
n

i

]
q

Bn−i (x|q)

min(i,m)∑
k=1

[
i

k

]
q

[
m

k

]
q

[k]q !Hi+m−2k(x|q)

= −
n∑

i=1

[
n

i

]
q

Bn−i (x|q)

min(i,m)∑
k=1

[
i

k

]
q

[
m

k

]
q

[k]q !Hi+m−2k(x|q).

After changing the order of summation we get

In,m(x|q) = −
n∑

k=1

[
m

k

]
q

[
n

k

]
q

[k]q !
n−k∑
s=0

[
n − k

s

]
q

Bn−k−s(x|q)Hs+m−k(x|q).

iii) will be proved by induction with respect to n. Let us assume that the assertion is true for all
n � k − 1. By ii) we have Ik,m(x|q) = −∑k

j=1

[
m
j

]
q

[
k
j

]
q
[j ]q !Ik−j,m−j (x|q). Now if m < k we

see that then k−j < m−j for all j = 1, . . . , k and thus by induction Ik−j,m−j (x|q) = 0. If k � m

then by the induction assumption we have Ik−j,m−j (x|q) = (−1)k−j q(k−j
2 ) [m−j ]q !

[m−k]q !Hm−k(x|q).
Hence

Ik,m(x|q) = −
k∑

j=1

[
m

j

]
q

[
k

j

]
q

[j ]q(−1)k−j q(k−j
2 ) [m − j ]q !

[m − k]q !Hm−k(x|q)

= − [m]q !
[m − k]q !Hm−k(x|q)

k∑
j=1

[
k

j

]
q

(−1)k−j q(k−j
2 )

= − [m]q !
[m − k]q !Hm−k(x|q)

k−1∑
s=0

[
k

s

]
q

(−1)sq(s
2)

= − [m]q !
[m − k]q !Hm−k(x|q)

(
k−1∑
s=0

[
k

s

]
q

(−1)sq(s
2) + (−1)kq(k

2) − (−1)kq(k
2)

)

= (−1)kq(k
2)

[m]q !
[m − k]q !Hm−k(x|q),

since
∑k−1

s=0

[
k
s

]
q
(−1)sq(s

2) + (−1)kq(k
2) = (1)k = 0. �

Proof of assertion iii) of Theorem 1. We start with the assertion of Corollary 3 and the asser-
tion iii) of Proposition 1. Using them we get∫

S(q)

Pm(z|y, t, q)Pk(y|z, t, q)fCN(z|y, t, q) dz

=
{

0 if m > k,

(−1)mq(m
2) [k]q !

[k−m] ! t
mHk−m(y|q)(t2)k if m � k.
q
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Using the assertion ii) of Theorem 1 let us calculate

Vn,m(x, z, ρ1, ρ2|q) =
∫

S(q)

An(x|y,ρ1, z, ρ2, q)Pm(y|x,ρ1, q)fCN(y|x,ρ1, q) dy.

We have

Vn,m(x, z, ρ1, ρ2|q) = (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

n∑
j=0

[
n

j

]
q

Bn−j (x|q)

×
j∑

i=m

[
j

i

]
q

Pj−i (x|z,ρ2, q)

(ρ2
2)j−i

[i]q !
[i − m]q !Hi−m(x|q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

n∑
j=m

[
n

j

]
q

Bn−j (x|q)

×
j−m∑
k=0

[j ]q !
[j − m − k]q ![k]q !

Pj−m−k(x|z,ρ2, q)

(ρ2
2)j−m−k

Hk(x|q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

[n]q !
[n − m]q !

×
n−m∑
s=0

Bn−m−s(x|q)
[n − m]q !

[n − m − s]q ![s]q !

×
s∑

k=0

[s]q !
[s − k]q ![k]q !

Ps−k(x|z,ρ2, q)

(ρ2
2)s−k

Hk(x|q).

We change the order of summation and get

Vn,m(x, z, ρ1, ρ2|q) = (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

[n]q !
[n − m]q !

n−m∑
k=0

[
n − m

k

]
q

Hk(x|q)

×
n−m∑
s=k

[
n − m − k

s − k

]
q

Ps−k(x|z,ρ2, q)

(ρ2
2)s−k

Bn−m−s(x|q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

[n]q !
[n − m]q !

n−m∑
k=0

[
n − m

k

]
q

Hk(x|q)

×
n−m−k∑

j=0

[
n − m − k

j

]
q

Pj (x|z,ρ2, q)

(ρ2
2)j

Bn−m−k−j (x|q)
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= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

[n]q !
[n − m]q !

n−m∑
j=0

[
n − m

j

]
q

Pj (x|z,ρ2, q)

(ρ2
2)j

×
n−m−j∑

k=0

[
n − m − j

k

]
q

Hk(x|q)Bn−m−k−j (x|q).

Now we use the assertion iii) of Lemma 2 and deduce that

n−m−j∑
k=0

[
n − m − j

k

]
q

Hk(x|q)Bn−m−k−j (x|q) = 0

if only n − m − j > 0, and 1 if j = n − m. Hence

Vn,m(x, z, ρ1, ρ2|q) = (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n
(−1)mq(m

2)ρm
1

[n]q !
[n − m]q !

Pn−m(x|z,ρ2, q)

(ρ2
2)n−m

.

Keeping in mind the assertion iii) of Proposition 1 and the interpretation of Vn,m we get

An(x|y,ρ1, z, ρ2, q)

= (ρ2
1 , ρ2

2)n

(ρ2
1ρ2

2qn−1)n

n∑
m=0

[
n

m

]
q

(−1)mq(m
2)ρm

1
Pn−m(x|z,ρ2, q)Pm(y|x,ρ1, q)

(ρ2
2)n−m(ρ2

1)m
. �

Proof of Lemma 3. i) First notice that γ0,0(x, y|ρ,q)fN(x|q) = fCN(x|y,ρ, q) (com-
pare (2.21)). Besides we will use assertions i) and ii) of Proposition 1. Since for ∀x, y ∈ S(q),
γ0,0(x, y|ρ,q) > 0 we can write

∫
S(q)

Pn(x|y,ρ, q)γm,k(x, y|ρ,q)fN(x|q)dx

=
∫

S(q)

Pn(x|y,ρ, q)
γm,k(x, y|ρ,q)

γ0,0(x, y|ρ,q)
fCN(x|y,ρ, q) dx.

Now

∫
S(q)

Pn(x|y,ρ, q)γm,k(x, y|ρ,q)fN(x|q)dx

=
∑
i�0

ρi

[i]q !Hi+k(y|q)

∫
S(q)

Pn(x|y,ρ, q)Hi+m(x|q)fN(x|q)dx.

Let us recall the assertion i) of Proposition 2. Hence we have
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∫
S(q)

Pn(x|y,ρ, q)γm,k(x, y|ρ,q)fN(x|q)dx

=
∑
i�0

ρi

[i]q !Hi+k(y|q)

n∑
j=0

[
n

j

]
q

ρn−jBn−j (y|q)

∫
S(q)

Hj (x|q)Hi+m(x|q)fN(x|q)dx.

Obviously if m > n we get 0. Otherwise when n � m we obtain

∫
S(q)

Pn(x|y,ρ, q)γm,k(x, y|ρ,q)fN(x|q)dx

= [n]q !ρn−m

[n − m]q !
n−m∑
i=0

[n − m]q !
[i]q ![n − i − m]Hi+k(y|q)Bn−i−m(y|q)

= [n]q !ρn−m

[n − m]q ! In−m,k(y|q) = (−1)n−mq(n−m
2 ) [n]q !ρn−m[k]q !

[n − m]q ![k + m − n]q !Hk+m−n(y|q).

Hence

γm,k(x, y|ρ,q)

γ0,0(x, y, |ρ,q)
=

m+k∑
n=m

(−1)n−mq(n−m
2 )ρn−m

[
k

n − m

]
q

Hk−(n−m)(y|q)Pn(x|y,ρ, q)/
(
ρ2)

n

or equivalently

γm,k(x, y|ρ,q)

γ0,0(x, y|ρ,q)
=

k∑
s=0

(−1)sq(s
2)

[
k

s

]
q

ρsHk−s(y|q)Pm+s(x|y,ρ, q)/
(
ρ2)

m+s
.

ii) We have

Cn(x, y|ρ1, ρ2, q) = 1

γ0,0(x, y|ρ1ρ2, q)

n∑
i=0

[
n

i

]
q

ρn−i
1 ρi

2γi,n−i (x, y,ρ1ρ2|q)

= 1

γ0,0(x, y|ρ1ρ2, q)

n∑
i=0

[
n

i

]
q

ρn−i
1 ρi

2

n−i∑
j=0

(−1)j
[
n − i

j

]
q

q(j
2)ρ

j

1 ρ
j

2

× Hn−i−j (y|q)Pi+j (x|y,ρ1ρ2, q)/
(
ρ2

1ρ2
2

)
i+j

=
n∑

s=0

[
n

s

]
q

Hn−s(y|q)Ps(x|y,ρ1ρ2, q)/
(
ρ2

1ρ2
2

)
s

×
s∑

(−1)j
[
s

j

]
q

q(j
2)ρ

j

1 ρ
j

2 ρ
n−s+j

1 ρ
s−j

2 .
j=0
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Now using formula (12.2.27) of [15], that is (a)n = ∑n
k=0(−1)k

[
n
k

]
q
q(k

2)ak we get

Cn(x, y|ρ1, ρ2, q) =
n∑

s=0

[
n

s

]
q

ρn−s
1 ρs

2

(
ρ2

1

)
s
Hn−s(y|q)Ps(x|y,ρ1ρ2, q)/

(
ρ2

1ρ2
2

)
s
. �

Proof of Theorem 2.

Cn(y, z|ρ1, ρ2, q) =
n∑

s=0

[
n

s

]
q

ρn−s
1 ρs

2

(
ρ2

1

)
s
Hn−s(y|q)Ps(z|y,ρ1ρ2, q)/

(
ρ2

1ρ2
2

)
s

=
n∑

s=0

[
n

s

]
q

ρn−s
1 ρs

2

(
ρ2

1

)
s
Hn−s(y|q)

×
s∑

j=0

[
s

j

]
q

ρ
s−j

1 ρ
s−j

2 Bs−j (y|q)Hj (z|q)/
(
ρ2

1ρ2
2

)
s

= 1

(ρ2
1ρ2

2)n

n∑
j=0

[
n

j

]
q

ρ
n−j

1 Hj(z|q)

×
n∑

s=j

[
n − j

s − j

]
q

(
ρ2

1

)
s
ρ

2s−j

2

(
ρ2

1ρ2
2qs

)
n−s

Bs−j (y|q)Hn−s(y|q)

× 1

(ρ2
1ρ2

2)n

n∑
j=0

[
n

j

]
q

ρ
n−j

1 ρ
j

2 Hj(z|q)

×
n−j∑
m=0

[
n − j

m

]
q

(
ρ2

1

)
m+j

ρ2m
2

(
ρ2

1ρ2
2qm+j

)
n−j−m

Bm(y|q)Hn−j−m(y|q).

Now we apply the formula given in the assertion iv) of Lemma 2 getting

Cn(y, z|ρ1, ρ2, q) = 1

(ρ2
1ρ2

2)n

[
n

j

]
q

ρ
n−j

1 ρ
j

2

(
ρ2

1

)
j
Hj (z|q)

×
n−j∑
m=0

[
n − j

m

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

× (−1)mq(m
2)

�(n−j)/2�∑
k=0

[
m

k

]
q

[
n − j − k

k

]
q

[k]q !q−k(m−k)Hn−j−2k(y|q).

Now we notice that
[
m
k

]
q

= 0 if k > m. So we split the range of m into two subranges 0, . . . , �(n−
j)/2� and �(n − j)/2� + 1, . . . , n − j . Thus the second sum can be transformed in the following
way:
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�(n−j)/2�∑
m=0

[
n − j

m

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

(−1)mq(m
2)

×
m∑

k=0

[
m

k

]
q

[
n − j − k

k

]
q

[k]q !q−k(m−k)Hn−j−2k(y|q)

+
n−j∑

m=�(n−j)/2�+1

[
n − j

m

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

× (−1)mq(m
2)

�(n−j)/2�∑
k=0

[
m

k

]
q

[
n − j − k

k

]
q

[k]q !q−k(m−k)Hn−j−2k(y|q).

Now after changing the order of summation we obtain

�(n−j)/2�∑
k=0

[
n − j − k

k

]
q

[k]q !Hn−j−2k(y|q)

×
�(n−j)/2�∑

m=k

(−1)mq(m
2)q−k(m−k)

[
n − j

m

]
q

[
m

k

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

+
�(n−j)/2�∑

k=0

[
n − j − k

k

]
q

[k]q !Hn−j−2k(y|q)

×
n−j∑

m=�(n−j)/2�+1

(−1)mq(m
2)q−k(m−k)

[
n − j

m

]
q

[
m

k

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

=
�(n−j)/2�∑

k=0

[
n − j − k

k

]
q

[k]q !Hn−j−2k(y|q)

×
n−j∑
m=k

(−1)mq(m
2)q−k(m−k)

[
n − j

m

]
q

[
m

k

]
q

(
ρ2

1qj
)
m
ρ2m

2

(
ρ2

1ρ2
2qm+j

)
n−j−m

.

After changing in the last sum the variable m ranging from k, . . . ,m − j to s ranging from 0 to
n−j −k and applying firstly formula

(
s+k

2

)−sk = (
s
2

)+(
k
2

)
, then formula (a)n+m = (a)n(aqn)m

and finally assertion ii) of Lemma 1 we get

Cn(y, z|ρ1, ρ2, q) = 1

(ρ2
1ρ2

2)n

n∑
j=0

[
n

j

]
q

ρ
n−j

1 ρ
j

2 Hj(z|q)

×
�(n−j)/2�∑

(−1)kq(k
2)ρ2k

2

(
ρ2

1

)
k+j

(
ρ2

2

)
n−j−k

[n − j ]q !
[n − j − 2k]q !Hn−j−2k(y|q).
k=0
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Now we change again the order of summing, applying formulae (a)n+m = (a)n(aqn)m applied
to (ρ2

1)k+j and (ρ2
2)n−j−k we get

Cn(y, z|ρ1, ρ2, q) = 1

(ρ2
1ρ2

2)n

�n/2�∑
k=0

(−1)kq(k
2)

[
n

2k

]
q

[
2k

k

]
q

[k]q !ρ2k
2 ρ2k

1

(
ρ2

1 , ρ2
2

)
k

×
n−2k∑
j=0

[
n − 2k

j

]
q

(
ρ2

1qk
)
j

(
ρ2

2qk
)
n−j−2k

ρ
n−2k−j

1 ρ
j

2

× Hj(z|q)Hn−j−2k(y|q). �
Proof of Theorem 3. For |q| < 1 we use the assertion vii) of Proposition 1 and Remark 1 and
deduce that φ(x|y,ρ1, z, ρ2, q)/fN(x|q) is bounded on S(q) hence square integrable with re-
spect to the measure with density fN(x|q), thus immediately we get L2 convergence in (3.4).
To get almost sure convergence let us notice that φ(x|y,ρ1, z, ρ2, q)/fN(x|q) is also square in-
tegrable with respect to the measure that has density equal to fN(x|q)fN(y|q)fN(z|q). Next
we notice that polynomials {Hi(x|q)Hj (y|q)Hk(z|q)}i,j,k�0 constitute an orthogonal basis
of the space (S(q) × S(q) × S(q), B, fN(x|q)fN(y|q)fN(z|q)), where B denotes σ -field of
Borel subsets of S(q) × S(q) × S(q). Moreover we know Fourier coefficients of expansion of
φ(x|y,ρ1, z, ρ2, q)/fN(x|q) in this basis. Namely we can read them from expansion (3.2), (3.3).
They are equal to

αn,j,m =
∫

S3(q)

Hn(x|q)Hj (y|q)Hm(z|q)φ(x|y,ρ1, z, ρ2, q)fN(y|q)fN(z|q)dx dy dz

=
{0 if j + m � n ∨ n − j − m is odd,

(−1)k
q(k2)ρ

n−j
1 (ρ2)j+kρ

n−m
2 (ρ2

2 )n−j−k

[k]q !(ρ2
1ρ2

2 )n
if n − j − m = 2k.

From the theory of the orthogonal series expansions it follows that
∑

n,j,m α2
n,j,m < ∞, moreover

one can see these coefficients decrease geometrically.
Hence

∑
n,j,m α2

n,j,m(logn log j logm)2 < ∞ and thus form the Rademacher–Menshov theo-
rem we get almost everywhere convergence of the series:

∑
n,j,m�0

αn,j,m

[n]q ![j ]q ![m]q !Hn(x|q)Hj (y|q)Hm(z|q).

On the other hand after regrouping nonzero summands of this series we get (3.4).
For q = 1 we deal with the normal case. In this case the functions Cn have special form given

by (4.1). Thus we deal with summing of special form of a classical Poisson–Mehler kernel

∑
n�0

tn

n!Hn(x)Hn(u),

where t =
√

ρ2
1+ρ2

2−2ρ2
1ρ2

2
1−ρ2

1ρ2
2

and u = yρ1(1−ρ2
2 )+zρ2(1−ρ2

1 )√
1−ρ2

1ρ2
2

√
ρ2

1+ρ2
2−2ρ2

1ρ2
2

. �
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