The Probability that \(k \) Positive Integers are Relatively \(r \)-Prime*

STANLEY J. BENKOSKI

Daniel H. Wagner, Associates, Station Square One, Paoli, Pennsylvania 19301

Communicated by H. B. Mann

Received June 14, 1973

If \(r, k \) are positive integers, then \(T_k^r(n) \) denotes the number of \(k \)-tuples of positive integers \((x_1, x_2, \ldots, x_k) \) with \(1 < x_i < n \) and \((x_1, x_2, \ldots, x_k) = 1 \). An explicit formula for \(T_k^r(n) \) is derived and it is shown that \(\lim_{n \to \infty} T_k^r(n)/n^k = 1/\zeta(rk) \).

If \(S = \{p_1, p_2, \ldots, p_s\} \) is a finite set of primes, then \(\langle S \rangle = \{p_1^{a_1}p_2^{a_2} \cdots p_s^{a_s} ; p_i \in S \text{ and } a_i \geq 0 \text{ for all } i \} \) and \(T_k^r(S, n) \) denotes the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) \) with \(1 < x_i < n \) and \((x_1, x_2, \ldots, x_k) \in \langle S \rangle \). Asymptotic formulas for \(T_k^r(S, n) \) are derived and it is shown that \(\lim_{n \to \infty} T_k^r(S, n)/n^k = (p_1 \cdots p_s)^r/\zeta(rk)(p_1^{kr} - 1) \cdots (p_s^{kr} - 1) \).

1. INTRODUCTION

Lehmer [2] and more recently Nymann [3] have both considered the number of \(k \)-tuples of positive integers \((x_1, x_2, \ldots, x_k) \) with \(1 < x_i < n \) and \((x_1, x_2, \ldots, x_k) = 1 \). (We shall use \((x_1, x_2, \ldots, x_k) \) to denote both the \(k \)-tuple of integers and the greatest common divisor. No confusion will arise from this abuse of notation.) If we denote the number of such \(k \)-tuples by \(T_k(n) \), then both obtain asymptotic formulas for \(T_k(n) \) and show that \(\lim_{n \to \infty} T_k(n)/n^k = 1/\zeta(k) \). This may be interpreted to mean that the probability that \(k \) integers are relatively prime is \(1/\zeta(k) \).

Theorem 6 extends this result. If \(r \) is a positive integer, then we define the \(r \)th power greatest common divisor of \(a \) and \(b \) by \((a, b)_r = d \) if \(d \) is the largest \(r \)th power that divides both \(a \) and \(b \). If \((a, b)_r = 1 \), then we say that \(a \) and \(b \) are relatively \(r \)-prime. Theorem 6 states that the probability that \(k \) integers are relatively \(r \)-prime is \(1/\zeta(rk) \).

* These results are contained in the author’s thesis which was written under the direction of Harlan Stevens at The Pennsylvania State University.

Copyright © 1976 by Academic Press, Inc.
All rights of reproduction in any form reserved.
2. The Totient \(T_r^{*}(n) \)

Definition. If \(r \geq 1, s \geq 0 \) are integers, then \(J_s^{*}(n) \) denotes the number of \(s \)-tuples \((x_1, x_2, \ldots, x_s)\) with \(1 \leq x_i \leq n \) and \((x_1, x_2, \ldots, x_s, n) = 1\).

Note that \(J_1^{*} \) is the ordinary Jordan function and \(J_0^{*} \) is the characteristic function for the set of \(r \)-free integers, i.e.,

\[
J_0^{*}(n) = 1, \quad \text{if } n \text{ is } r\text{-free}
\]
\[
= 0, \quad \text{if } p^r | n \text{ for some prime } p.
\]

A simple inclusion/exclusion argument shows that

\[
J_s^{*}(n) = n^s \prod_{p|n} \left(1 - p^{-rs}\right) = n^s \sum_{d|r} \mu(d) d^{-rs}.
\]

\[
(1)
\]

Theorem 1. For \(s \geq 0, r \geq 1 \) we have

\[
\sum_{m=1}^{n} J_s^{*}(m) - n/\zeta(r) + O(n^{1/r}), \quad \text{if } s = 0, r \geq 2,
\]

\[
= n^{s}/2\zeta(2) + O(n \log n), \quad \text{if } s = r = 1,
\]

\[
= n^{s+1}/(s + 1) \zeta(s + 1)) + O(n^{s}), \quad \text{otherwise}.
\]

Proof. The proof is similar to the proof for the Jordan function. Details may be found in [1].

Definition. If \(r \geq 1, k \geq 1 \) are integers, then \(T_k^{*}(n) \) denotes the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k)\) with \(1 \leq x_i \leq n \) and \((x_1, x_2, \ldots, x_k, n) = 1\). Also \(T_0^{*}(n) = 0 \) for all \(n, r \).

Theorem 2. If \(r \geq 1, k \geq 1 \), then

\[
T_k^{*}(n) = k \sum_{m=1}^{n} J_{k-1}^{*}(m) - \sum_{w=2}^{k} (w - 1) \binom{k}{w} \left(\sum_{m=1}^{n} J_{k-w}^{*}(m) \right) - T_{k-w}^{*}(n) \}
\]

Proof. \(J_{k-1}^{*}(m) \) is the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k)\) with \(1 \leq x_i \leq x_k = m \) and \((x_1, x_2, \ldots, x_k, n) = 1\). Hence \(\sum_{m=1}^{n} J_{k-1}^{*}(m) \) is the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k, n) = 1 \) with \(1 \leq x_i \leq x_1 \leq n \) and \(k \sum_{m=1}^{n} J_{k-1}^{*}(n) \) is the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) = 1 \) with \(1 \leq x_i \leq x_j \leq n \) for some \(1 \leq j \leq k \). This is not equal to \(T_k^{*}(n) \) since we have counted some of the \(k \)-tuples more than once. For example, if \(k = 4, r = 2 \) and \(n \geq 3 \), then \((2, 2, 2, 1)\) is counted three times by \(k \sum_{m=1}^{n} J_{k-1}^{*}(m) \).
Let \(S^r_{k,w}(n) \) be the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) = 1\) with \(x_i = x_j = \cdots = x_w \leq n \) for some \(\{i_1, i_2, \ldots, i_w\} \subseteq \{1, 2, \ldots, k\} \) and such that if \(j \neq \{i_1, i_2, \ldots, i_w\} \), then \(x_j < x_{i_1} \). Now each \(k \)-tuple that is counted once by \(S^r_{k,w}(n) \) is counted \(w \) times by \(\sum_{m=1}^{k} J^r_{k-1}(m) \). Hence

\[
T^r_k(n) = k \sum_{m=1}^{n} J^r_{k-1}(m) - \sum_{w=2}^{k} (w - 1) S^r_{k,w}(n). \tag{2}
\]

If \(R^r_{k,w}(n) \) is the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) = 1\) with \(1 \leq x_i \leq x_1 \leq n \) and \(x_1 = x_2 = \cdots = x_w \) with \(x_s < x_w \) for \(s > w \), then \(S^r_{k,w}(n) = \binom{k}{w} R^r_{k,w}(n) \). Now if \(x_1 = x_2 = \cdots = x_w \), then \((x_1, x_2, \ldots, x_k) = (x_w, x_{w+1}, \ldots, x_k) \). Hence \(R^r_{k,w}(n) \) is the number of \(k - w + 1 \)-tuples \((x_1, x_2, \ldots, x_{k-w+1}) = 1\) with \(1 \leq x_i \leq n \) and \(x_s < x_1 \) for \(s > 1 \).

Let \(U^r_s(n) \) be the number of \(s \)-tuples \((x_1, x_2, \ldots, x_s) = 1\) with \(1 \leq x_i \leq n \) and \(x_i < x_1 \) for \(i \neq 1 \). We see that \(R^r_{k,w}(n) = U^r_{k-w+1}(n) \) and

\[
U^r_s(n) = A^r_s(n) - B^r_s(n),
\]

where \(A^r_s(n) \) is the number of \(s \)-tuples \((x_1, x_2, \ldots, x_s) = 1\) with \(1 \leq x_i \leq x_1 \leq n \) and \(B^r_s(n) \) is the number of \(s \)-tuples \((x_1, x_2, \ldots, x_s) = 1\) with \(1 \leq x_i \leq x_1 \leq n \) and \(x_1 = x_j \) for some \(j \neq 1 \). Now \(A^r_s(n) \) is \(\sum_{m=1}^{n} J^r_{s-1}(m) \) and \(B^r_s(n) \) is the number of \(s-1 \)-tuples \((x_1, x_2, \ldots, x_{s-1}) = 1\) with \(1 \leq x_i \leq n \). Hence, \(B^r_s(n) = T^r_{s-1}(n) \) and

\[
U^r_s(n) = \left(\sum_{m=1}^{n} J^r_{s-1}(m) \right) - T^r_{s-1}(n).
\]

Thus

\[
R^r_{k,w}(n) = U^r_{k-w+1}(n) = \left(\sum_{m=1}^{n} J^r_{k-w}(m) \right) - T^r_{k-w}(n).
\]

Substituting this into (2) completes the proof.

Theorem 3. If \(r \geq 2 \), then the number of \(r \)-free integers \(\leq n \) is

\[
\sum_{m=1}^{n} J^r_0(m) = n/\zeta(r) + O(n^{1/r}).
\]

Proof. \(T^r_1(n) \) is the number of \(r \)-free integers \(\leq n \). By Theorem 2, \(T^r_1(n) = \sum_{m=1}^{n} J^r_0(m) \) and by Theorem 1

\[
\sum_{m=1}^{n} J^r_0(m) = n/\zeta(r) + O(n^{1/r}).
\]
Theorem 4. The number of ordered pairs \((x_1, x_2) = 1\) with \(1 \leq x_1, x_2 \leq n\) is
\[
2 \sum_{m=1}^{n} J_1^2(m) - 1 = n^2/\zeta(2) + O(n \log n).
\]

Proof. Immediate from Theorems 1 and 2.

Of course, Theorems 3 and 4 are well known, but it is interesting to note that they are special cases of a more general theory.

Theorem 5. If \(k \neq 1\) and \(r_k > 2\), then the number of \(k\)-tuples \((x_1, x_2, \ldots, x_k) = 1\) with \(1 < x_i < n\) is \(n^k/\zeta(r_k) + O(n^{k-1})\).

Proof. The number of such \(k\)-tuples is \(T_k^r(n)\). By Theorem 1, \(\sum_{m=1}^{n} J_{k-1}(m) = n^k/\zeta(r_k) + O(n^{k-1})\). If we note that for \(w > 2\), \(\sum_{m=1}^{n} J_{k-\omega}(m) = O(n^{k-1})\), then the result follows from Theorem 2.

Theorem 6. If \(r_k \geq 2\), then \(\lim_{n \to \infty} T_k^r(n)/n^k = 1/\zeta(r_k)\).

Proof. Immediate from the above theorems.

Theorem 6 may be interpreted to mean that if \(k\) positive integers are chosen at random, then the probability that they are relatively \(r\)-prime is \(1/\zeta(r_k)\).

3. Related Results

We can obtain similar results when we consider a related question.

Definition. If \(S = \{p_1, p_2, \ldots, p_s\}\) is a finite set of primes, then \(\langle S \rangle = \{p_1^{a_1} p_2^{a_2} \cdots p_s^{a_s}; p_i \in S \text{ and } a_i \geq 0 \text{ for all } i\}\). Also, \(\overline{S} = \{p; p \text{ is a prime and } p \notin S\}\) and \(\langle \overline{S} \rangle = \{p_1^{b_1} p_2^{b_2} \cdots p_s^{b_s}; p_i \in \overline{S} \text{ and } b_i \geq 0 \text{ for all } i\}\).

The positive integers form a monoid under multiplication and \(\langle S \rangle, \langle \overline{S} \rangle\) are the submonoids generated by \(S, \overline{S}\).

Now we can consider a question that is related to the previous considerations. If \(k\) positive integers \(x_1, x_2, \ldots, x_k\) are chosen at random, what is the probability that \((x_1, x_2, \ldots, x_k)^r \in \langle S \rangle\)? We need a few preliminary results before we can answer this question.

Definition. If \(k > 0, r \geq 1\) and \(S = \{p_1, p_2, \ldots, p_s\}\) is a finite set of primes, then \(J_k^r(S, n)\) denotes the number of \(k\)-tuples \((x_1, x_2, \ldots, x_k)\) with \(1 \leq x_i \leq n\) and \((x_1, x_2, \ldots, x_k, n)^r \in \langle S \rangle\).
As simple application of inclusion/exclusion shows that
\[J_k^r(S, n) = n^k \prod_{p^r \mid n \atop p \notin S} (1 - p^{-r}). \]

Theorem 7. If \(S = \{p_1, p_2, \ldots, p_s\} \) and \(J_k^r(S, n) \) is defined as above, then the following hold:

\[(a) \quad \sum_{m=1}^{n} J_1^r(S, m) = (n p_1 p_2 \cdots p_s r^s/2\zeta(2)(p_1^r - 1) \cdots (p_s^r - 1) + O(n \log n). \]

\[(b) \quad \text{If } r \geq 2, \text{ then } \sum_{m=1}^{n} J_0^r(S, m) = n p_1^r \cdots p_s^r/\zeta(r)(p_1^r - 1) \cdots (p_s^r - 1) + O(n^{1/r}). \]

\[(c) \quad \text{If } r k \geq 2, \text{ then } \sum_{m=1}^{n} J_k^r(S, n) = n^{k+1} (p_1^r \cdots p_s^r)^{r(k+1)/(k + 1)} \zeta(r(k + 1)) \]
\[\times (p_1^{r(k+1)} - 1) \cdots (p_s^{r(k+1)} - 1) + O(n^k). \]

Proof. See [1].

Definition. If \(S \) is a finite set of primes and \(r \geq 1, k \geq 1 \), then \(T_k^r(S, n) \) denotes the number of \(k \)-tuples \((x_1, x_2, \ldots, x_k) \) with \(1 < x_i < n \) and \((x_1, x_2, \ldots, x_k) \in \langle S \rangle \). Also, \(T_0^r(S, n) = 0 \) for all \(r \).

Using the same method as in the proof of Theorem 2, we obtain the following theorem.

Theorem 8. If \(k \geq 1 \), then
\[T_k^r(S, n) = k \sum_{m=1}^{n} J_{k-1}^r(S, n) \]
\[- \sum_{w=2}^{k} (w - 1) \binom{k}{w} \left\{ \sum_{m=1}^{n} J_{k-w}^r(S, n) - T_{k-w}^r(S, n) \right\}. \]

Using the asymptotic formulas of Theorem 7 we obtain the following theorem.

Theorem 9. If \(r k \geq 2, \) then
\[\lim_{n \to \infty} T_k^r(S, n)/n^k = (p_1 p_2 \cdots p_s)^{r k}/\zeta(rk)(p_1^{rk} - 1) \cdots (p_s^{rk} - 1). \]
We may interpret this to mean that if k positive integers x_1, x_2, \ldots, x_k are chosen at random, then the probability that $(x_1, x_2, \ldots, x_k) \in \langle S \rangle$ is

\[
(p_1 p_2 \cdots p_s)^{r_k}/\zeta(rk)(p_1^{r_k} - 1) \cdots (p_s^{r_k} - 1).
\]

Similarly, we can show that the probability that $(x_1, x_2, \ldots, x_k) \in \langle S \rangle$ is

\[
(p_1^{r_k} - 1) \cdots (p_s^{r_k} - 1)/p_1^{r_k} \cdots p_s^{r_k}.
\]

REFERENCES