Tolerance stability conjecture revisited

Marcin Mazur

Uniwersytet Jagielloński, Instytut Matematyki, Reymonta 4, 30-059 Kraków, Poland

Received 8 July 2002

Abstract

We prove that the strong tolerance stability property is generic in the space of all homeomorphisms of a compact smooth manifold with C^0 topology. Actually, it partially resolves Zeeman’s and Taken’s Tolerance Stability Conjecture [F. Takens, in: Lecture Notes in Math., Vol. 197, Springer-Verlag, 1971].

MSC: primary 37C20; secondary 37B35, 37C50

Keywords: Generic property; (Discrete) dynamical system; (Strong) tolerance stability; Chain recurrence; Shadowing

1. Introduction

We investigate the strong tolerance stability of homeomorphisms (discrete dynamical systems) of a compact smooth manifold. The notion of tolerance stability was introduced by Takens in [13] together with the topological formulation of Zeeman’s Tolerance Stability Conjecture which says that for a set $\mathcal{D} \subset \mathcal{H}(M)$, equipped with the topology not coarser than that of $\mathcal{H}(M)$, the set of all $f \in \mathcal{D}$ having the tolerance stability property (with respect to \mathcal{D}) is residual in \mathcal{D}, i.e., it includes a countable intersection of open and dense subsets of \mathcal{D}. Here $\mathcal{H}(M)$ denotes the space of all homeomorphisms of a compact metric space M with C^0 topology.

In [15] White presented the counterexample showing that the set \mathcal{D} cannot be chosen arbitrarily. There were also proved several results in the direction of Zeeman’s Tolerance

✩ Supported by KBN Grant no. 5P03A01620.

E-mail address: mazur@im.uj.edu.pl (M. Mazur).
Stability Conjecture (see [3,6,8,11,14]). In this paper we restrict our investigation to the case when the set D is equal to $\mathcal{H}(M)$. To the author’s best knowledge such a problem was studied so far only by Odani [8], who showed that for a compact (smooth) manifold M of the dimension at most 3 the set of all homeomorphisms satisfying the strong tolerance stability condition is residual in $\mathcal{H}(M)$. Our aim is an extension of this theorem to the case of an arbitrary dimension. The proof is based on the technique of a handle decomposition of a manifold, proposed by Pilyugin and Plamenevskaya [12] for proof of C^0 genericity of the shadowing property. Additionally, applying this method we prove that for a C^0 generic homeomorphism the chain recurrent set is a Cantor set. We recall that the property P of elements of a topological space X is called generic if the set of all $x \in X$ satisfying P is residual in X.

The results of this paper are part of author’s Ph.D. Thesis [7] and have already been announced (without proofs) in [9].

2. Basic definitions

Let M be a compact metric space with the metric d and let $\mathcal{H}(M)$ denote the space of all homeomorphisms of M equipped with the metric ρ_0, defined by

$$\rho_0(f, g) := \max \left\{ \max_{x \in M} d(f(x), g(x)), \max_{x \in M} d(f^{-1}(x), g^{-1}(x)) \right\},$$

which induces C^0 topology and makes $\mathcal{H}(M)$ a complete metric space. We say that a sequence $\{x_i\}_{i \in \mathbb{Z}} \subset M$ is ε-traced (ε-set-traced) by the orbit $O_f(x) := \{f^i(x)\}_{i \in \mathbb{Z}}$ of a homeomorphism $f \in \mathcal{H}(M)$ if $d(f^i(x), x_i) \leqslant \varepsilon$ for every $i \in \mathbb{Z}$ ($\rho(\text{Cl}O_f(x), \text{Cl}\{x_i\}_{i \in \mathbb{Z}}) \leqslant \varepsilon$). Here ρ denotes the Hausdorff metric induced by d.

Now, following [8,13], we recall the notions of tolerance stability and strong tolerance stability.

Definition 1. A homeomorphism $f \in \mathcal{H}(M)$ is tolerance stable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $g \in U_\delta(f)$ each f-orbit is ε-set-traced by some g-orbit and each g-orbit is ε-set-traced by some f-orbit. Here $U_\delta(f)$ denotes the δ-neighborhood of f in $\mathcal{H}(M)$.

Definition 2. A homeomorphism $f \in \mathcal{H}(M)$ is strongly tolerance stable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $g \in U_\delta(f)$ each f-orbit is ε-traced by some g-orbit and each g-orbit is ε-traced by some f-orbit.

Obviously, the strong tolerance stability property implies the tolerance stability one. Moreover, it is also stronger than the shadowing property in the case when M is a manifold (see [8]).
3. Handle decomposition

In this section we repeat the relevant material regarding a handle decomposition of a manifold (a more complete theory may be found in [12]). We also make the first step in the direction of the proof of the main result (see Remark 3).

Let M be a compact n-dimensional smooth manifold with the metric d induced by the Riemannian structure. We will denote by $D_m^r(a)$ the closed ball in \mathbb{R}^m with the center at a and the radius r (to simplify notation balls centered at the origin will be written as D_m^r and the unit ball as D_m). For convenience we consider the maximum norm on \mathbb{R}^m, i.e., $\|x\| = \max_{i \in \{1,\ldots,m\}} |x_i|$ for all $x = (x_1,\ldots,x_m) \in \mathbb{R}^m$.

A sequence of sets $\emptyset = M_{-1} \subset M_0 \subset \cdots \subset M_n = M$ is called a handle decomposition of M if for any $m \in \{0,\ldots,n\}$ the following conditions hold:

(1) the set M_m is n-dimensional submanifold with boundary;
(2) the set $\text{Cl}(M_m \setminus M_{m-1})$ is a disjoint union of m-handles, i.e., sets homeomorphic to $D_m^r \times D_{n-m}^r$;
(3) each m-handle is attached to the boundary of M_{m-1} by the image of $S^{m-1} \times D_{n-m}^r$;
(4) for each m-handle H, the image of $i_H : D_m^r \times D_{n-m}^r \hookrightarrow M$,

there exists an embedding $i_H : D_m^r \times D_{n-m}^r \hookrightarrow M$

such that:
(a) $i_H|_{D_m^r \times D_{n-m}^r} = i_H$,
(b) $i_H(D_m^r \times D_{n-m}^r) \cap M_{m-1} = i_H(S^{m-1} \times D_{n-m}^r)$,
(c) if G is another m-handle then the “widened” m-handles $\bar{H} := i_H(D_m^r \times D_{n-m}^r)$ and $\bar{G} := i_G(D_m^r \times D_{n-m}^r)$ are disjoint.

We say that a homeomorphism $f \in \mathcal{H}(M)$ preserves a handle decomposition \mathcal{M} if

$f(M_m) \subset \text{Int} M_m$ for all $m \in \{0,\ldots,n\}$.

A subset V of a handle $H = i_H(D_m^r \times D_{n-m}^r)$ of the form

$V = i_H(D_{r_1}(a_1) \times \cdots \times D_{r_m}(a_n))$,

where $r_1,\ldots,r_n \in (0,1)$ and $a_1,\ldots,a_n \in (-1,1)$, will be called a cube in H.

Let $\varepsilon > 0$ be fixed. By \mathcal{B}_ε we denote the set of all homeomorphisms $f \in \mathcal{H}(M)$ for which we can find a handle decomposition \mathcal{M}_f satisfying the following conditions:

(1) \mathcal{M}_f has the diameter less than ε, i.e.,

$|f(M)| := \max\{\text{diam } H \mid H \text{ is a handle of } \mathcal{M}\} < \varepsilon$.
(2) \(f \) preserves \(\mathcal{M}_f \);
(3) if \(\{H_i\}_{i \in \mathbb{Z}} \) is a sequence of handles with the property that \(f(H_i) \cap H_{i+1} \neq \emptyset \) then there exists a corresponding sequence of cubes \(\{V_i\}_{i \in \mathbb{Z}} \) such that \(V_i \subset H_i \), \(f(V_i) \subset H_{i+1} \) and

\[
\bigcap_{i=-\infty}^{\infty} f^{-i}(V_i) \neq \emptyset.
\]

Now, let \(B_\varepsilon \) be the subset of \(\overline{B}_\varepsilon \) defined as follows: a homeomorphism \(f \in \overline{B}_\varepsilon \) belongs to \(B_\varepsilon \) if there exists \(\delta > 0 \) such that for each \(g \in U_\delta(f) \) the conditions (1)–(3) hold with \(M_g = M_f \) (in particular \(g \in \overline{B}_\varepsilon \)).

Remark 3. By the results of [12], especially the definition of the set \(A_\varepsilon \subset \mathcal{H}(M) \) as well as Lemmas 1 and 4 stated there, it is easily seen that the set \(B := \bigcap_{n=1}^{\infty} B_1^n \) is a residual subset of \(\mathcal{H}(M) \) (note that \(B_\varepsilon \) contains the set \(A_\varepsilon \) which was proved to be open and dense in \(\mathcal{H}(M) \)).

4. Main result

Let \(M \) be a compact smooth manifold with the metric \(d \) induced by the Riemannian structure.

Theorem 4. A generic \(f \in \mathcal{H}(M) \) has the strong tolerance stability property.

Proof. Fix \(\varepsilon > 0 \). Since the set \(B_\varepsilon \), defined in the previous section, is residual in \(\mathcal{H}(M) \) it suffices to prove that for every \(f \in B_\varepsilon \) there exists \(\delta > 0 \) such that for any pair of homeomorphisms \(g_1, g_2 \in U_\delta(f) \) each \(g_1 \)-orbit is \(\varepsilon \)-traced by some \(g_2 \)-orbit.

Choose \(f \in B_\varepsilon \). Let \(\mathcal{M} = \mathcal{M}_f \) be a corresponding handle decomposition of \(M \). Since there is only finite number of handles in \(\mathcal{M} \) we can find \(\delta > 0 \) such that each homeomorphism \(g \in U_\delta(f) \) satisfies the following conditions:

(i) for every pair of handles \((H, G) \) of \(\mathcal{M} \)
\[
g(H) \cap G = \emptyset \implies f(H) \cap G = \emptyset \implies \text{dist}(g(H), G) > 2\delta;
\]

(ii) \(g \in \overline{B}_\varepsilon \) with \(\mathcal{M}_g = \mathcal{M} \).

Fix \(y \in M \) and \(g_1, g_2 \in U_\delta(f) \). Let \(H_i \) denote a handle of \(\mathcal{M} \) containing \(g_1^i(y) \) \((i \in \mathbb{Z}) \). Clearly \(\text{dist}(g_2(H_i), H_{i+1}) \leq 2\delta \) and, in consequence,
\[
g_2(H_i) \cap H_{i+1} \neq \emptyset.
\]
From this it follows that there exists a sequence of cubes \(\{V_i\}_{i \in \mathbb{Z}} \) such that \(V_i \subset H_i \) and
\[
\bigcap_{i=-\infty}^{\infty} g_2^{-i}(V_i) \neq \emptyset.
\]
Let \(x \) be an arbitrarily chosen point of the above set. Then \(g_2^i(x) \in V_i \subset H_i \) and so \(d(g_2^i(x), g_1^j(y)) < \varepsilon \) for every \(i \in \mathbb{Z} \) (we recall that \(|\mathcal{M}| < \varepsilon \)).

By the above, we conclude that each \(g_1 \)-orbit is \(\varepsilon \)-traced by some \(g_2 \)-orbit, which completes the proof. \(\square \)

5. Generic asymptotic behavior

Let \(M \) be a compact smooth manifold with the metric \(d \) induced by the Riemannian structure. In this section we apply the technique of a handle decomposition to prove the following theorem, which extends some recent Hurley’s result [5] to the case of an arbitrary dimension. A different and independent proof one can find in [1].

Theorem 5. For a generic \(f \in \mathcal{H}(M) \) the chain recurrent set \(CR(f) \) is a Cantor set.

Proof. We recall that the chain recurrent set \(CR(f) \) is a collection of all such points \(p \in M \) that for each \(\delta > 0 \) there is a \(\delta \)-chain through \(p \), i.e., a finite sequence \(x_0, x_1, \ldots, x_n \) (\(n \geq 1 \)) with \(x_0 = x_n = p \) and with \(d(f(x_{j-1}), x_j) \leq \delta \) for every \(j \in \{1, \ldots, n\} \). It is a compact, nonempty and invariant set.

By the corollary to Theorem 6.1 in [5], it remains to show that \(CR(f) \) is totally disconnected for a generic \(f \in \mathcal{H}(M) \).

Take \(\varepsilon > 0 \) and \(f \in B_\varepsilon \). Let \(\mathcal{M} = \mathcal{M}_f \) be a corresponding handle decomposition. Since for any point \(p \in M \) lying on the boundary of some handle of \(\mathcal{M} \) no \(\delta \)-chain through \(p \) can be found when \(\delta \) is too small (note that \(f \) preserves \(\mathcal{M} \)), we have

\[
CR(f) \subset \bigcup \{ \text{Int} \ H \mid H \text{ is a handle of } \mathcal{M} \}.
\]

From this it may be concluded that each connected component of \(CR(f) \) does not intersect more than one handle of \(\mathcal{M} \) and therefore its diameter is not greater than \(\varepsilon \). It follows that for each \(f \in B \) the set \(CR(f) \) is completely disjoint (note that its connected components are single points), which makes the proof complete. \(\square \)

Remark 6. In [2,4,10] was proved that for a generic \(f \in \mathcal{H}(M) \) the chain recurrent set \(CR(f) \) is the closure of the set of all periodic orbits. So, in the other words, Theorem 5 says that \(C^0 \) generically dynamics of a homeomorphism is, in a specific way, chaotic.

References