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Abstract All ligands of the epidermal growth factor receptor
(EGFR), which has important roles in development and disease,
are made as transmembrane precursors. Proteolytic processing
by ADAMs (a disintegrin and metalloprotease) regulates the bio-
availability of several EGFR-ligands, yet little is known about
the enzyme responsible for processing the recently identified
EGFR ligand, epigen. Here we show that ectodomain shedding
of epigen requires ADAM17, which can be stimulated by phorbol
esters, phosphatase inhibitors and calcium influx. These results
suggest that ADAM17 might be a good target to block the re-
lease of bioactive epigen, a highly mitogenic ligand of the EGFR
which has been implicated in wound healing and cancer.
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Keywords: EGF-receptor; EGF-receptor ligands; Epigen;
ADAMs; Ectodomain shedding

1. Introduction

Epigen is a recently identified ligand of the epidermal growth
receptor (EGFR, ErbB1), and belongs to a group of function-
ally and structurally similar growth factors that mediate cellu-
lar responses ranging from cell survival to proliferation and
migration [6,29]. Epigen was first isolated from a mouse kerat-
inocyte cDNA library due to its homology to the EGFR-li-
gand epiregulin [25]. It shows 24-37% identity to other
EGFR ligands (EGF, TGFa, HB-EGF, amphiregulin, beta-
cellulin, epiregulin), and contains six spatially conserved cys-
teine residues that are characteristic of members of this
protein family [6]. The biological activity of recombinant epi-
gen is similar to that of other EGFR ligands. In epithelial cells,
it stimulates phosphorylation of the EGFR and downstream
signaling molecules such as the mitogen activated protein ki-
nase (MAPK), and it promotes cell proliferation in a dose-
dependent manner [25].

Despite its relatively low affinity for the EGFR, epigen has
an increased mitogenic potential compared to other EGFR li-
gands. When EGFR expressing cells were treated with equal
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concentrations of EGF, TGFa or epigen, epigen was found
to be the most potent mitogen [12]. Epigen effectively activates
signaling via an EGFR-homodimer or through a heterodimer
between EGFR and ErbB2 [12]. Epigen is widely expressed in
a variety of mouse tissues, especially in multiple developing
structures in the embryo, such as developing tongue papillae,
the dorsal root ganglion and the inner and outer root sheath
of hair follicles, all of which are regions of active proliferation
[12]. Moreover, epigen expression is also observed in invasive
adenocarcinomas of the breast and prostate in humans [12].

All seven EGFR ligands described to date (TGFa, HB-EGF,
amphiregulin, epiregulin, EGF, betacellulin and epigen) are
synthesized as membrane-anchored precursors that are subse-
quently released from the cell surface by proteolysis [6]. This
proteolytic processing is considered to be a key regulatory step
controlling the bioavailability of soluble EGFR-ligands, and
thus signaling via the EGFR [18] (for a recent review, see
[2]). Membrane-anchored metalloprotease-disintegrin proteins
(ADAMs, a disintegrin and metalloprotease) have been impli-
cated in the ectodomain shedding of six out of the seven
currently known EGFR ligands [3,18,21,26]. Specifically,
ADAMI17 has been shown to have a major role in processing
of TGFa, HB-EGF, amphiregulin and epiregulin, and
ADAMI10 is a major sheddase of EGF and betacellulin
16,18,21,22,26]. However, little is known about the enzyme(s)
responsible for the proteolytic release of epigen. In this study,
we show that the ectodomain of epigen is released from the cell
membrane constitutively at low levels, and that its shedding
can be highly upregulated by phorbol esters, calcium iono-
phores and tyrosine phosphatase inhibitors. Moreover, we
provide evidence for a major role of ADAMI17 in stimulated
shedding of epigen. These results uncover a fiftth EGFR-ligand
as a substrate for ADAMI17, an enzyme with an essential role
in activating the EGFR during mouse development [18].

2. Materials and methods

An expression vector encoding the alkaline phosphatase (AP)-tagged
epigen was constructed by inserting a partial cDNA for mouse epigen,
which encoded for the EGF repeat, the juxtamembrane domain
containing the putative cleavage site, transmembrane domain and
cytoplasmic domain, into the 3’ end of human placental alkaline
phosphatase in the CMV-based vector APtag-5 (Genhunter Corp.).
The junction between AP and epigen was placed in frame at Leu 53
at the N-terminus of the EGF repeat of mouse epigen, which has
152 amino acid residues. The epigen-AP fusion construct also contains
a C-terminal Myc and His tag attached to the cytoplamic domain of
epigen.
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Wild type mouse embryonic fibroblasts (mEFs), generated from wild
type E13.5 mouse embryos and cultured as described previously [28],
and Adaml7—/— mEFs, which have also been described previously
[19] were transfected with a cDNA vector encoding the AP-epigen fu-
sion protein with Lipofect AMINE (Invitrogen). Fresh Opti-MEM
(Invitrogen) medium was added the next day, conditioned for 1 h,
and then replaced with fresh medium containing one of the following:
20 ng/ml PMA (Sigma), 2 pM ionomycin, 100 uM pervanadate, 1 pM
batimastat (BB94, provided by D. Becherer, GlaxoSmithKline, Re-
search Triangle Park, NC), 1-10 uM GI254023X or GW280164X
[13]. The conditioned medium containing inhibitors or activators of
ectodomain shedding was collected after 1 h. Evaluation of AP activity
by SDS-PAGE or spectrophotometry was performed as described pre-
viously [20].

3. Results

In order to study the ectodomain shedding of epigen from
cells, an alkaline phosphatase (AP) moiety was attached to
the amino terminus of the EGF repeat of epigen (Fig. 1a). A
similar approach has previously been used to study ectodomain
shedding of other EGFR ligands [21,28]. The main advantage
of adding an AP tag is that it facilitates the detection and quan-
titation of shed forms of epigen. Moreover, previous studies
have shown that the AP tag did not affect which enzyme was
responsible for shedding other EGFR-ligands, since both the
AP-tagged forms of TGFa or HB-EGF and untagged wild type
forms of these EGFR-ligands were shed by ADAMI7
[11,18,21,26]. When COS-7 cells were transfected with AP-
tagged epigen, low levels of constitutive shedding into the
culture supernatant were observed (Fig. 1b, lanes 1 and 3).
Constitutive release of epigen was strongly induced after addi-
tion of the phorbol ester PMA (Fig. 1b, lane 2 and Fig. 1c).
Both the constitutive and the PMA-regulated components of
epigen-AP shedding could be effectively inhibited by the
hydroxamate-type metalloprotease inhibitor BB94 (batimastat,
Fig. 1b, lane 4 and Fig. 1c) suggesting that a metalloprotease,
most likely an ADAM, is involved in this process. Specifically,
the strong stimulation of epigen shedding by PMA is reminis-
cent of ADAMI17 mediated ectodomain shedding of four other
EGFR ligands, TGFa, HB-EGF, amphiregulin and epiregulin,
as well as of other ADAMI17-substrates such as TNFa [21,30].
Essentially identical results were obtained when these experi-
ments were repeated in CHO cells (data not shown).

To further characterize the epigen sheddase in COS-7 cells,
we tested how two distinct hydroxamate-type metalloprotease
inhibitors with some selectivity against ADAMI10 or
ADAMI17 affected epigen shedding in these cells. The hydroxa-
mate GI254023X (GI) had previously been shown to block
ADAMI10-mediated constitutive release of IL6R, CX3CL1
and CXCLI16 at concentrations between 1 and 10 uM, while
compound GW280264X (GW) blocked PMA induced cleav-
age mediated by ADAMI17 at these concentrations [13]. Con-
stitutive shedding of epigen from COS7 cells was not affected
by 1 uM GI, whereas it was effectively blocked by GW at con-
centrations as low as 1 uM (Fig. 2). GI had a partial inhibitory
effect on epigen shedding at 5 uM, and increasing inhibition
was observed at higher concentrations of GI (7.5 uM and
10 uM). However, at all concentrations tested here (1-
10 uM), GW inhibited epigen shedding more efficiently than
GI. This inhibition profile suggested that ADAM17, but not
ADAMI0, was responsible for epigen shedding. The increased
shedding of epigen following stimulation by PMA was also
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Fig. 1. Constitutive and stimulated shedding of epigen from COS-7
cells. (a) Diagram of the alkaline phosphatase (AP) reporter detection
system used to monitor epigen shedding from COS-7 cells. An AP
moiety was fused in frame N-terminal to the EGF-repeat (EC,
extracellular domain) of mouse epigen. Proteolytic cleavage in the
juxtamembrane (JM) region releases the epigen-AP fusion protein into
the culture supernatant. The released epigen-AP can be detected by
SDS-PAGE (b) or through spectrophotometry (c for details, see
materials and methods, and reference [20]). (b) Epigen-AP is consti-
tutively released at low levels from transiently transfected COS-7 cells
(lanes 1,3). Release of epigen-AP from COS-7 cells was upregulated by
20 ng/ml PMA (lane 2) and blocked by the metalloprotease inhibitor
BBY4 at a concentration of 1 uM (lane 4) (c) Upregulation of epigen-
AP release from COS-7 cells upon PMA treatment is detected by a
spectrophotometric assay for AP activity [20]. PMA stimulated
shedding of epigen can be abolished by BB94 which also inhibits its
constitutive processing. n = 6, error bars: standard deviation.

consistent with a role for ADAMI17 in this process, since
ADAMI17 is considered to be one of the principal enzymes that
responds to short-term stimulation with PMA (<1 h) [7,21].
In order to directly test whether ADAM17 is required for
epigen shedding, we compared epigen processing in response
to various stimuli in wild type mouse embryonic fibroblasts
(mEF) versus mouse embryonic fibroblasts derived from
adaml7—/— knockout mice (E2 cells) [18,19]. Similar to
COS-7 cells, the epigen ectodomain was constitutively released
from wild type mEFs at low levels, and this constitutive release
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Fig. 2. Inhibition of constitutive release of epigen from COS-7 cells by
the ADAMI10-selective inhibitor GI254023X (GI), or the inhibitor
GW280264X (GW), which has a similar IC50 towards ADAMI10 and
ADAMI17 in cell based assays [8,13]. Constitutive shedding of epigen is
set to 100%. At 1 uM, GW effectively inhibits epigen shedding, whereas
GI does not, suggesting that this process is mediated by ADAMI17.
n =3, error bars: standard deviation.

was strongly stimulated by addition of PMA (Fig. 3). In addi-
tion, the phosphatase inhibitor pervanadate (PV) stimulated
epigen shedding more than 12-fold compared to constitutive
release in wild type cells, and the calcium ionophore ionomycin
(I0) stimulated epigen shedding nearly 4-fold (Fig. 3). The in-
crease in epigen shedding following stimulation with PMA, PV
and IO was almost completely abolished in adami7—/— E2
cells (Fig. 3). Shedding could be partially rescued by reintro-
duction of wild type ADAM17, but not of a catalytically inac-
tive mutant form of ADAM17 (data not shown). These results
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Fig. 3. Epigen shedding from mouse embryonic fibroblasts following
stimulation with PMA, pervanadate (PV) or ionomycin (IO) requires
ADAMI17. Transiently transfected wild type and adaml7—/— mEFs
were stimulated with PMA, PV or 1O for 1 h and levels of epigen-AP
released into culture media were compared. Similar to COS-7 cells
shown in Fig. 1, mEFs release high amounts of soluble epigen-AP
following PMA stimulation, and this release can be blocked by 1 pM
BB94. The increased shedding of epigen following addition of PMA,
10 or PV is almost completely abolished in adami7—/— cells. n > 4,
error bars: standard deviation.
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demonstrate that ADAM17 is the major sheddase for epigen in
mEF cells, corroborating the results obtained with the
hydroxamates GI and GW in COS7 cells. In addition, no de-
fect in the stimulation of epigen shedding by PMA, ionomycin
and pervanadate was observed in adaml0—/— mEFs compared
to their adaml0+/— counterparts, suggesting that ADAMI10 is
not required for epigen shedding (data not shown).

4. Discussion

Signaling via the EGFR (ErbB1) has essential roles in devel-
oping embryos and in adults [6,29]. In addition, dysregulation
of the EGFR signaling network has been tied to tumor forma-
tion and invasion [5]. Release of soluble EGFR ligands from
their membrane anchored precursors is considered to be a
key step in initiating the EGFR-signaling; therefore enzymes
mediating this release are potential drug targets for treatment
of EGFR-dependent tumors [1,2,9,23,31].

Here we show that shedding of epigen, an EGFR-ligand
with high mitogenic potential, can be stimulated by the phor-
bol ester PMA, the phosphatase inhibitor pervanadate and the
calcium ionophore ionomycin. Moreover, we demonstrate that
shedding of epigen induced by these three stimuli requires
ADAMI17. These results extend our previous analysis of the
role of ADAMs in shedding EGFR-ligands, and show that
all seven EGFR ligands identified to date are substrates of
either ADAM10 or ADAMI17. ADAM17 is thought to be
essential for activating the EGFR via shedding of several of
its ligands, since mice lacking ADAM]17 [18] resemble mice
lacking TGFa [15], HB-EGF [10,11] or amphiregulin [14], or
the EGFR [17,24,27]. It will now be interesting to evaluate
the phenotype of animals lacking epigen in relation to egfi—/
— or adaml7—/— animals as epigen is widely expressed in
the embryo in a variety of developing structures 12,25]. More-
over, whereas previous studies have demonstrated that
ADAMI17 is stimulated by phorbol esters such as PMA, and
by the phosphatase inhibitor pervanadate [4,21,30], this study
is the first, to our knowledge, to demonstrate that ADAM17
also responds to calcium influx, since ionomycin induced shed-
ding of epigen is abolished in the absence of ADAMI7.

In summary, this study shows that ectodomain shedding of
the recently identified EGFR ligand, epigen, is mediated by
ADAMI17. Identification of the epigen sheddase may have
important implications for cancer treatment since soluble epi-
gen, like other EGFR ligands, induces cell proliferation and
migration, two major processes that are dysregulated in tumor
cells. Since ectodomain shedding of EGFR-ligands is critical
for their functional activation, the identification of ADAMI17
as major sheddase of epigen further expands the potential of
ADAMI17 as a novel anti-cancer drug target.

Acknowledgements: We thank Drs. Roy Black and Jacques Peschon
for providing Adaml7—/— E2 cells and Drs. David Becherer and An-
dreas Ludwig for providing the hydroxamate inhibitors GI254023X
(GI), GW280264X (GW), and batimastat (BB94). This study was sup-
ported by NIH RO1 grant GM64750 to Carl P. Blobel.

References

[1] Arribas, J., Bech-Serra, J.J. and Santiago-Josefat, B. (2006)
ADAMs, cell migration and cancer. Cancer Metastasis Rev. 25
(1), 57-68.



44

[2] Blobel, C.P. (2005) ADAMs: key players in EGFR-signaling,

development and disease. Nat. Rev. Mol. Cell Biol. 6, 32-43.

[3] Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J. and Arribas,

J. (2003) TACE is required for the activation of the EGFR by
TGF-alpha in tumors. EMBO J. 22 (5), 1114-1124.

[4] Doedens, J.R. and Black, R.A. (2000) Stimulation-induced down-

regulation of tumor necrosis factor-alpha converting enzyme. J.
Biol. Chem. 275 (19), 14598-14607.

[5] Gschwind, A., Fischer, O.M. and Ullrich, A. (2004) The discovery

of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev.
Cancer 4 (5), 361-370.

[6] Harris, R.C., Chung, E. and Coffey, R.J. (2003) EGF receptor

ligands. Exp. Cell Res. 284 (1), 2-13.

[7] Horiuchi, K., Le Gall, S., Schulte, M., Yamaguchi, T., Reiss, K.,

[10

[11

[12

[13

[14

115

[16

[17

]

Murphy, G., Toyama, Y., Hartmann, D., Saftig, P., and Blobel,
C. (2006). Substrate selectivity and regulation of EGF-receptor
ligand sheddases by phorbol esters and calcium influx. Mol. Biol.
Cell., in press.

Hundhausen, C., Misztela, D., Berkhout, T.A., Broadway, N.,
Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R.,
Matthews, V., Kallen, K.J., Rose-John, S. and Ludwig, A. (2003)
The disintegrin-like metalloproteinase ADAMI10 is involved in
constitutive cleavage of CX3CL1 (fractalkine) and regulates
CX3CL1-mediated cell-cell adhesion. Blood 102 (4), 1186-1195.

Hynes, N.E. and Schlange, T. (2006) Targeting ADAMS and
ERBBs in lung cancer. Cancer Cell 10 (1), 7-11.

Iwamoto, R., Yamazaki, S., Asakura, M., Takashima, S.,
Hasuwa, H., Miyado, K., Adachi, S., Kitakaze, M., Hashimoto,
K., Raab, G., Nanba, D., Higashiyama, S., Hori, M., Klagsbrun,
M. and Mekada, E. (2003) Heparin-binding EGF-like growth
factor and ErbB signaling is essential for heart function. Proc.
Natl. Acad. Sci. USA 100 (6), 3221-3226.

Jackson, L.F., Qiu, T.H., Sunnarborg, S.W., Chang, A., Zhang,
C., Patterson, C. and Lee, D.C. (2003) Defective valvulogenesis in
HB-EGF and TACE-null mice is associated with aberrant BMP
signaling. EMBO J. 22 (11), 2704-2716.

Kochupurakkal, B.S., Harari, D., Di-Segni, A., Maik-Rachline,
G., Lyass, L., Gur, G., Kerber, G., Citri, A., Lavi, S., Eilam, R.,
Chalifa-Caspi, V., Eshhar, Z., Pikarsky, E., Pinkas-Kramarski,
R., Bacus, S.S. and Yarden, Y. (2005) Epigen, the last ligand of
ErbB receptors, reveals intricate relationships between affinity and
mitogenicity. J. Biol. Chem. 280 (9), 8503-8512.

Ludwig, A., Hundhausen, C., Lambert, M.H., Broadway, N.,
Andrews, R.C., Bickett, D.M., Leesnitzer, M.A. and Becherer, J.D.
(2005) Metalloproteinase inhibitors for the disintegrin-like metallo-
proteinases ADAMI10 and ADAMI17 that differentially block
constitutive and phorbol ester-inducible shedding of cell surface
molecules. Comb. Chem. High Throughput Screen 8 (2), 161-171.
Luetteke, N.C., Qiu, T.H., Fenton, S.E., Troyer, K.L., Riedel,
R.F., Chang, A. and Lee, D.C. (1999) Targeted inactivation of the
EGF and amphiregulin genes reveals distinct roles for EGF
receptor ligands in mouse mammary gland development. Devel-
opment 126 (12), 2739-2750.

Mann, G.B., Fowler, K.J., Gabriel, A., Nice, E.C., Williams, R.L.
and Dunn, A.R. (1993) Mice with a null mutation of the TGF
alpha gene have abnormal skin architecture, wavy hair, and curly
whiskers and often develop corneal inflammation. Cell 73 (2),
249-261.

Merlos-Suarez, A., Ruiz-Paz, S., Baselga, J. and Arribas, J. (2001)
Metalloprotease-dependent protransforming growth factor-alpha
ectodomain shedding in the absence of tumor necrosis factor-
alpha-converting enzyme. J. Biol. Chem. 276 (51), 48510-48517.

Miettinen, P.J., Berger, J.E., Meneses, J., Phung, Y., Pedersen,
R.A., Werb, Z. and Derynck, R. (1995) Epithelial immaturity and
multiorgan failure in mice lacking epidermal growth factor
receptor. Nature 376 (6538), 337-341.

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(23]

[26]

[27]

(28]

[29]

(30]

(31]

U. Sahin, C.P. Blobel | FEBS Letters 581 (2007) 4144

Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg,
S.W., Lee, D.C., Russel, W.E., Castner, B.J., Johnson, R.S.,
Fitzner, J.N., Boyce, R.W., Nelson, N., Kozlosky, C.J., Wolfson,
M.F., Rauch, C.T., Cerretti, D.P., Paxton, R.J., March, C.J. and
Black, R.A. (1998) An essential role for ectodomain shedding in
mammalian development. Science 282, 1281-1284.

Reddy, P., Slack, J.L., Davis, R., Cerretti, D.P., Kozlosky, C.J.,
Blanton, R.A., Shows, D., Peschon, J.J. and Black, R.A. (2000)
Functional analysis of the domain structure of tumor necrosis
factor-alpha converting enzyme. J. Biol. Chem. 275 (19), 14608—
14614.

Sahin, U., Weskamp, G., Zheng, Y., Chesneau, V., Horiuchi, K.
and Blobel, C.P. (2006) A sensitive method to monitor ectodo-
main shedding of ligands of the epidermal growth factor receptor
(Patel, T.B., Ed.), Epidermal Growth Factor: Methods and
Protocols, Vol. 327, pp. 99-113, Humana Press Inc., Totowa, NJ.
Sahin, U., Weskamp, G., Zhou, H.M., Higashiyama, S., Peschon,
J.J., Hartmann, D., Saftig, P. and Blobel, C.P. (2004) Distinct
roles for ADAMI10 and ADAMI17 in ectodomain shedding of six
EGFR-ligands. J. Cell Biol. 164, 769-779.

Sanderson, M.P., Erickson, S.N., Gough, P.J., Garton, K.J.,
Wille, P.T., Raines, E.-W., Dunbar, A.J. and Dempsey, P.J. (2005)
ADAMI10 mediates ectodomain shedding of the betacellulin
precursor activated by p-aminophenylmercuric acetate and extra-
cellular calcium influx. J. Biol. Chem. 280 (3), 1826-1837.
Schlessinger, J. (2002) Ligand-induced, receptor-mediated
dimerization and activation of EGF receptor. Cell 110 (6), 669—
672.

Sibilia, M. and Wagner, E.F. (1995) Strain-dependent epithelial
defects in mice lacking the EGF receptor. Science 269 (5221), 234
238, [published erratum appears in Science 1995 August
18;269(5226):909].

Strachan, L., Murison, J.G., Prestidge, R.L., Sleeman, M.A.,
Watson, J.D. and Kumble, K.D. (2001) Cloning and biological
activity of epigen, a novel member of the epidermal growth factor
superfamily. J. Biol. Chem. 276 (21), 18265-18271.

Sunnarborg, S.W., Hinkle, C.L., Stevenson, M., Russell, W.E.,
Raska, C.S., Peschon, J.J., Castner, B.J., Gerhart, M.J., Paxton,
R.J., Black, R.A. and Lee, D.C. (2002) Tumor necrosis factor-
alpha converting enzyme (TACE) regulates epidermal growth
factor receptor ligand availability. J. Biol. Chem. 277 (15), 12838~
12845.

Threadgill, D.W., Dlugosz, A.A., Hansen, L.A., Tennenbaum, T.,
Lichti, U., Yee, D., LaMantia, C., Mourton, T., Herrup, K. and
Harris, R.C., et al. (1995) Targeted disruption of mouse EGF
receptor: effect of genetic background on mutant phenotype.
Science 269 (5221), 230-234.

Weskamp, G., Cai, H., Brodie, T.A., Higashyama, S., Manova,
K., Ludwig, T. and Blobel, C.P. (2002) Mice lacking the
metalloprotease-disintegrin MDC9 (ADAMY9) have no evident
major abnormalities during development or adult life. Mol. Cell.
Biol. 22 (5), 1537-1544.

Yarden, Y. and Sliwkowski, M.X. (2001) Untangling the ErbB
signalling network. Nat. Rev. Mol. Cell. Biol. 2 (2), 127-137.
Zheng, Y., Saftig, P., Hartmann, D. and Blobel, C. (2004)
Evaluation of the contribution of different ADAMs to TNFa
shedding and of the function of the TNFa ectodomain in ensuring
selective stimulated shedding by the TNFa convertase (TACE/
ADAM17). J. Biol. Chem. 279, 42898-42906.

Zhou, B.B., Peyton, M., He, B., Liu, C., Girard, L., Caudler, E.,
Lo, Y., Baribaud, F., Mikami, 1., Reguart, N., Yang, G., Li, Y.,
Yao, W., Vaddi, K., Gazdar, A.F., Friedman, S.M., Jablons,
D.M., Newton, R.C., Fridman, J.S., Minna, J.D. and Scherle,
P.A. (2006) Targeting ADAM-mediated ligand cleavage to inhibit
HER3 and EGFR pathways in non-small cell lung cancer. Cancer
Cell 10 (1), 39-50.



	Ectodomain shedding of the EGF-receptor ligand epigen is mediated  by ADAM17
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	References


