View metadata, citation and similar papers at core.ac.uk brought to you by

provided by Elsevier - Publisher Connector

Discrete Applied Mathematics 166 (2014) 97-114

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Exact algorithms and heuristics for the Quadratic Traveling @CmssMark
Salesman Problem with an application in bioinformatics”

A. Fischer?, F. Fischer?, G. Jager©*,]. Keilwagen ¢, P. Molitor, I. Grosse &8

4 Department of Mathematics, TU Dortmund, D-44227 Dortmund, Germany
b Department of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
€ Department of Mathematics and Mathematical Statistics, University of Umed, S-90187 Umed, Sweden

d Institute for Biosafety in Plant Biotechnology, Julius-Kiihn-Institut (JKI) - Federal Research Centre for Cultivated Plants, D-06484
Quedlinburg, Germany

€ Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany

f Institute of Computer Science and Universitdtszentrum Informatik, Martin Luther University Halle-Wittenberg, D-06120 Halle,
Germany
& German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany

ARTICLE INFO ABSTRACT

Article history: In this paper we introduce an extension of the Traveling Salesman Problem (TSP), which
Received 21 September 2012 is motivated by an important application in bioinformatics. In contrast to the TSP the
Received in revised form 1 July 2013 costs do not only depend on each pair of two nodes traversed in succession in a cycle

Accepted 24 September 2013

Available online 25 November 2013 but on each triple of nodes traversed in succession. This problem can be formulated as

optimizing a quadratic objective function over the traveling salesman polytope, so we
call the combinatorial optimization problem quadratic TSP (QTSP). Besides its application
Keywords: in bioinformatics, the QTSP is a generalization of the Angular-Metric TSP and the TSP
giﬁecllir-]agnija-llgezglr?; Problem with reload costs. Apart from the TSP with quadratic cost structure we also consider
Branch-and-cut the related Cycle Cover Problem with quadratic objective function (QCCP). In this work
Heuristical methods we present three exact solution approaches and several heuristics for the QTSP. The
Exact methods first exact approach is based on a polynomial transformation to a TSP, which is then
Bioinformatics solved by standard software. The second one is a branch-and-bound algorithm that
relies on combinatorial bounds. The best exact algorithm is a branch-and-cut approach
based on an integer programming formulation with problem-specific cutting planes. All
heuristical approaches are extensions of classic heuristics for the TSP. Finally, we compare
all algorithms on real-world instances from bioinformatics and on randomly generated
instances. In these tests, the branch-and-cut approach turned out to be superior for solving
the real-world instances from bioinformatics. Instances with up to 100 nodes could be
solved to optimality in about ten minutes.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

Given a weighted graph the Traveling Salesman Problem (TSP) is the problem of finding a tour with minimal costs where
the costs are associated to each pair of nodes that are traversed in succession.The TSP is well-known to be an & $-hard

* A preliminary version of this paper appeared in the proceedings of the Second International Conference on Combinatorial Optimization and Applications
(COCOA) 2008, Lecture Notes in Comput. Sci. 5165, pp. 211-224.
* Corresponding author. Tel.: +46 90 786 6141; fax: +46 90 786 5222.
E-mail address: gerold.jaeger@math.umu.se (G. Jager).

http://dx.doi.org/10.1016/j.dam.2013.09.011
0166-218X © 2013 The Authors. Published by Elsevier B.V. Open access under CCBY-NC-ND license.

https://core.ac.uk/display/81134756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dam.2013.09.011
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.09.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:gerold.jaeger@math.umu.se
http://dx.doi.org/10.1016/j.dam.2013.09.011
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

98 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

problem. In this paper we consider an extension of the TSP. The Quadratic Traveling Salesman Problem (QTSP) is the problem
of finding a cost minimal tour where the costs are associated to each triple of nodes that is traversed in succession. Because
a path of three nodes is contained in a tour if and only if the two corresponding arcs are present, the QTSP can be modeled
as optimizing a quadratic objective function over the traveling salesman polytope [8].

The QTSP is inspired by the problem of finding the optimal Permuted Markov (PM) model [10] or the optimal Permuted
Variable Length Markov (PVLM) model [40] for a given set of DNA sequences. This problem is important in bioinformatics and
genome research for the recognition of transcription factor binding sites and splice sites. Given a set of short DNA sequences
of equal length n such as a set of splice sites, the task is to learn a pattern from this set that allows the recognition of further
splice sites from a set of unknown sequences. Such patterns are typically learned by statistical models, and PM models and
PVLM models are two of the most powerful models for the recognition of splice sites. Learning a pattern from data by a
statistical model is often accomplished by finding the maximum likelihood estimates (MLEs) of the model parameters, and
the problem of finding the MLEs of the parameters of PM models or PVLM models results in the QTSP. A more detailed
description of the biological background and the connection to the QTSP is given in Section 2.

The TSP is closely related to the Cycle Cover Problem (CCP) that asks for a cost minimal set of disjoint cycles over all
nodes. The CCP corresponds to a linear assignment problem, which can be solved by the Hungarian method in polynomial
time [28]. However, we will show that its quadratic counterpart is & #-hard. A special case of the QTSP is the Angular-Metric
TSP [1], which for given n points in the Euclidean space aims to determine a tour with minimal total angle change. It has
applications in robotics, e.g, it allows to determine optimal robot paths w.r.t. energetic aspects. In particular, robots often
tend to have a higher energy demand if the path bends sharply, so one is interested in tours without high curvature. An
extension of Angle-TSP is the so called TSP for Dubins vehicle [38,33,32], where the task is to determine a shortest trajectory
of a nonholonomic vehicle w.r.t. given curvature constraints. In their solution approach, the authors of [33] determine an
optimal tour where the changes in direction are weighted against the length of the tour, which is a special case of QTSP, too.
The TSP with reload costs is a further special case of QTSP. Here, given an arc-colored graph, the task is to determine a tour
with minimal weighted sum of the color changes along the tour. Such cost structures arise, e.g., in transport networks if the
costs for loading processes are high in comparison to the transportation costs [2].

In this work, we present several exact and heuristical algorithms for the solution of the QTSP. We consider three exact
algorithms. The first algorithm transforms the QTSP to an STSP to be solved by the state-of-the-art solver CONCORDE [7].
The second algorithm is a Branch-and-Bound algorithm based on combinatorial lower bounds. Here, we use a lower bound
on the optimal value of the & #-hard QCCP as a lower bound for QTSP. The third algorithm employs a Branch-and-Cut
(BnC) algorithm based on a linear relaxation of a linearized integer programming formulation of the QTSP, which allows
us to handle the well-known subtour elimination constraints [8]. Apart from these constraints we present further valid
inequalities of the integer program that can be added during the BnC algorithm. Using the new cutting planes we could
reduce the running times of the instances from bioinformatics significantly in comparison to BnC without the new cutting
planes.

However, our experiments show that exact methods may lead to large running times or to a large number of nodes
in the BnB/BnC-tree, especially for instances with costs taken uniformly at random from a given set. In particular the BnB
algorithm benefits from good start solutions. This motivates the investigation of heuristical approaches for the QTSP. We
present several heuristics that are extensions of classical heuristics for the TSP.

Finally, we experimentally compare the algorithms for several real-world instances from bioinformatics and for some
randomly generated instances, partially motivated by other applications described above. Most heuristics lead to almost-
optimal solutions for the real-world instances, and the Branch-and-Cut algorithm is the fastest exact algorithm for both
random and real-world instances. This algorithm is capable of solving large real-world instances to proven optimality in
reasonable time.

Note that some conclusions from our experiments are rather interesting not only for this specific problem, but possibly
also for other combinatorial optimization problems. For example, in our experiments we present example instances, where
local search algorithms benefit from relatively poor starting solutions, and other example instances, where the currently
leading TSP solver CONCORDE behaves poorly.

The paper is organized as follows. In Section 2 we describe the motivating problem from bioinformatics that leads to
QTSP. In Section 3 we formally introduce the QTSP, QCCP and related problems and study their computational complexity.
Furthermore, we develop a polynomial reduction from QTSP to TSP, which is the basis for our first exact algorithm. Our exact
and heuristical algorithms for the QTSP are presented in Sections 5 and 6, respectively. We compare the exact methods
and the heuristics on several random and real-world instances in Section 7. Finally, we summarize this paper and give
suggestions for future research in Section 8.

2. Motivation from Bioinformatics

Gene regulation in higher organisms is accomplished by several cellular processes, two of which are transcription and
RNA splicing. In order to better understand these processes, it is desirable to have a good understanding of how transcription
factors bind to their DNA binding sites and how the spliceosome binds to RNA splice sites. Many approaches for the
computational recognition of transcription factor binding sites or splice sites rely on statistical models, and two of the
most promising models for this task are Permuted Markov (PM) models [10] and Permuted Variable Length Markov (PVLM)

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 99

models [40]. However, finding the optimal PM model or the optimal PVLM model for a given data set is & $#-hard. Hence,
heuristics for this problem were used in [10,40].

The following paragraphs summarize the key steps that lead from P(VL)M models of order 2 to the QTSP. These paragraphs
are not required for understanding the rest of the paper, but they might be helpful for understanding the origin of the QTSP.

Consider a data set x of sequences of length n, and consider a PM model or a PVLM model for modeling these sequences.
The central model parameter of a P(VL)M model is a permutation 7 of positions 1, ..., n.

The log-likelihood of a P(VL)M model of order 1 with given permutation 7 is given by

n
log P(x|7r) = b(vz(1)) + Z C(Vr(=1)s V) (n
=2
where b is an n-dimensional vector and c is an n x n matrix with elements that can be computed analytically from the given
data set x [10,40]. Eq. (1) states that the log-likelihood can be written as a sum of a term that depends only on node vy 1)
and n — 1 further terms, where the j-th term depends only on the pair of nodes (vz 1), Vx(j))-
The problem of finding the permutation 7r that maximizes the log-likelihood of a P(VL)M model of order 1 can therefore
be stated by

7= argmﬂax{logPl(x|n)}. (2)

This optimization problem can be transformed into a Traveling Salesman Problem (see Section 3 for a formal introduction
of the TSP).
Analogously, the log-likelihood of a P(VL)M model of order 2 with given permutation 7 is given by

n
log P, (X|r) = b(vz(1), Vr(2)) + Z C(Vr(i=2)> Un(j=1)s Vx())s (3)
=3

where b is an n x n matrix and c is an n x n x n tensor with elements that can be computed analytically from the given data
set x[10,40]. As above, Eq. (3) states that the log-likelihood can be written as a sum of a term that depends only on the pair of
nodes (vz (1), Ur(2)) and n — 2 further terms, where the j-th term depends only on the triple of nodes (vz 2y, Vx(-1), Uz (j))-
Consequently, the problem of finding the permutation 77 that maximizes the log-likelihood of a P(VL)M model of order

2 can be stated by

T = argmﬂax{long(xht)}. (4)

Analogously, this problem can be transformed into a Traveling Salesman Problem with a quadratic objective function. We
refer to Section 3.2 below for a formal description of this transformation.

3. Problem description

3.1. Notations

Let G = (V, A) be a complete directed graph with node set V = {1,...,n} and setofarcs A = V® = {(i,j):i,j €
V,i # j}. We denote by V® = {(i,j, k):1,j, k € V, |{i,], k}| = 3} the set of all 2-arcs associated to the graph G. We often

write ij instead of (i, j) € V® as well as ijk instead of (i, j, k) € V. A sequence of nodes (vy, vs, . .., vy) is called a path if
vi,v; € V,up #vj,0,j € {1,...,k}, i # j. Apath (vq, v2, ..., vy) in G is called Hamiltonian if k = n. Similarly, a sequence
of nodes (vy, vz, ..., U, v1) is called a cyclein Gif v, vj € V, v; # vj,i,j € {1, ..., Kk}, i # j. Acycle (vy, va, ..., Vg, V1) iS
called Hamiltonian cycle or tour if k = n. Throughout the paper we will assume thatn > 3.

Given arc weights ¢;: V® — TR the total cost of a cycle C = (vy, va, . .., Vg, V1) iS

k—1

a(C) = Zcz(vi, Vit1) + (v, v1).

i=1
The Traveling Salesman Problem (TSP) is then
minimize ¢;(T),
subject to T is a tour in G.

If ¢; is symmetric, i.e. if ¢;(u, v) = ¢/ (v, u) forallu, v € V,u # v, the problem is also called Symmetric Traveling Salesman
Problem (STSP), otherwise Asymmetric Traveling Salesman Problem (ATSP).

Related to the TSP is the Weighted Starting Vertex Hamiltonian Path Problem (SVHPP). Instead of a tour, the SVHPP asks for
a Hamiltonian path P = (vy, ..., v,) with minimal costs, i.e. with

n—1
a(P) = Z c1(vi, vig1),
pa

100 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

the SVHPP reads

minimize ¢;(P),
subject to P is a Hamiltonian path in G.

Another related problem is the Cycle Cover Problem (CCP), which asks for a set of cycles K = {Cy, ..., G} such that each
node is contained in exactly one cycle and the sum of the arc weights contained in these cycles is minimized (note that the
CCP is equivalent to a linear assignment problem).

The Quadratic Traveling Salesman Problem (QTSP) differs from the TSP in that the costs of a tour do not depend only on
each two but on each three nodes contained in succession in the tour. Formally, given a weight function ¢,: V® — R, the
costs of a cycle C = (v, ..., vy, v1) are

k—2
cq(C) == Zcq(vi, Vit1, Vig2)s +Cq(Vk—1, Vg, V1) + ¢q(Uk, V1, v2),

i=1
and the QTSP reads

minimize ¢4 (T),

subject to T is a tour in G.

If ¢4 is symmetric, i.e. if ¢;(u, v, w) = cq(w, v, u) forallu, v, w € V, [{u, v, w}| = 3, the problem is also called Symmetric
Quadratic Traveling Salesman Problem (SQTSP), otherwise Asymmetric Quadratic Traveling Salesman Problem (AQTSP).

Similarly to the standard case, the Quadratic Starting Vertex Hamiltonian Path Problem (QSVHPP) asks for a Hamiltonian
path with minimal costs w.r.t. ¢4, and the Quadratic Cycle Cover Problem (QCCP) asks for a cycle cover with minimal costs
W.ILL Cq.

Remark 3.1. SVHPP can be easily transformed to TSP, as well as QSVHPP to QTSP by adding an additional artificial node.

3.2. Transformation of instances from Bioinformatics to a QTSP

We describe shortly how the optimization problem (4) can be transformed to a QTSP. Let n be the length of the

DNA sequences. Then we define the complete graph G = (V, A) with set of nodes V = {0, 1, ..., n}. A permutation
w:{1,...,n} — {1,...,n} corresponds to a tour (0, 7 (1), ..., (n),0) in G. The artificial node 0 is used to model the
first summand in (3). Note that all values b(vx (1, Vx(2)) and ¢ (Vx—2), Vz(-1)> V=G)),J € {3, ..., n}, are nonpositive because
they are logarithms of probabilities. So with
—bG, k), i=0,
cq(i,j, k) =30, j=0vk=0,
—c(i,j, k), otherwise,
we get
min{c,(T): T is a tour in G} = — max{log P, (x|r): 7 is a permutationof 1, ..., n}.

This is a QTSP as defined above.

4. Basic results
4.1. Complexity results

The (decision variants of the) Hamiltonian path problem and the traveling salesman problem are well-known to be & -
complete [14]. As QTSP and QSVHPP are generalizations of TSP and SVHPP, respectively, both problems are & $-complete,
too. This can be shown by defining ¢, (u, v, w) == ¢(u, v) for all (u, v, w) € V©.

However, the situation is different for CCP and QCCP. Whereas CCP is solvable in polynomial time by the Hungarian
method [28], QCCP is also & £-complete. The & #-completeness of QCCP easily follows from the & #-completeness of the
more specific Angular-Metric Cycle Cover Problem [1], which is the problem of minimizing the total angle change of a set of
cycles for a set of points in the Euclidean space, where the weight of a cycle is the sum of the angle changes at its points. In
the Appendix we provide a different proof of the & #-completeness of QCCP, which uses a much simpler construction.

Theorem 4.1. The decision problem of QCCP is N P-complete.

Note that this theorem is an important basis for creating and modifying a cycle patching heuristic for the QTSP in Section 6.
A similar result like Theorem 4.1 holds for an extension of the TSP, namely the Generalized Traveling Salesman Problem
(GTSP) which will be introduced in the next section (see [22] for a proof for this result).

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 101
4.2. Polynomial reduction from QTSP to TSP

The TSP is one of the best studied combinatorial optimization problems, and there are very sophisticated software
packages for the solution of TSP, e.g., the well-known STSP-solver CONCORDE [7], which has successfully been used to
solve very large TSP-instances to optimality. Unfortunately, these packages cannot be used to solve QTSP-instances directly.
However, because QTSP and TSP are both ./ #-complete problems, we know that a QTSP-instance can be transformed into
an instance of TSP in polynomial time. In the following we present one such transformation. This transformation of QTSP to
ATSP, and via the transformation of Jonker and Volgenant [28] to STSP allows us to use the CONCORDE-solver for the solution
of QTSP. We will present computational results in Section 7.

As substep from QTSP to TSP we first transform QTSP into a so called Generalized Traveling Salesman Problem (GTSP)[12].
The asymmetrlc GTSP is formulated as follows. We are given a complete arc-weighted directed graph G= (V A) with node

set V, set of arcs A and arc- welghts ¢:V® — R.The node set V can be partitioned into k node sets V1, ...,V C V k>3,
so called clusters, such that V = ViU. ..UV, vin Vi=40,i,j=1,...,k,i#j The taskis to determine an optlmal directed
cycle in G such that each cluster Vi,i=1,...,k, isvisited at least once. We will consider here the slightly different variant

E-GTSP that asks for a cycle that visits exactly one node of each cluster.

There are several transformations known in the literature that allow to solve E-GTSP (GTSP) as an ATSP or even STSP, see,
e.g., [9]. Some of them even do not enlarge the number of nodes [35,6] in the asymmetric case.

We will transform a QTSP instance in three steps to an STSP instance to be solved with CONCORDE. In a first step,
we transform a QTSP instance to an E-GTSP instance using the following Theorem 4.2. Second, the E-GTSP instance is
transformed to an ATSP instance using the construction of Behzad and Modarres [6]. Finally, the ATSP instance is transformed
to an STSP instance using the approach of Jonker and Volgenant [28]. The final STSP instance will have 2n(n — 1) nodes.

Now we show how to transform QTSP to E-GTSP.

Theorem 4.2. Given an instance of AQTSP on a directed complete graph G = (V, A) with weights c,: V® — R, consider the
E-GTSP instance on a directed graph G = (V, A) with V := {uv: (u, v) € V@}and A = {(uv,u'v') € V x V:uv # u'v'} and
arc weights ¢: A — R with

/ . 7 /
& i Jeuv, v, ifv=uu#v
cluw, wv) = {ZM, otherwise,

where M == Z(u,u,w)evG) |cq(u, v, w)| + 1. Then both problems are equivalent.

Proof. Each solution of the constructed E-GTSP instance with objective value less than M, in particular each optimal solution,
visits each of the clusters exactly once and contains exactly one node of each cluster. Furthermore, such cycles contain
only arcs (uv, u'v') with v = v’ and u # v’ because otherwise the costs of the cycle would be at least M. So we get
a one-to-one correspondence between optimal solutions of the constructed E-GTSP-instance and the QTSP-instance. Let
C = (uqvq, Uyvy, ..., Uy, U1V7) be an optimal solution of the E-GTSP-instance. Then we know by the considerations above
that vi = ujq,i € {1,...,n =1}, v, = uyand y; # y;foralli,j € {1,...,n},i # j. Hence, the cycle (us, ..., up, uy) is
an optimal solution of the QTSP-instance with the same objective value. The other way round we can specify an optimal
solution of the E-GTSP-instance from an optimal solution of QTSP. O

5. Exact algorithms for QTSP

In this section we present three exact algorithms for solving the QTSP. The first one, presented in Section 5.1, uses the
transformation of Section 4.2 to transform the QTSP instance into an STSP instance to be solved by a standard solver of the
STSP. The second approach in Section 5.2 is a Branch-and-Bound algorithm based on combinatorial lower bounds. Third,
we present a Branch-and-Cut algorithm in Section 5.3. In our experiments we used two variants of the Branch-and-Cut
algorithm, one that only separates the subtour elimination constraints, and one that separates several additional cutting
planes to be presented in Section 5.3.

5.1. Solving as STSP

In Section 4.2 we have presented one possible approach for transforming QTSP to an E-GTSP and afterwards to an ATSP
or STSP. Because the TSP-solver CONCORDE can only handle symmetric instances, we describe below the coefficients in
the objective function of the final STSP (for using an ATSP-solver, the last step can be omitted). We assume, w.l.0.g., that
all weights are nonnegative (otherwise we can add a sufficiently large constant to all weights). We only give the final
construction that can be obtained by applymg the constructions of Theorem 4.2, [6] and [27] in order.

Given a graph G = (V, A) with V = {1, ..., n} and weights ¢;: V® — R, the final graph is G = (V, A) with

V={ij" i :ijev®} and A:={{u,v}:u,veV,u#v.

102 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

For each node i € V we arrange the nodes j € V \ {i} in a cycle and denote the successor of j on the cycle for i by s(i, j), e.g.,
fori = 1andcycle (2,...,n,2)itiss(1,j) =j+ 1forj < nands(1, n) = 2. The objective function is given by

G, k™) = E@ij™, k™) = oo,

—n.M, ij = ki,

St 0 =)0, i=k I=s(j),

CHT KTy =k) = i ey + M, i #£ L s(j) = k. i # k.
00, otherwise,

where M is a sufficiently large constant, e.g., M = ¢,(T) for some arbitrary tour T in G. Depending on the solver, edges
(u, v) € Awith €(u, v) = oo can be omitted from the graph or one can use a sufficiently large constant, e.g., M - (n + 1)2.
Note, in order to solve these instances by some standard TSP solvers it might be necessary to increase all coefficients by n- M
such that the final coefficients are nonnegative.

5.2. Branch-and-bound algorithm

The Branch-and-Bound algorithm (BnB) traverses in the worst case all possible tours and computes the tour with minimal
costs. To avoid traversing all tours, it computes (local) lower bounds and upper bounds by traversing and analyzing subpaths
of all possible tours.

First, we start with an arbitrary QTSP heuristic in order to compute a good upper bound. Each time a new subpath is
considered, a lower bound for a QTSP solution containing this subpath is computed. In our BnB approach we use as lower
bound the solution of the CCP problem w.r.t. the objective function

a(u,v) = min c¢;(u,v,w)
weV\{u,v}
(see also the description of the AP heuristic in Section 6). If the lower bound is greater than or equal to the current upper
bound, i.e., the best currently known solution, we can prune this branch. The upper bound is updated if a tour with smaller
costs is found. All tours are started with a fixed node vy, which is chosen in such a way that the sum over all values ¢4 (v1, X, y)
withx # vq, y # vq, X # y is maximal. This choice is used because we expect a higher amount of pruning if the lower bounds
in the first steps are rather large.

5.3. Branch-and-cut algorithm

5.3.1. Integer-programming model

The most successful approach for the TSP is using an Integer Programming (IP) formulation based on arc variables. We
assign to each arc a € A a binary variable x, € {0, 1} with the interpretation x, = 1 if and only if the arc a is contained in
the tour and zero otherwise. The IP formulation of Dantzig et al. [8] reads

minimize Z c(u, v) - Xu,v)

(u,v)€A
subject to Z Xuv) = Z Xpuw =1, uev, (5)
veV:(u,v)eA veV:(v,u)eA
Y. Xuw SISI-1, B#SCV, (6)
(u,v)€A:u,ves
x € {0, 1}, (7)

Constraints (5) ensure that each node is entered and left exactly once by the tour. Conditions (6) are the well-known Subtour
Elimination Constraints (SEC), forbidding cycles of length less than n. Finally, constraint (7) ensures the integrality of the
variables. Note, we get a formulation for CCP by omitting the SEC (6).

Concerning QTSP, the cost coefficient ¢, (u, v, w) is counted for a tour if and only if the two corresponding arcs (u, v) and
(v, w) are contained in the tour. Hence, we can formulate QTSP as an integer program with quadratic objective function

minimize Z Cq(U, v, W) * Xqu,v) * Xw,w)
(u,v,w)ev®
subject to (5), (6), (7).

By introducing a new variable y, ») for each product x, .y - X(»,w), One gets a linear integer programming formulation for
QTSP

minimize E Cq(U, v, W) * Yu,v,w)
(u,v,w)ev®

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 103

subject to (5), (6), (7),

Xu,v) = Z Yuvw) = Z Ywuv, M©,0) €A, (8)
weV: weV:
(u,v,w)ev® (w,u,)ev
3)
yelo, 11", (9)

Eqgs. (8) can be interpreted in the following way. If an arc (i, v) € Ais contained in the tour, there has to be a node w € V so
that the path (u, v, w) is part of the tour and a node w’ € V so that the path (w’, u, v) is part of the tour. Similar constraints
occur in a linearization of the Quadratic Assignment Problem (QAP), see, e.g., [13]. The following result shows that the model
above is indeed a formulation for QTSP.

Lemma 5.1. A vector (x,y) € {0, 1}* x [0, l]VG) satisfies all constraints (5)-(9) if and only if the x-variables correspond to a
tour and there holds Xy, v) * X(v.w) = Y(u.v.w) for all (u, v, w) € VO,

Proof. The x-variables satisfy (5)-(7) if and only if x corresponds to a tour because these constraints are a formulation of
TSP. It remains to prove X) - Xw.w) = Ya.v.w) for all u, v, w) € Vv,

First, w.l.o.g., let X, ,, = 0. Then by (8) and (9) it follows Y, v,uw) = Yw,u,vyy = 0forallw € V \ {u, v}. It remains to
consider the case X,y = X(.w) = 1. Assume Y .0 < 1. Then there exists w’ # w with y .y > 0 by (8), and this
implies X(, vy = 1by (8). This is a contradiction to (5). Thus y(,y,uy) = 1. O

Remark 5.2. We get an integer programming formulation for the QCCP by the constraints (5) and (7)-(9).

5.3.2. The algorithm and additional cutting planes

An alternative to using combinatorial bounds in a BnB approach is the utilization of linear programming (LP) relaxations.
An LP-relaxation can be obtained from an IP-formulation by replacing integrality constraints by simple box constraints, i.e.
in the case of the TSP the LP-relaxation reads

minimize Z (U, v) - Xu,v)
(u,v)eA

subject to (5), (6),
x € [0, 114, o

which is a standard linear program, which can be solved efficiently. However, the LP-relaxation still contains an exponential
number of constraints (6). Thus, it is practically impossible to add all constraints to the model at once. Fortunately, it is
possible to combine linear programming with a so called cutting-plane approach, which starts with only a small number
of constraints and adds additional constraints during the solution process if they are violated. It is well-known that cutting
plane approaches can be used to solve an LP in polynomial time by the ellipsoid method (see, e.g., [39]), if the corresponding
separation problems can be solved in polynomial time [20]. In addition to the necessary constraints for a formulation, one
usually separates further cutting planes that tighten the LP-relaxation in order to get even stronger bounds. Combining
cutting planes with a BnB approach is called Branch-and-Cut (BnC).

In fact, the BnC approach is the most successful approach for exactly solving the STSP [8,19,36]. For instance, the BnCbased
TSP solver CONCORDE [3,7] has solved a TSP instance of 85,900 cities [4]. This is possible because the subtour elimination
constraints (6) can indeed be separated in polynomial time [25], but CONCORDE also uses several further cutting planes.

We apply similar techniques to the QTSP. By replacing the integrality constraints by box constraints we get the LP-
relaxation for the QTSP

minimize Z Cq(U, v, W) - Yu,v,w)
(u,v,w)evV®
subject to (5), (6), (8), (9), (10).
In order to get an exact algorithm for the QTSP, it is sufficient to separate only the standard subtour elimination
constraints (6). In our numerical experiments we also tried this basic BnC approach, which we will denote by BnC-S.

However, we also improved the LP-relaxation by additional cutting planes to be presented next. The respective algorithm
is called BnC-E.

1. The SEC can be strengthened as follows:

n
2 Xemt DL Yuew =BI-1 ScV.2sisi<c, (11)
(u,v)eA: (wv.w)ev®:
u,ves u,weS,veS

where the subset S is required to have cardinality smaller than n/2. This strengthening is correct, as not only the direct
connections between two nodes are counted, but also the connections with one node between them (see Fig. 1(a)). As

104 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

(a) Improved SEC. At most two of ~ (b) S-T-cut. At most

these arcs and 2-arc-types canbe one of these arcs and

contained in a tour. 2-arcs can be
contained in a tour
because they are in
pairwise conflict.

Fig. 1. Visualization of certain cutting planes that are used to strengthen the LP-relaxation.

no easy polynomial-time separation algorithm exists for these cuts, we heuristically separate them if one of the standard
SEC is violated. Furthermore we explicitly separate all inequalities for |S| = 2. (Recently, it has been shown in [11] that
determining a maximally violated constraint of type (11) is .V #-complete.)

2. The following cuts are feasible for |V| > 4 and forbid all subtours containing only 3 nodes:

Yw,v,w) +y(w,u,v) < Xuv), U, 0, WE v, |{u’ v, w}l =3. (12)
Because only @ (n®) such inequalities exist, they can be separated in polynomial time.
3. Letu,veV,u#v,SCcV\{uv}, T :=V\ (SUf{u v} and|V| > 5. Then only one of the following variables can be
set to 1, as otherwise we would have a cycle or a forbidden T-structure, i.e., a node with degree three (see Fig. 1(b)).
® X(u,v) OI X(v,u),
o y(u,w,v) Ory(v,w,u)v w e S-

® Yopug,P,4€T,p#q.
This leads to the S-T-cuts of the form

X(u,v) + X(v,u) + Z(y(u.w,v) +y(v,w,u)) + Z Yp.u.q) = 1. (13)

weS p.q€T:p#q

Although there is an exponential number of these inequalities they can be separated in polynomial time, see the following
remark.

Remark 5.3. Given a fractional solution (x, y) of a relaxation of AQTSP the problem of determining sets S, T maximizing
the sum in (13) for fixed u, v € V, u # v, can be formulated as an integer program whose corresponding constraint matrix
is totally unimodular. We introduce binary variables s, € {0, 1} for each node k € V \ {u, v} and t,; € {0, 1} for each
kle (VRN {{u/, v} € V¥ {u/, v} N {u, v} # @) =: V@ with the interpretation

_ |1 kes. . _ [l tkDcCT,
k=10, kgs, M W=y (k1T

and coefficients ¢5, = Yuky + Yok, K € V \ {u, v}, and ¢, = Yiw + Yk, Kkl € v , in the objective function. The inequalities

scHty<1 and s;+ty<1, kleVv®?,
forbid that a node v’ € V \ {u,v} is contained in both sets S and T. Regarding the constraint matrix A €

{0, 1}2(n22)x(“72)+(n22) each row has exactly two nonzero entries. Applying the Theorem of Heller and Tompkins, see, e.g.,
Corollary 2.8 in [34], to AT with the rows corresponding to variables sy, k € V\{u, v}, in one class and the rows corresponding
to variables ty, kl € v ,in a second class proves that A is totally unimodular. So we can solve the separation problem for
inequalities (13) using linear programming methods. Recently, it has been shown by [11] that the separation problem can
be reduced to a maximum weighted independent set problem in bipartite graphs.

6. Heuristics for QTSP

In our experiments it turned out that for certain instance classes the exact methods presented in the previous section
are quite time consuming for large n. Furthermore, good start solutions are beneficial for the BnB algorithm. This motivates
the investigation of heuristical approaches. In this section we present several simple heuristics, all of which are adaptions
of classical heuristics for the TSP.

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 105

Cheapest-Insert Heuristic (CI). This is a generalization of an ATSP heuristic [37]. We start with an arc (vq, v2) € A considered
as a cycle and choose this arc so that the term

min ¢q(x, vy, v2) + min ¢g(vq, vz, X)
xeV xeV

is minimal. Note that the natural starting point, namely starting with a pair of arcs (v, v2) and (v,, v3), so that ¢4 (vy, v2, v3)
is minimal over all pairwise distinct triples, would lead to a bad tour, if ¢;(v2, v3, X) is large for all x € V \ {vy, v3} orif
Cq(x, v1, vp) islarge for all x € V \ {vy, v2}. The new nodes are iteratively included in the cycle in a greedy manner, so that
in each step the new cycle is cost minimal. The heuristic stops when the cycle is a tour.

Nearest-Neighbor Heuristic (NN). This is also a generalization of an ATSP heuristic [37]. Given a path Py_; = (vq, ..., vx) We
append a node vg1 € V \ {vq, ..., vi} so that ¢;(vk—1, vk, Vkt1) is minimal. The arc (vq, v;) € A for the first iteration is
chosen so that

1
— (Z cq(x, 1, v2)> + I)Iclei‘gqu(Ul, V2, X)

xeV

is minimal in order to respect the predecessor of v; to be chosen in the last step.

Two-Directional-Nearest-Neighbor Heuristic (2NN). A slight variation of the NN heuristic is the Two Directional Nearest-
Neighbor Heuristic, which differs in two aspects from NN. First, the heuristic considers both directions to find the next
neighbor. One possible criterion for choosing the next node would be to use the minimal cost neighbor over all new nodes
and over both directions. Note, however, that the tour has to be closed anyway, so that both directions have to be used now
or at a later step. Thus for a given path (vy, vy, ..., v;), the cost values ¢4(vi—1, vj,) and ¢4 (¥, v1, v) for a cost minimal
successor x and predecessor y, respectively, are less important than the difference to the second smallest values in both
directions. For both directions, this value can be viewed as an upper tolerance of the problem of finding a cost minimal
neighbor node (for an overview over the theory of tolerances see [17]). The 2NN heuristic chooses the direction for which
the upper tolerance value is larger because not using the cost minimal neighbor node would cause a larger jump of the costs
at a later step. A similar idea was used for a tolerance based version [16] of the ATSP Greedy Heuristic [15] and a tolerance
based version [18] of the ATSP Contract-or-Patch Heuristic [15].

Assignment-Patching Heuristic (AP). A well-known technique for ATSP is the patching technique. It starts from a feasible CCP
solution and then, step by step, patches two cycles together, until there is only one cycle. Because the optimal CCP solution
can be computed efficiently and the solution value is often a good lower bound for an optimal ATSP solution value, it is a
good starting point for patching. Karp and Steele [29] suggested for each step to patch the two cycles containing the highest
number of nodes. Two cycles C; and C, are patched by replacing two arcs e; = (vy, wy) € Cy and e; = (vy, wy) € C; by
the two other arcs (v, w;) and (v, wy) so that the resulting cycle has minimal costs. We denote this patching technique
by KSP. An analogous heuristic can be used for the QTSP. However, by Theorem 4.1, QCCP is .~ &-hard (in contrast to CCP).
Hence, we determine an approximate solution of QCCP by computing a CCP solution using the following objective function
q(u,v) = min ¢ (u, v, w).
weV\{u,v}

Then we patch the cycles of this CCP solution using KSP and get a feasible QTSP solution. We call the approach Assignment-
Patching Heuristic (AP).

Nearest-Neighbor-Patching Heuristic (NNP). This is a combination of NN and AP heuristics. If closing the current path in the
NN heuristic would lead to a good subtour, the cycle is closed and NN starts again on the remaining nodes. This leads to a
cycle cover, which is patched afterwards using AP.

The main decision is when to close the current path. Experiments (not presented in this work) have shown that, given
the current path P = (v, ..., vj), closing the path to a subtour if ¢;(vi_1, v, v1) +¢q(vi, V1, v2) < 2+ Z}j Cq(Vj, Vi1, Vjt2)
is a good choice. Because all cycles should contain at least three nodes and the rest of the graph has also to be divided into
cycles, we have to ensure that the path contains at least three nodes and at least three nodes remain in the rest.

Two Directional Nearest-Neighbor-Patching Heuristic (2NNP). Analogously to NNP, this heuristic is a combination of 2NN and
AP.

Greedy Heuristic (GR). This is again a generalization of an ATSP heuristic [15], which is based on a contraction procedure.
Given a graph G = (V, A) the greedy heuristic chooses an arc a = (v1, v3) to be contained in the tour and constructs a

new graph G=(V,A) by contracting a to a new node v,. The heuristic computes recursively a tour in G w.r.t. the objective
function

Cq(v2, v, w), Vg = U,
- c(u, v, v1) Vg =w
— q s Us U1)s a)
G (u, v, w) =
a(, v, w) cq(u, v1, v2) + ¢g(v1, V2, W), Vg =V,
cq(u, v, w), otherwise.

If | \7| = 3, then the heuristic simply returns the cheaper one of the two possible tours. The final tour is obtained by expanding
the selected arcs in reverse order. The GR heuristic starts with contracting a “good” arc. It is reasonable to choose this arc in
the same way as in the CI heuristic.

106 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

k-OPT Heuristic. All previously presented heuristics explicitly construct tours from scratch. In contrast, the k-OPT heuristic
modifies an existing tour in order to reduce its length. It is completely analogous to the well-known k-OPT heuristic for the
TSP [31]: For k pairwise different arcs, the heuristic replaces these arcs by k other arcs so that the weight of the resulting
tour is minimal. This is repeated until no further improvement can be achieved. We investigate only the case k < 3 in our
experiments. Note that the k-OPT heuristic can be used to improve the tour found by any other heuristic.

Remark 6.1. The main reason for the differentiation between the ATSP and the STSP is the fact that for the STSP specific
STSP algorithms are used instead of general ATSP algorithms. This holds for both, heuristics (compare Helsgaun's LKH
Heuristic [24]) and exact algorithms (compare the solver CONCORDE [3,7]). Note that both, LKH and CONCORDE, can also
be applied to asymmetric instances by the 2-point reduction method, see [21, Chapter 2], [28].

The exact methods presented here work for the asymmetric case, but clearly, they can also be applied to the symmetric
case. However, for the symmetric case optimizations are possible again. For example, one can halve the number of variables
of the IP. Furthermore, for the STSP in the k-OPT improvement heuristic more rearrangements of the tours are allowed, as the
direction of the tour parts does not have to be considered. We have used these optimizations in the experiments regarding
symmetric instances.

7. Experimental study

We implemented all algorithms in C++, where we used the following subroutines for the QTSP algorithms. For the TSP-R
Algorithm we used the TSP solver CONCORDE [3,7]. For the BnB Algorithm we used the CCP solver implemented by Jonker
and Volgenant [28], which is based on the Hungarian method. The implementation of the BnC Algorithm is based on the
BnC-solver CPLEX [26], which is extended by problem-specific cutting planes. For the subtour elimination constraints we
employ the minimum cut algorithms in the software package LEMoN [30].

All experiments were carried out on a PC with an Intel® Core™ i7 CPU 920, 2.67 GHz, 12 GB RAM. As test instances we
chose six classes of random instances—two classes of asymmetric instances and four of symmetric instances. Furthermore,
we tested several asymmetric real-world instances from bioinformatics in order to find an optimal PM model of order 2 for
certain splice and donor sites.

We investigate six classes of random instances. Whereas the first four classes are natural extensions of classes of random
TSP instances used in [15], the last two classes are symmetric (extended) angular-metric instances. The six classes can be
described as follows.

e Asymmetric Class 1:

Each entry cq(i, j, k), (i,j, k) € V@ is chosen uniformly at random as an integer from {0, 1, ..., 10000}.
e Asymmetric Class 2:
Each entry ¢, (i, j, k), (i, j, k) € V®, is chosen uniformly at random as an integer from {0, 1, ...,i-j-k — 1}.
e Symmetric Class 1:
Each entry cq(i,j, k) = cq(k,j, 1), G,), k) € V® i < k is chosen uniformly at random as an integer from

{0,1,...,10000}.
e Symmetric Class 2:

Each entry ¢,(i, j, k) = cq(k, j, i), (i,j, k) € V® i < k, is chosen uniformly at random as an integer from {0, 1, ...,i-j -
k—1}.

e Symmetric Class 3:
For constructing random classical angular-metric SQTSP-instances, n points v', ..., v" are chosen uniformly at random

out of [0, 500]%> N IN(Z). The coefficients are calculated according to

Lo — | 1000 (vf—vf)T<u'<_vf>
Cq (i,j, k) = - | arccos T TR .

e Symmetric Class 4:
For constructing random extended angular-metric SQTSP instances, where the angle is weighted against the length of the
tour (see also the two-step approaches for solving the TSP for Dubins vehicle in [33,32]), n points v', ..., v" are chosen
uniformly at random out of [0, 500]% N]N%. The coefficients are calculated according to

¢ Gigi b = [10+ (JI' = vl + 310 = vl + 0 ¢f (k) |

As in [33] we use a turn radius of o = 40.

Regarding the random instances, we computed the average over 10 instances for the exact algorithms and over 100
instances for the heuristics.

7.1. Comparison of exact algorithms

In this section we compare the running times of all introduced exact algorithms, namely the TSP algorithm TSP-R, the
BnB algorithm and the BnC algorithms BnC-S and BnC-E. The results can be found in Figs. 2-4. In the following we describe
for each algorithm the main observations and give a short analysis.

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 107

Asymmetric class 1 Asymmetric class 2
T T T T
- X
T X
o -
103 00 _7 . 1031 X T
[} OOX — %2} X _
) 00 x_.T) o 00 -
S O" x¥ S Qé O _F%F+
% 1L 0% _x i % . o _tF i
= 10 00 —X - 10 5 oy _=
= o0 _ =X - 1) O*_
g 00 LT X o TSP-R E S o TSP-R
= T ox 2= L%
& 10~ | 00 7« x BnB & 10~ OOO Tox x BnB
+ » +
x BnC-S £ x BnC-S
- - BnC-E - - BnC-E
103 & L ! 1073t L !
10 20 30 10 20 30

n n

Fig. 2. Time for the exact algorithms applied to the asymmetric random classes.

o TSP-R: For all classes, the TSP-R algorithm is able to solve instances up to n = 20 in reasonable time. For larger n,
CoNcoRrbDE often failed for these instances as the coefficients were too large. The branch-and-cut approach is typically
faster, but TSP-R is better than the BnB algorithm for instances in asymmetric class 2, in symmetric classes 2 and 3 as
well as in real-world class 1 if n is large enough. TSP-R is the worst algorithm for asymmetric class 1 and symmetric
class 4. Note that the quality of TSP-R corresponds to the performance of CONCORDE applied to the TSP instance which
has been constructed by the given QTSP instance. For a QTSP instance with 15 nodes this leads to a TSP instance with
2-15-14 = 420 nodes (see Section 5.1). At first sight, this performance of CONCORDE in comparison to BnC is surprising,
as CONCORDE has solved even a TSP instance with 85,900 nodes [4]. We suppose that the structure of the considered TSP
instances, which are neither Euclidean instances nor random instances, is rather bad for the application of CONCORDE, as
it contains a large number of solutions with objective value close to the optimal solution value. Furthermore, because of
the large constants during the transformation, many coefficients of the TSP instances are rather large, which could also
cause numerical problems for CONCORDE.

o BnB: If the number of nodes is small, this algorithm is the fastest one, but for a large number of nodes BnC clearly beats
it. Especially for asymmetric class 2, symmetric classes 2 and 3 as well as for real-world class 1 it is the worst algorithm.

e BnC: Comparing both BnC versions, namely the basic version BnC-S and the extended version BnC-E, the behavior of these
variants strongly depends on the instance class. For random instances from the asymmetric classes and the symmetric
classes 1and 2, BnC-S is the best algorithm and often faster than BnC-E. On the other hand, for instances of the symmetric
classes 3 and 4, BnC-E runs faster, for the real-world instances even with some orders of magnitude. In particular BnC-E
is able to solve all real-world instances up to dimension 100 in about ten minutes (see Fig. 4). This time difference can be
explained as follows. There are only few nodes in the branch-and-cut tree for BnC-E, and often the solution is even found
in the root node. So for these instances the newly derived cutting planes are very effective. For some of the random
instances the value of the first linear relaxation is mostly far away from the optimal solution value leading to many
branching steps. In these branching steps, the computation of the cutting planes is not able to do an essential reduction
of the branching tree, but it costs much time.

7.2. Comparison of heuristics

An experimental study of ATSP heuristics is given in [21, Chapter 10]. In this section we make a similar study for the QTSP.
More precisely, we compare all considered heuristics, which are Cheapest-Insert Heuristic (CI), Nearest-Neighbor Heuristic
(NN), Two-Directional Nearest-Neighbor Heuristic (2NN), Assignment-Patching Heuristic (AP), Nearest-Neighbor-Patching
Heuristic (NNP), Two-Directional Nearest-Neighbor-Patching Heuristic (2NNP) and Greedy Heuristic (GR). Furthermore, we
consider for each heuristic a version, where the heuristic is followed by the 3-OPT Heuristic.

A natural task regarding the quality of a heuristic for a given instance is to compare the value of the tour computed by the
heuristic with the optimal value. For this reason, in our experiments we only used instances with a smaller number of nodes
so that in most cases one of the exact algorithms is able to compute the optimal value. In particular we chose the number
of nodes 10, 20, 30, 40, 50 for the random classes and instances with n € {10, 20, ..., 100} for the real-world classes. For
the asymmetric and symmetric classes 1 and 2 we only computed the exact values for n < 30. Because we were not able to
compute the optimal values for n > 30, we only compare the average values of the solutions found by the heuristics. For the
symmetric classes 3 and 4 as well as for the instances from bioinformatics we were able to determine all optimal solutions
by the BnC-E algorithm. For these instances we present the gaps to the optimal value computed by gap = (heu — opt) /opt,
where heu and opt denote the heuristic value and the optimal value, respectively. The results can be found in Tables 1-4.
The best values are emphasized.

108 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114
Symmetric class 1 Symmetric class 2
T T T T
1031 X - x
® —+ x
o0o% * 10° x B
L2} O x F+ L2 x
< 10 ° - E
§ 10 OOO X - § - oOOO T
2 OO x =T % 10! | Qéo +FF+ |
= © xT7 8 o0 F£T
) ®T) 007 x E
E 1071 00®] £ 00 x ot
a T RTINS I
o L%
1073 X X
! ! 1073 b ! !
10 20 10 20
n n
Symmetric class 3 Symmetric class 4
T T r T T]
x 10 E o N E
103 [X — F o @O o + e
X - o O = A
43 x o - < 100 oe XX FRE s |
5 o) — g8 F OO T T E
8 101 [@Oo T | 8 I V)(— B 1
z o b= z 1L o - ,
& % FEN g 1W07F oo X E
0:3 S b o TSP-R] F * o TSP-R
21071 ¥ T ‘ = b o i
& o x x BnB & 102p o - x BnB
o) X F
— BnC-S r - BnC-S
, X
I - BnC-E 107 ¢ - BuC-E
| | | £ | | |
10 20 30 40 10 20 30 40
n n
Fig. 3. Time for the exact algorithms applied to the symmetric random classes.
Table 1
Tour lengths for the heuristics applied to the asymmetric classes.
Size Asymmetric class 1 Asymmetric class 2
10 20 30 40 50 10 20 30 40 50
Cl 21496 32371 41397 48974 56 148 263 2471 9354 24988 53265
NN 26340 32615 37712 40470 43648 544 5779 23002 62157 125408
2NN 24422 31349 36030 39361 41502 518 6044 23429 65976 139659
AP 34208 71121 112836 151693 196 960 453 6045 28383 93502 236753
NNP 22452 29211 35474 41509 45511 348 3555 14362 38676 79407
2NNP 23383 29167 32905 37395 40125 423 3908 14675 41325 80450
GR 26695 44379 60912 73472 84602 561 7273 34391 104371 231228
CI+ OPT 17953 25255 31619 35986 41829 179 1584 5594 14417 29974
NN + OPT 17767 24175 28257 30991 33516 189 1491 5389 13980 27944
2NN + OPT 17367 23595 27224 29974 32775 184 1549 5536 13845 29191
AP + OPT 18280 25487 32720 37775 44141 182 1523 5693 14403 30486
NNP + OPT 17715 23705 32475 32475 36340 180 1515 5514 13703 28750
2NNP + OPT 17589 23370 27489 30981 33189 184 1508 5356 13780 27860
GR + OPT 17503 25552 30559 37198 40839 182 1479 5563 14056 28863
Exact 12403 11606 10998 120 705 2144

Running times of the heuristics:

The experiments show that all basic heuristics are rather fast for both, the random and the real-world instances, which
is reasonable, as they have complexity not worse than @ (n?). Even for the largest instances the heuristics took not more
than 10 s. For this reason, we do not present the exact running times here. Naturally, the heuristics with OPT steps are a bit
slower.

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 109

Real-world class 1 Real-world class 2
T T T T T
1041° TSP-R x B o TSP-R 0800
x BnB « 0 © o x BnB o © x
o
2 BnC-S 50 ° z | BeCS 0% x B
5 10%|- BuC-E o© 1 5 - BnC-E ° X
) o © X 54 o x
0 L2 o
= o© > i
g © ! L 100 ? ’ 2
2 10°F o x _ 1 E © x -
= o - T - I . o
X - =] o
T T - T x
102 |- - : 102 |- - x :
! ! ! ! ! ! ! !
5 10 15 20 5 10 15 20
n n
Real-world class 3 Real-world classes with BnC-E
104 TSP-R T T T 103 [T T T T]
x BnB 0Q©° r 3
. o 102F .
2 0 BnC-S 509 | P F E
§ - BnC-E 0O x § 10]% é
% o X % F 4
= o ©° =] 5 a
= x 5 1o% E
b} <] E E|
= 00 o x -1 E F |
Sl -_ - - - = t i
o x_ - 101 E 4
- — - X F 1
1072 |- - X 2 102 4
! ! ! ! S ! ! ! ! [
5 10 15 20 0 20 40 60 80 100

n n

Fig. 4. Time for the exact algorithms applied to the real-world classes.

Table 2

Tour lengths for the heuristics applied to the symmetric classes 1 and 2.
Size Symmetric class 1 Symmetric class 2

10 20 30 40 50 10 20 30 40 50

Cl 22231 32730 41990 48 407 55956 264 2453 9526 24775 53023
NN 25370 33246 37677 41775 42630 551 5646 22316 60593 125539
2NN 23698 30793 35535 39328 40694 542 6400 24035 62148 134717
AP 34247 73756 112530 154579 196941 490 5632 30877 97 347 239418
NNP 22829 30195 37487 41579 45831 390 3651 14852 39812 83239
2NNP 23174 28583 33744 37890 41229 460 4015 14649 36839 77477
GR 27706 45251 60205 73056 85281 542 7345 35107 103627 234193
Cl+ OPT 16809 21356 26374 30702 34593 167 1341 4737 11818 24394
NN + OPT 16699 21594 24433 26885 28617 165 1282 4609 11242 22819
2NN + OPT 16520 20990 23959 26777 28051 167 1343 4517 11348 22909
AP + OPT 16691 21613 26625 30679 34948 164 1304 4646 11829 24190
NNP + OPT 16851 20928 24702 28179 30273 162 1285 4612 11385 24018
2NNP + OPT 16755 20820 23745 27 168 29826 167 1345 4450 10999 23349
GR + OPT 16567 20564 25605 29513 32900 167 1282 4438 11178 23124
Exact 13840 12380 11578 137 784 2249

Quality of the tours generated by the heuristics:

As expected, the OPT versions clearly beat the basic versions. Furthermore, the results for the (asymmetric and
symmetric) random classes 1, the (asymmetric and symmetric) random classes 2, the symmetric random classes 3 and 4 and
the real-world classes are completely different. For the random classes 1, 2NNP is the best heuristic, for the random classes
2-4, Clis the best heuristic, whereas for the real-world classes in average NN and 2NN are the best heuristics. AP is the worst
heuristic for the random instances of class 1, and GR is the worst heuristic for the remaining classes. Considering the OPT
versions we observe the following. For the random classes 1, 2NN is the best heuristic, whereas CI is the best heuristic for

110 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

Table 3

Average gap to optimal solution for the heuristics applied to the symmetric classes 3 and 4.
Size Symmetric class 3 Symmetric class 4

10 20 30 40 50 10 20 30 40 50

Cl 0.0570 0.2049 0.3045 0.3776 0.4205 0.0544 0.0950 0.0956 0.1151 0.1090
NN 0.2135 0.3296 0.4110 0.4684 0.5121 0.0798 0.1588 0.1880 0.1969 0.2049
2NN 0.2227 0.3763 0.4543 0.5010 0.5446 0.0584 0.1326 0.1765 0.1884 0.1946
AP 0.2363 0.5494 0.8828 1.2001 1.5970 0.0426 0.0768 0.1074 0.1283 0.1474
NNP 0.1780 0.3531 0.4649 0.5729 0.6482 0.0926 0.1579 0.2099 0.2568 0.2867
2NNP 0.1772 0.3275 0.4296 0.5079 0.5578 0.0635 0.1464 0.2034 0.2318 0.2479
GR 0.2332 0.5078 0.6736 0.8339 0.9731 0.1165 0.2282 02713 0.2908 0.3258
Cl+ OPT 0.0039 0.0495 0.0607 0.0857 0.0985 0.0007 0.0190 0.0234 0.0277 0.0306
NN + OPT 0.0136 0.0855 0.1311 0.1656 0.2019 0.0005 0.0104 0.0196 0.0217 0.0276
2NN + OPT 0.0189 0.0824 0.1354 0.1796 0.2078 0.0008 0.0138 0.0199 0.0250 0.0265
AP + OPT 0.0166 0.0753 0.1006 0.1482 0.1881 0.0009 0.0124 0.0165 0.0262 0.0218
NNP + OPT 0.0158 0.0690 0.0940 0.1306 0.1649 0.0010 0.0068 0.0195 0.0241 0.0242
2NNP + OPT 0.0188 0.0798 0.1150 0.1535 0.1781 0.0012 0.0132 0.0194 0.0247 0.0261
GR + OPT 0.0153 0.0758 0.0978 0.1456 0.1890 0.0009 0.0115 0.0147 0.0236 0.0253

Table 4

Average gap to optimal solution for the heuristics applied to the real-world classes.
Size Real-world classes

10 20 30 40 50 60 70 80 90 100

Cl 0.0003 0.0216 0.0240 0.0333 0.0314 0.0234 0.0228 0.0212 0.0208 0.0267
NN 0.0961 0.0395 0.0304 0.0305 0.0299 0.0204 0.0170 0.0149 0.0142 0.0138
2NN 0.0961 0.0395 0.0304 0.0305 0.0806 0.0204 0.0170 0.0149 0.0142 0.0138
AP 0.0145 0.0373 0.0265 0.0235 0.0232 0.0345 0.0289 0.0186 0.0433 0.0545
NNP 0.1141 0.0908 0.1156 0.1238 0.1078 0.1224 0.1339 0.1685 0.1515 0.1688
2NNP 0.0862 0.1026 0.1004 0.1163 0.1656 0.1693 0.1955 0.1847 0.2009 0.1926
GR 0.2548 0.2775 0.1705 0.2056 0.2855 0.2568 0.2775 0.2897 0.3512 0.3304
CI+ OPT 0.0003 0.0003 0.0196 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003
NN + OPT 0.0003 0.0003 0.0008 0.0001 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003
2NN + OPT 0.0003 0.0003 0.0002 0.0001 0.0554 0.0003 0.0003 0.0003 0.0003 0.0003
AP + OPT 0.0000 0.0003 0.0110 0.0195 0.0086 0.0148 0.0128 0.0002 0.0118 0.0155
NNP + OPT 0.0000 0.0000 0.0407 0.0266 0.0357 0.0280 0.0239 0.0342 0.0204 0.0620
2NNP + OPT 0.0243 0.0392 0.0149 0.0170 0.0719 0.0507 0.0498 0.0015 0.0372 0.0389
GR + OPT 0.0361 0.0185 0.0261 0.0173 0.0301 0.0328 0.0444 0.0406 0.0293 0.0284

the symmetric class 3, NN, 2NN are the best heuristics for the real-world classes, and the results are mixed for the random
classes 2 and 4. Surprisingly, for several instances of the symmetric class 2, where GR is the worst heuristic for the basic
versions, it is the best one regarding the OPT versions. Conversely, for several instances of the symmetric class 2, where CI
is the best heuristic for the basic versions, it is the worst one regarding the OPT versions. This could mean that sometimes
the OPT versions benefit from worse starting tours or, even stronger, that it is counterproductive to have good starting
tours.

Regarding the comparison with the exact values, we have to realize that the heuristics presented in this paper do not
behave very well applied to random instances of the classes 1 and 2. They generate tours whose costs are considerably larger
than the costs of optimal tours. Considering the symmetric classes 3 and 4 and the real-world instances, things look nicer.
For all instances we receive upper bounds very close to the optimum.

8. Summary and future research

In this paper we introduce the so called quadratic traveling salesman problem and present several exact and heuristical
solution approaches. QTSP is a generalization of the TSP and has important applications in bioinformatics. Furthermore,
special cases such as the angular-metric TSP or the TSP with reload cost have applications in robotics as well as in the
planning of telecommunication and transport networks.

Regarding the tested real-world instances from bioinformatics, the exact algorithm based on branch-and-cut improved
by certain cutting planes works surprisingly well. This indicates that these instances have some internal structure that should
be studied in future work. Without the new cutting planes or using a branch-and-bound algorithm the running times are
higher by several orders of magnitude.

From a practical perspective, there is demand for using P(VL)M models of higher order. In fact, PVLM models have been
proposed as generalizations of PM models with the goal of modeling higher-order dependencies. Increasing the order of the
P(VL)M models above 2 leads to traveling salesman problems with cubic or higher degree polynomial objective functions. If

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 111

the degree of the polynomials increases, the linearization of all terms in the objective function leads to a very large number
of variables. Here, better approaches leading to tractable model sizes must be developed, which is one of the objectives of
Polynomial Optimization.

It has been shown in [23] that for each n there are infinitely many instances for which the NN (Nearest-Neighbor) and GR
(Greedy) heuristic, respectively, find the unique worst possible tour, i.e., have domination number 1.In [5] a characterization
of such cases for greedy type heuristics has been given. Thus it would be interesting to investigate whether this holds also
for the NN and GR heuristic, respectively, for the QTSP.

Acknowledgments

We thank IPK Gatersleben, JKI Quedlinburg, and UZI Halle-Wittenberg for financial support.

Appendix

Proof of Theorem 4.1. We show the & #-completeness of QCCP by a reduction from SAT [14].

Let an arbitrary SAT instance be given with variables x;, i € N := {1, ..., n},and clauses Gj,j € M := {1, ..., m}, where
the clauses consist of literals x; and —x;. Now we construct an instance of the asymmetric quadratic cycle cover problem. Let
G = (V, A) be a directed graph with set of nodes V and set of arcs A to be defined next. Instead of working with a complete
graph we only specify those arcs and the weights of the 2-arcs, respectively, that are needed for the construction. The set V
consists of the nodes:

1. vijeVforallie N,je{0,...,m},
2. uy; € Viorallj e M.

Thus m + 1 nodes exist for each variable, and there is one additional node for each clause. The set of arcs of G can be
partitioned into several subsets. For each variable x;, i € N, the graph contains the sets of arcs

e A; being built of

- (Vim» Vi),

- (Ui,j—la U,',j) for all] e M,

- (vij—1, u;) and (u;, v;;) if the literal x; appears in the clause G,
e and A;” containing

= (V1,05 Viym),

- (Ui,j, U,'qj_l) for all] eM,

- (vij, uj) and (u;, v; j—1) if the literal —x; appears in the clause C;.

The set of all arcs is A = |,y (A; UA?). This leads to A® := {ijk € V®):ij, jk € A®}.
With this definition of A® it holds

i 3
Ki = {vi0vi1Vi2, Vi,1Vi2Vi3, - . ., Vim—1VimVi0, VimVioVi1} C A
as well as
i 3
K5 = {vi,mVi,m=1Vi,m=2, Vim—1Vim—2Vim—3s - - - » Vi,1Vi,0Vi,m» Vi,0VimVim—1} C A

for each variable x;, i € N (here cycles are represented by their 2-arcs). Furthermore, if the literal x;, i € N, appears in the
clauses G,] C {j € M:x; € G}, we can enlarge cycle K{ to K;’J by replacing for each j € J the path (v;j_1, v) with the path
(vij-1, uj, vij), eg,

b U} 3
K] = {Ui,Ovi,lvi.Zv ey Vi j3Vij2Vj—1, Vi j—2Vij—1Uj, Vij—1UjVjj, UjV; jVijt1, VijVijr1Vij42, -« - Ui.mvi,ovi,l} CA
Similarly, if the literal —x;, i € N, appears in the clauses C]] C {j € M: =x; € (j}, we can enlarge cyclel(zi to f(é"] by replacing
for eachj € J the path (v;j, v j—1) with the path (v;j, uj, vij-1), e.g.,
i)
Ky™ = {Vi mVim—1Vim—2, -, Vi j+2Vi j+1Vij, Vij+1Vijlj,
3
Ui jUj Vi j—1, UjVij—1Vij—2, Vij—1Vij—2Vij—3 « - - VioVimVim—1} C A
As an example, Fig. 5 shows the graph for the SAT instance
(X] VX V X3) AN (_'Xl V Xy V _'X3) VAN (X] V Xy V X3) 7AN (_‘Xl \ Xz).

Obviously, the construction above is possible in polynomial time.

112 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

-
-

L R R L L L e

1

Fig.5. Visualization of the construction used in the proof of Theorem 4.1 for the SAT-formula (x; VX VX3) A (mX1 V=X Vx3) A (X1 VX VX3) A (71X VX)),
All arcs that correspond to true are drawn with bold lines. The arcs with solid lines correspond to x;, —x1, the arcs with dashed line to x,, —x, and the dotted
lines to x3, —X3.

The goal of QCCP is to cover all nodes with cycles with minimal total costs. If the arcs of A;, i € N, (the arcs with thicker
lines in Fig. 5) are used, this corresponds to setting the variable x; to true, and if the arcs of A;” are used, this corresponds to
setting the variable x; to false. We have to ensure that in an optimal solution of QCCP only arcs of exactly one of those two
sets are used for each variable x; and that there are no paths consisting of arcs of different variables (if this is possible at all).

Therefore, we use the following cost function for the associated 2-arcs. We set ¢;(p, q,7) =0, (p, q, 1) € v® if and only if
pq, qr € Ajorpq, qr € A" foronei € N and ¢4(p, q, r) = 1 otherwise. With this construction it is also possible to work with
a complete directed graph setting all weights of 2-arcs to one except for paths in A; or A;", i € N.

It remains to show that all nodes may be covered by cycles such that for each i € N only arcs either from A; or from A;”
are used, but never from both (which yields an objective value of 0), if and only if the SAT instance is satisfiable.

e Letf : N — {true, false} be a satisfying assignment of the variables (i.e., setting x; = f (i) satisfies all clauses). Since f
satisfies all clauses, for each Cj,j € M, there is (at least) one literal x;; or —x;;, contained in G that is set to true (i(j)
denotes the index of one of those variables making C; true). We construct one cycle with costs of 0 for each variable. Let
Xi, 1 € N, be an arbitrary variable.

- Iff(i) = true,
s if] = {j € M:i(j) = i} # @, use K’ with (K/)@ C A, (the mentioned cycle-enlargement),
* otherwise use K! with (K))® C A;.
- Iff (i) = false,
s if] = {j € M:i(j) = i} # ¥, use K3’ with ()@ c AT,
* otherwise use K with (K})® C A7
Then each node lies exactly on one of these n cycles and the total weight of these cycles is zero.

e On the other hand, let Wy, ..., W, be the cycles of a QCCP-solution with total costs of zero. By construction of the graph
and the weights, the arcs of each cycle belong to exactly one set A; or A.". So, w.l.0.g., we may assume p = nand W,-(z) CA;
or Wi(z) C A" We set x; to true if Wi(z) C Aj and we set x; to false if W,-Q) C Ay. Since the cycles cover all nodes, for each
uj, j € M, there is a cycle Wy such that u; € V(Wjg)). Let G, j € M, be an arbitrary clause. If W,-((IZ-)) C Ay, the literal x;(;
has been set to true and appears in clause C; by the construction of the graph. Analogously, if Wl.((/z.)) C Ay, the literal —x;(;
has been set to true and appears in clause C. Consequently, the truth assignment constructed above fulflfls all clauses. O

Fig. 6 shows a QCCP solution for the SAT instance

(X1 VX3 VX3)A (X1 VX Vx3) A (X V=X VX3) A (7X1 VX))

A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114 113

L L L L L L e

Fig. 6. A possible cycle cover solution for the instance (x; V X, V X3) A (—X1 V =X V =x3) A (X1 V —X3 V X3) A (—X1 V x;) for the truth assignment
X1 = true, x, = true, x3 = false.

with truth assignment. The solid lines correspond to x; = true, the dashed lines to x, = true and the dotted lines to
x3 = false. The complete construction used in the proof of Theorem 4.1 can be seen in Fig. 5.

References

[1] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, B. Schieber, The angular-metric traveling salesman problem, SIAM Journal on Computing 29
(1999) 697-711.

[2] E. Amaldi, G. Galbiati, F. Maffioli, On minimum reload cost paths, tours, and flows, Networks 57 (2011) 254-260.

[3] D.L.Applegate, R.E. Bixby, V. Chvatal, W.]. Cook, The Traveling Salesman Problem: A Computational Study, in: Princeton Series in Applied Mathematics,
Princeton University Press, 2007.

[4] D.L. Applegate, R.E. Bixby, V. Chvatal, W. Cook, D.G. Espinoza, M. Goycoolea, K. Helsgaun, Certification of an optimal TSP tour through 85,900 cities,
Operations Research Letters 37 (1) (2009) 11-15.

[5] J. Bang-Jansen, G. Gutin, A. Yeo, When the greedy algorithm fails, Discrete Optimization 1(2004) 121-127.

[6] A.Behzad, M. Modarres, New efficient transformation of the generalized traveling salesman problem into traveling salesman problem, in: Proceedings
of the 15th International Conference of Systems Engineering, Las Vegas, 2002.

[7] Concorde TSP Solver. Information available on http://www.tsp.gatech.edu/concorde.html.

[8] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a large-scale traveling-salesman problem, Operations Research 2 (1954) 393-410.

[9] V. Dimitrijevi¢, Z. Sari¢, An efficient transformation of the generalized traveling salesman problem into the traveling salesman problem on digraphs,

Information Sciences 102 (1-4) (1997) 105-110.

[10] K. Ellrott, C. Yang, F.M. Sladek, T. Jiang, Identifying transcription factor binding sites through Markov chain optimization, Bioinformatics 18 (Suppl 2)
(2002) 100-109.

[11] A. Fischer, An analysis of the asymmetric quadratic traveling salesman polytope, SIAM Journal on Discrete Mathematics (2013) (in press).

[12] M.Fischetti,].-]. Salazar-Gonzalez, P. Toth, The generalized traveling salesman and orienteering problems, in: G. Gutin, A.P. Punnen (Eds.), The Traveling
Salesman Problem and its Variations, in: Combinatorial Optimization, Kluwer Academic Publishers, 2002, pp. 609-662.

[13] A.M. Frieze,]. Yadegar, On the quadratic assignment problem, Discrete Applied Mathematics 5 (1) (1983) 89-98.

[14] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.

[15] F.Glover, G.Gutin, A. Yeo, A. Zverovich, Construction heuristics for the asymmetric TSP, European Journal of Operational Research 129 (2000) 555-568.

[16] B. Goldengorin, G. Jager, G. Gutin, D. Ghosh, Tolerance-based Algorithms for the Traveling Salesman Problem, World Scientific, 2008, pp. 47-59
(Chapter 5).

[17] B. Goldengorin, G. Jager, P. Molitor, Some basics on tolerances, in: S.-W. Cheng, C.K. Poon (Eds.), AAIM, in: Lecture Notes in Computer Science, vol.
4041, Springer, 2006, pp. 194-206.

[18] B. Goldengorin, G. Jager, P. Molitor, Tolerance based contract-or-patch heuristic for the asymmetric TSP, in: T. Erlebach (Ed.), CAAN, in: Lecture Notes
in Computer Science, vol. 4235, Springer, 2006, pp. 86-97.

[19] M. Grétschel, O. Holland, Solution of large-scale symmetric travelling salesman problems, Mathematical Programming. Series A51(2)(1991) 141-202.

[20] M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, second corrected ed., in: Algorithms and Combinatorics,
vol. 2, Springer, 1993.

[21] G. Gutin, A. Punnen (Eds.), The Traveling Salesman Problem and its Variations, in: Combinatorial Optimization, vol. 12, Kluwer Academic Publishers,
2002.

[22] G. Gutin, A. Yeo, Assignment problem based algorithms are impractical for the generalized TSP, Australasian Journal of Combinatorics 27 (2003)
149-154.

[23] G. Gutin, A. Yeo, A. Zverovich, Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP, Discrete Applied
Mathematics 117 (2002) 81-86.

[24] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic, European Journal of Operational Research 126 (2000)
106-130.

http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref1
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref2
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref3
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref4
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref5
http://www.tsp.gatech.edu/concorde.html
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref8
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref9
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref10
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref11
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref12
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref13
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref14
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref15
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref16
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref17
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref18
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref19
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref20
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref21
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref22
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref23
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref24

114 A. Fischer et al. / Discrete Applied Mathematics 166 (2014) 97-114

[25] S.Hong, A linear programming approach for the traveling salesman problem, Ph.D. Thesis, John Hopkins University, Baltimore, Maryland, USA, 1972.

[26] IBM ILOG CPLEX 12.1: Using the CPLEX callable library. Information available on http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/.

[27] R.Jonker, T. Volgenant, Transforming asymmetric into symmetric traveling salesman problems, Operations Research Letters 2 (4) (1983) 161-163.

[28] R.]Jonker, A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing 38 (4) (1987) 325-340.

[29] R.Karp, J. Steele, Probabilistic analysis of heuristics, in: E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem. A
Guided Tour of Combinatorial Optimization, John Wiley & Sons, Chichester, 1985, pp. 181-206 (Chapter 6).

[30] LEMON Graph Library 1.2.2. Information available at http://lemon.cs.elte.hu/trac/lemon.

[31] S.Lin, B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem, Operations Research 21 (2) (1973) 498-516.

[32] D.G. Macharet, A.A. Neto, V.F. da Camara Neto, M.F.M. Campos, Nonholonomic path planning optimization for Dubins vehicles, in: IEEE International
Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May 2011, IEEE, 2011, pp. 4208-4213.

[33] A.C. Medeiros, S. Urrutia, Discrete optimization methods to determine trajectories for Dubins’ vehicles, Electronic Notes in Discrete Mathematics 36
(2010) 17-24. ISCO 2010—International Symposium on Combinatorial Optimization.

[34] G.L.Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley-Interscience, New York, NY, USA, 1988.

[35] C.E. Noon, J.C. Bean, An efficient transformation of the generalized traveling salesman problem, Technical Report, University of Michigan, 1991.

[36] M. Padberg, G. Rinaldi, A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems, SIAM Review 33 (1)
(1991) 60-100.

[37] DJ. Rosenkrantz, R.E. Stearns, P.M. Lewis II, An analysis of several heuristics for the traveling salesman problem, SIAM Journal on Computing 6 (3)
(1977) 563-581.

[38] K.Savla, E. Frazzoli, F. Bullo, Traveling salesperson problems for the Dubins vehicle, IEEE Transactions on Automatic Control 53 (6) (2008) 1378-1391.

[39] A.Schrijver, Theory of Linear and Integer Programming, Wiley, 2000.

[40] X.Zhao, H. Huang, T.P. Speed, Finding short DNA motifs using permuted Markov models, Journal of Computational Biology 12 (6) (2005) 894-906.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref27
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref28
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref29
http://lemon.cs.elte.hu/trac/lemon
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref31
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref32
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref33
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref34
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref35
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref36
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref37
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref38
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref39
http://refhub.elsevier.com/S0166-218X(13)00411-3/sbref40

	Exact algorithms and heuristics for the Quadratic Traveling Salesman Problem with an application in bioinformatics
	Introduction
	Motivation from Bioinformatics
	Problem description
	Notations
	Transformation of instances from Bioinformatics to a QTSP

	Basic results
	Complexity results
	Polynomial reduction from QTSP to TSP

	Exact algorithms for QTSP
	Solving as STSP
	Branch-and-bound algorithm
	Branch-and-cut algorithm
	Integer-programming model
	The algorithm and additional cutting planes

	Heuristics for QTSP
	Experimental study
	Comparison of exact algorithms
	Comparison of heuristics

	Summary and future research
	Acknowledgments
	Appendix
	References

