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It is shown that for chordless path convexity in any graph, the Helly number e,qua!s the nuke 
of a maximum clique. 

A celebrated theorem of Helly [S] states that if, in a finite family of convex sets 
in Rd, every d + 1 sets have a point &.I common, then there is a point common to 
all the sets. Although numerous extensions and applications of this resuk are 
known (cf. [1,3,7& its use in graph theory has thus far been largely con&red to 
(anaiogues of) the case d = 1, which is sometimes called the Helly pr~prty (cf. 
[4& The gW h<:e 2s to establish a version for general graphs in which the 
dimension d is determined by the maximum clique size. 

A family Qic of sets has the k.1.P. (k: a positive integer) if every k or fewer sets in 
S have nonvoid intersection. The FIelly nwm&r of a family S is the smallest h 
such that any finite subfamily of -4Fc with the h.1.P. has nonvoid intersection. A 
path x1-x2- l . l -x,, in a (simple, loopless, undirected) graph G is ~IUW&S iff 
there are no &or&, i.e., no edges 4-q in G with j > i + 1. A set K of nodes of G 
is rn-conuex ii? for each pair of points x and y in K, all nodes on nil chordless 
paths joining them also lie in K. The collection of all M-convex sets forms the 
monophonic alignment on G and has been studied extensively for chordal graphs 
18, 101. A clique in G is a set of nodes which induce a complete subgraph. The 
clique numbeF of G is the maximum number of nodes in a clique of G 

. 

2. Rem&s 

By applying results of Hoffman [G) and Jamison [7] on the Helly number of 
antimatroids, and the fact that in the monophonic alignment chordal graphs are 
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antimatroids [8], one can deduce that for a chordal graph the Helly number of its 
m-convex sets equals its clique number. Our goal is to show this in fact holds for 
any connected graph. This will provide the fin8 extension of Hoffman’s result 
beyond the @Qss of wm_ids. .A gene@. discussion may be found in [Y, 81. 

‘llmmm l. For any connected graph G, tke Jielly mm&r of the m-contm sets 
equals the clique rumbet of G. 

For the proof it is csuvenient to have two lemmata, the first giving an alternate 
ch~aracterizati& of m-convex sets and the ‘second simplifying the determinati~~n 
of the Helly number. If S is a set of nodes, two nodes s and t in S are join4 
exfemully to S iff there is a path from s to t which contains no nodes of S except s 
and t. 

Lemma 1, A set S of nodes in G is m-con~~z ifi any pair of nodes in S which are 
jobed extemallpr to S are a&centt. 

Roof. Suppose S is m-convex and let s-x~- l l b-x,,-tbeapathwithsandtins 
and x&S for all i, Among all such paths choose a shortest one. Such a path need 
not be shortest in G, but it certainly has no chords (or we could shorten it) except 
possibly s-t. Hence if s and t arenot adjacent, this path is chordless and hence 
liesin S by m-convexity. And since s-t is not an edge, there must be at Zeusa one 
xi, contradicting x&3. Thus s and t must be adjacent as desired. 

To show the converse, suppose P is a chordless path between two nodes of S. 
We must show that 4% S. If P contains a n&e x not in S, let s be the last node of 
E on P before x and t the fir% node of S on P after x. Then the subpath of P 
from s to t joins s sind t externally to S. Hence s-t must be an edge and thus a 
chord of P, txhrhry ‘td P being chordless. Cl 

Im 2, Supwe Y? is a faniit) of Seth closed u&&r intersection. If, for some k, 
. -v family 9’ of sets in 2 with It& k.1.P. ‘also sath$es the k + l.IP., &en the Helly 
numm .-( 3? is at most h. 

Phof. W5 show that any fidy $a; of sets in 2 that has the k.1.P. also has the 
n.1.P. for all n 2 k. This b +rue by hypothesis foa n = k + 1. Pr ceding by 
induction on U, let A*, Al, . . . , &besetsin9andlet%={Af3AO:i#Q!.Since 
9 has the k + UP., 48 has the k.1.P. and hence the n.1.P. by induction. Thu- the 
intersection 01 the n sets in %, which is A0 n A1 n l l . n A,,, is nonempty. Whence 
~hasthen+l,I.P. 13 

m i.. Let k be the clique number of G. Let K be a clique of k 
noda iPfl-c . -I- zs!y K and ah its subse& are trivially m-mnvex. Since the k subsets of 
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K with k - 1 nodes form a family with the k - l.I.P. but empty IniGrsection. the 
Helly number is at least k. 

Evidently from the definition of m-convexity, the family of nt-convex sets is 
closed under intersection. Thus t9 show the Helly number is at most k, it suffices 
by Lemma 2 to show that the UP. implies the k + l.I.P. for m-convex sets. 

Let A,,, Al,. . . , Ak be m-convex, any k having nonempty intersection. For 
each i, let Ds = nizi Al, so each Dt is a nonempty m-convex set. Suppose 
nia, Ai = 8, or equivalently, A n Di = fl for each i. Sckct pointr. x, from Di in 
SUCH a way as to maximize the cardinality of the largest clique in S = 

1x0, x l,. . . , xk). With no loss in generality, we may assume the indices so chosen 

that x0, x1, . . . T x,, is a clique of largest cardinality in S. Since k is the clique 
number, we should have n <k. We aim to contradict this. 

Case 1. n=O. 
Certainly k 22 since G is connected, so xl, x2 exist. Let P and Q be shortest 

paths from x2 to x0 and from x2 to x1, respectively. Since q E -!Di and Ai n Di = @ 
for each i, both x0 and x1 lie in AZ but x2 does not. Let y [resp., z] be the last 
point of P [resp., Q] in Aa. Since P is shortest, it is certainly chordless and hence 
lies in any m-convex set cont&ing x2 and x0. In particular, P and hence y lies in 
4 for i # 0,2. But y E A2 by choice. Hence y E Do. Likewise z E Dl. Hence if we 
replace x0 by y and xl by z, we get a new set, 

satisfying the choice criterion of cne point from each Die Since y and z are joined 
externally to A2 along P and Q via x2, and since A2 is m-convex, Lemma 1. 
implies that y and z are adjacent. Thus S’ contains a larger clique than S, a 
contradiction. 

Case 2. n>O. 
By choice, all <Df xl, x2,. . . , G+~ lie in A0 but x0 is not in Ao. Let P be a 

shortest path from :do to x,,+~. Let y be the first point of A0 encountered along this 
path. For each i from 1 to n, q and y are joined externally to A0 via the edge 
q-x0 and the subpath of P from x0 to y. By Lemma 1, since A0 is m convex, y is 
adjacent to all q, i = 1, e . . , n. As in Case 1, y is in Dn+l since it is in A0 by choice 
and P lies in 4 for if 0, n -t 1 by m-conve,rity. 

Now xl is adjacent to x0 and y. (It is here that we use n 3 1 to be sure that y is 
not replacing xl.) Since x0 and y lie in Al but xl does not, the path %-X,-Y joins 
x0 and y externally to Al. Thus x0 and y must be adjacent by Lemma 1. But then 

x0, x1, . . . , G, y is a clique. Thus, since 

is a legitimate choice of representatives for the Di, we have incre,ased the largest 
clique sixe in such. This contradiction completes the proof. !? 

Resna&. The above arguement does not require that the graph G be finite. 
Clearly, the Eelly number wil? be infinite iR the clique number is infinite. 



38 

:++ r++ . . . . .  : + ~, + : ::[ +.~+ + + + : :  : + + : +' + ~' + :: + + : :: + : + L+ : + : + : + + ) +  ++ + 

but h ~ g  empty  intersection-. . . . .  -. 

l [~amlk.  D u c h e  ~ and Meyniel  [2] have recently established a bound  o n  Helly 

Radon ~ :'mbe~ 
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