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It is shown that for chordless path convexity in any graph, the Helly number equals the size
of a maximum clique.

1. Intreduction

A celebrated theorem of Helly [5] states that if, in a finite family of convex sets
in R? every d+1 setc have a point in common, then there is a point common to
all the sets. Although numerous extensions and applications of this result are
known (cf. [1, 3, 7)), its use in graph theory has thus far beer largely confined to
(analogues of) the case d =1, which is sometimes called the Helly property (cf.
[4D. The g=! he.e is to establish a version for genmeral graphs in which the
dimension d is determined by the maximum clique size.

A family  of sets has the k.LP. (k a positive integer) if every k or fewer sefs in
% have nonvoid intersection. The Helly number of a family % is the smaliest h
such that any finite subfamily of % with the h.I.P. has nonvoid intersection. A
path x;—x,—-*-— x,, in a (simple, loopless, undirected) graph G is chordless iff
there are no chords, i.e., no edges x;-x; in G with j>i+1. A set K of nodes of G
is m-convex iff for each pair of points x and y in K, all nodes en all chordless
paths joining them also lic in K. The collection of all m-convex sets forms the
monophonic alignment on G and has been studied extensively for chordal graphs
[8, 10). A clique in G is a set of nodes which induce a complete subgraph. The
clique number of G is the maximum number of nodes in a clique of G.

2. Results

By applying results of Hoffman [6] and Jamison [7] on the Helly number of
antimatroids, and the fact that in the monophonic alignment chordal graphs are
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antimatroids [8], one can deduce that for a chordal graph the Helly number of its
m-convex sets equals its clique number. Our goal is to skow this in fact holds for
any connected graph. This will provide the first extension of Hoffman’s result
beyond the class, of antimatroids. A general discussion may be found in [, 8]

Theorem 1. For any connected graph G, the Helly number of the m-convex sets
equals the clique number of G. o

For the proof it is convenient to have two lemmata, the first giving an alternate
characterization of m-convex sets and the second snmphfymg the determinaticn
of the Helly number. If S is a set of nodes, two nodes s and t in S are joined
externally to S iff there is a path from s to t which contains no nodes of § except s
and ¢

Lemma 1. A set S of nodes in G is m-conves iff any pair of nodes in S which are
joined exiernally to S are adjacent.

Proof. Suppose S is m-convex and let s—x,~--+-x,—~tbe apathwithsand tin S
and ¢S for all i, Among all such paths choose a shortest one. Such a path need
not be shortest in G, but it certamly has no chords (or we could shorten it) except
possibly s-t. Hence if s and ¢ are not adjacent this path is chordless and hence
lies in S by m-convexnty And since s—t is not an edge, there must be at least one
X contradlctmg x¢¢S Thus s and ¢ must be adjacent as desired.

To show the converse, suppose P is 2 chordless path between two nodes of S.
We must show that P< S. Jf P contains a node x not in S, let s be the last node of
€ on P before x and t the first node of S on P after x. Then the subpath of P
from s to ¢ joms s and t externally to S. Hence s—t must be an edge and thus a
cnurd of P, contrar) to P bung chordless D

Lelmn 2. Suppose £ is a family of sets closed unider intersection. If, for some k,
-y family 9° of sets in Z wuﬁz the k.1.P. also Satisfies the k+1.1P., then the Helly
numz,er ~Lis at most n

Proof. Wz show that"a’ny family & of sets in £ that has the k.LP. also has the
nLP. for all n=k. This is true by hypothesis for n=k+1. Pr _eeding by
induction on 1, let Ay, Ay, ..., A, be sets in & and let ¥={A, NAy:i#0). Since
& has the k+ 1.1.P., 4 has the k.LP. and hence the n.I.P. by induction. Thu- the
intersection of the n sets in 4, which is AqNA,N - - NA,, is nonempty. Whence
F has the n+ 1.LP. O

Proof of Thecrem 1. Let k be the clique number of G. Let K be a clique of k
nodes. Tizarlv X and all its subses are trivially m-convex. Since the k subsets of
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K with k-1 nodes form z family with the k — 1.1.P. but empty inicisection, the
Helly number is at least k.

Evidently from the definition of m-convexity, the family of m-convex sets is
closed under intersection. Thus to show the Helly number is at most %, it suffices
by Lemma 2 to show that the k.I.P. implies the %+ 1.1.P. for m-convex sets.

Let Ay Ay, ..., A be m-convex, any k having nonempty intersection. For
each i, let D,=[\;x; A;, so each D; is a nonempty m-convex set. Suppose
Ni=o0 Ai =9, or equivalently, A, N\ D, =0 for each i. Sciect pointc x; from D, in
such a way as to maximize the cardinality of the iargest clique in S=
{xo, X1, - - . » X }. With no loss in generality, we may assume the indices so chosen
that x4, X4,..., %, is a clique of largest cardinality in S. Since k is the clique
number, we should have n <k. We aim to contradict this.

Case 1. n=0.

Certainly k =2 since G is connected, so x,, x, exist. Let P and Q be shortest
paths from x, to x, and from x, to x;, respectively. Since x;€ D, and A;ND; =9
for each i, both x, and x, lie in A, but x, does not. Let y [resp., z] be the last
point of P [resp., Qlin A,. Since P is shortest, it is certainly chordless and hence
lies in any m-convex set containing x, and x,. In particular, P and hence y lies in
A, for i#0, 2. But ye A, by choice. Hence y € D,. Likewise z € D,. Hence if we
replace x, by y and x, by z, we get a new set,

S' = (S\{xO) xl}) U {)’, Z},
satisfying the choice criterion of ¢ne point from each D.. Since y and z are joined
externally to A, along P and Q via x,, and since A, is m-convex, Lemma 1
implies that y and z are adjacent. Thus S’ contains a larger clique than S, a
contradiction.

Case 2. n>0.

By choice, all of xq, X, ..., X4 lie in Ay but x; is not in A,. Let P be a
shortest path from x, to x,.,. Let y be the first point of A, encountered along this
path. For each i from 1 to n, x; and y are joined externally to A, via the edge
x;—Xo and the subpath of P from x, to y. By Lemma 1, since A, is m convex, y is
adjacenttoall x;, i=1,...,n. Asin Case 1, y is in D, since it is in A, by choice
and P lies in A, for i#0, n+1 by m-convexity.

Now x, is adjacent to x, and y. (It is here that we use n=1 to be sure that y is
not repiacing x,.) Since x, and y lie in A, but x, does not, the path xo—x,~y joins
Xo and y externally to A;. Thus x, and y must be adjacent by Lemma 1. But then
X0y X1 -« - » X, ¥ IS & clique. Thus, since

§'=(S\{x.+1H U{y}

is a legitimate choice of representatives for the D,, we have increased the largest
clique size in such. This contradiction completes the proof. L7

Remark. The above argucment does not require that the graph G be finite.
Clearly, the Helly number will be infinite iff the clique number is infinite.
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