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Abstract

The Floer homology of a cotangent bundle is isomorphic to loop space homology of the underlying
manifold, as proved by Abbondandolo and Schwarz, Salamon and Weber, and Viterbo. In this paper we
show that in the presence of a Dirac magnetic monopole which admits a primitive with at most linear
growth on the universal cover, the Floer homology in atoroidal free homotopy classes is again isomorphic
to loop space homology. As a consequence we prove that for any atoroidal free homotopy class and any
sufficiently small τ > 0, any magnetic flow associated to the Dirac magnetic monopole has a closed orbit
of period τ belonging to the given free homotopy class. In the case where the Dirac magnetic monopole
admits a bounded primitive on the universal cover we also prove the Conley conjecture for Hamiltonians
that are quadratic at infinity, i.e., we show that such Hamiltonians have infinitely many periodic orbits.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in Hamiltonian systems of the following form. The configuration space M

is a closed connected oriented manifold of dimension n � 2. The Hamiltonian H is a smooth
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function on the phase space T ∗M which might in addition depend periodically on time. The Dirac
magnetic monopole is a closed two-form σ ∈ Ω2(M) which gives rise to a twisted symplectic
form [6,11] on the cotangent bundle

ωσ = dλ + π∗σ,

where λ is the Liouville one-form on T ∗M and π : T ∗M → M is the footpoint projection. The
flow is generated by the time-dependent Hamiltonian vector field XH,σ defined implicitly by the
equation

−dH = ωσ (XH,σ , ·).

Floer’s semi-infinite dimensional Morse homology associates to a Hamiltonian system a chain
complex which is generated by the periodic orbits of a given fixed period τ > 0 and a given
free homotopy class α ∈ [S1,M], and defines a boundary operator by counting perturbed holo-
morphic cylinders which asymptotically converge to the periodic orbits. A priori it is far form
obvious that this recipe gives a well-defined boundary operator. Indeed, the question if Floer’s
boundary operator is well defined or not depends on a difficult compactness result for the per-
turbed holomorphic curve equation. Tentatively we write HFα∗ (H,σ, τ ) for the Floer homology
with the τ -periodic Hamiltonian H , the magnetic monopole σ , and the free homotopy class α.
In order to avoid discussions about orientations of moduli spaces we take coefficients in Z2. In
the case where the magnetic monopole vanishes and the Hamiltonian satisfies some asymptotic
fibrewise quadratic growth condition considered by Abbondandolo and Schwarz the following
remarkable result holds true.

Theorem 1. (See Abbondandolo and Schwarz [3], Salamon and Weber [21], Viterbo [22].) If
the τ -periodic H satisfies the Abbondandolo–Schwarz growth conditions, then Floer homology
HFα∗ (H,0, τ ) is well defined in every free homotopy class α, and is isomorphic to the singular
homology of the space of τ -periodic loops on M belonging to the given free homotopy class α.

The precise definition of the Abbondandolo–Schwarz growth condition is given in Defini-
tion 5 below. In this paper we will prove the following extension of Theorem 1.

Theorem A. Assume that the τ -periodic Hamiltonian H satisfies the Abbondandolo–Schwarz
growth conditions and that σ admits a primitive of at most linear growth on the universal cover
of M . Then there exists δ0(H,σ ) > 0 such that if |δ|τ < δ0(H,σ ) then the Floer homology
HFα∗ (H, δσ, τ ) is well defined for all σ -atoroidal classes α ∈ [S1,M], and is again isomor-
phic to the singular homology of the space of τ -periodic loops on M belonging to the given
free homotopy class α. If moreover σ admits a bounded primitive on the universal cover then
δ0(H,σ ) = ∞.

We now explain the two new terms in the statement of Theorem A: a primitive of at most
linear growth, and σ -atoroidal free homotopy class.

Definition. We say that σ admits a primitive with at most linear growth if the following con-
dition holds:
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(σ1) The 2-form σ is weakly exact. This means that the lift σ̃ of σ to M̃ is exact (in particular,
σ is closed). Moreover σ̃ admits a primitive with at most linear growth: there exists
θ ∈ Ω1(M̃) such that dθ = σ̃ and such that for any z ∈ M̃ there exists a constant Θz > 0
such that for all r � 0,

sup
q∈B(z,r)

|θq | � Θz(r + 1). (1.1)

Here B(z, r) denotes the geodesic ball of radius r in M̃ about z, and both the geodesic metric
and the norm | · | are defined using the lift of some Riemannian metric g on M to M̃ . Asking
whether σ̃ has a primitive with at most linear growth does not depend on the choice of metric g

on M . Moreover as soon as (1.1) holds for some point z ∈ M̃ , it holds for all z ∈ M̃ .

Remarks.

1. The condition (σ1) includes the following stronger condition:
(σ0) The 2-form σ is weakly exact, and σ̃ admits a bounded primitive: there exists θ ∈

Ω1(M̃) such that dθ = σ̃ and such that

sup
q∈M̃

|θq | < ∞. (1.2)

2. A classical result of Gromov [13] tells us that if M admits a metric of negative curvature then
every closed 2-form σ satisfies (σ0). In contrast, if σ is not exact and π1(M) is amenable
then σ never satisfies (σ0) [19, Corollary 5.4]. The main examples of pairs (M,σ) where σ

satisfies (σ1) are given by manifolds that admit a metric of non-positive curvature [9]. For
tori Tn any closed non-exact 2-form σ satisfies (σ1) but not (σ0).

Set Sτ := R/τZ. We often identify S1 and S1. We denote by ΛτM := C∞(Sτ ,M) the free
τ -periodic loop space of M . The space ΛτM splits as a direct sum ΛτM = ⊕

α∈[S1,M] Λα
τ M ,

where for a given free homotopy class α ∈ [S1,M] ∼= [Sτ ,M], we define Λα
τ M := {q ∈

ΛτM: [q] = α}. Consider the 1-form aσ ∈ Ω1(ΛτM) defined by

aσ (q)(ξ) :=
∫
Sτ

σ (q̇, ξ) dt. (1.3)

Since σ is closed, aσ is closed, that is, the integral of aσ over a closed path in ΛτM depends
only on the homology class of the path.

Definition. We say a class α ∈ [S1,M] is a σ -atoroidal class if any map f : S1 → Λα
1 M

with [f ] = α satisfies
∫
S1 f ∗aσ = 0. Equivalently, α is a σ -atoroidal class if aσ |Λα

τ M is exact
(see (2.2)). Note that under the assumption that σ is weakly exact, the class 0 of nullhomotopic
loops is atoroidal, since both statements are equivalent to the statement that σ |π2(M) = 0.

Let us briefly comment how these assumptions enter the proof of Theorem A:
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1. The mere fact that σ admits a primitive on the universal cover implies that σ vanishes on
π2(M). Hence ωσ is symplectically aspherical and no bubbling off of holomorphic spheres
can occur. This excludes the first obstruction to the compactness results needed to define the
boundary operator.

2. On σ -atoroidal classes the action functional used to define the boundary operator is real
valued, and hence the energy of its gradient flow lines depends only on their asymptotes.
This excludes the second obstruction to the necessary compactness to define the boundary
operator.

3. The third obstruction to compactness comes from the noncompactness of T ∗M . To obtain an
L∞-bound on the perturbed holomorphic curves we follow the approach by Abbondandolo
and Schwarz [3]. The assumption that σ admits a primitive with at most linear growth on
the universal cover gives rise to a certain quadratic isoperimetric inequality which allows
us to carry over the proof of Abbondandolo and Schwarz to this more general set-up. This
enables us to show that the Floer homology groups HFα∗ (H, δσ, τ ) are well defined. Taking
advantage of the quadratic isoperimetric inequality once more we construct a continuation
isomorphism from HFα∗ (H, δσ, τ ) to the Floer homology HFα∗ (H,0, τ ), and hence Theo-
rem 1 implies our result.

The necessity of the assumption that |δ|τ is small in Theorem A can be seen from the following
example. Take as configuration space M = T2 the two-torus and as the Hamiltonian H take
kinetic energy with respect to the standard flat metric on the torus. As magnetic monopole we
choose the area form σ with respect to the standard metric, and work with period τ = 1. Then
for each δσ the flow lines are either constant orbits on T2 or lift to circles of period 2π/δ on the
universal cover R2 of T2. Thus as long as δ < 2π the only periodic solutions of period one are the
constant ones. Hence the critical manifold is a two-torus and the Floer homology is isomorphic
to the homology of T2 which coincides with the homology of the contractible component of the
loop space of T2. However if δ = 2π then the critical manifold is diffeomorphic to T ∗T2 and
hence not compact anymore and one cannot define Floer homology. If δ becomes larger than 2π

the critical manifold is again a two-torus. But one can check that the Conley–Zehnder index of
the critical manifold jumps by two once δ goes through 2π and therefore the Floer homology
now differs from the loop space homology.

However, on the torus it is in fact possible to define the Floer homology HFα∗ (H, δσ, τ ) pro-
vided |δ|τ /∈ 2πZ, for any free homotopy class α ∈ [S1,T2]. More generally, let g = 〈·,·〉 denote
a Riemannian metric on T2 and f ∈ C∞(T2,R). Set σ = f μg , and suppose there exists k ∈ Z
such that

2π(k − 1)

τ
< f (q) <

2πk

τ
for all q ∈ T2.

Fix V ∈ C∞(Sτ × T2,R) and set H(t, q,p) := 1
2 |p|2 + V (t, q). Then HFα∗ (H,σ, τ ) is well

defined for every free homotopy class α ∈ [S1,T2], and moreover

HFα∗ (H,σ, τ ) =
{

H∗+2k(T2;Z), α = 0,

0, α 	= 0.

The proof of this result is specific to tori, and as such goes along somewhat different lines to that
of Theorem A. For this reason the details of this proof will be discussed in a forthcoming paper.
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Theorem A has the following immediate corollary. Recall that if H is given by a Riemannian
metric, the Hamiltonian flow of XH,σ is called a magnetic flow.

Corollary B. Let H be an autonomous Hamiltonian satisfying the Abbondandolo–Schwarz
growth conditions and assume that σ admits a primitive with at most linear growth on the uni-
versal cover of M . Let α ∈ [S1,M] be a σ -atoroidal class. Then for any τ > 0 sufficiently small,
the Hamiltonian flow of XH,σ has a closed orbit with period τ whose projection to M belongs
to the class α. In particular, the same is true for any magnetic flow associated to σ .

To appreciate the significance of Corollary B consider the following example. Let M = T3

and let σ be any closed 2-form cohomologous to dq1 ∧ dq2, where (q1, q2, q3) are linear coor-
dinates on the torus. It is easy to check that the homotopy class α = (0,0, n) for any integer n is
σ -atoroidal. Then given any metric on T3 the magnetic flow has a closed orbit of period τ in the
class α for all τ > 0 sufficiently small. In fact, for the standard flat metric and σ = dq1 ∧ dq2,
the classes (0,0, n) are the only ones that contain closed orbits of any period.

Finally, in the case where σ̃ admits a bounded primitive, note that Theorem A tells us that in
particular

HF0
n(H,σ, τ ) ∼= Hn

(
Λ0

τM;Z2
) 	= 0

for all τ -periodic Hamiltonians H satisfying the Abbondandolo–Schwarz growth conditions. As
a consequence, Hein’s proof [14] of the Conley conjecture for the cotangent bundle (which is
itself based on Ginzburg’s proof [12] for closed symplectically aspherical symplectic manifolds)
goes through word for word, and thus we obtain the following statement.

Corollary C (The Conley Conjecture for twisted cotangent bundles). Assume that σ̃ admits
a bounded primitive. Let ϕ = φH

1 : T ∗M → T ∗M denote the time-1 map of a Hamiltonian
H : S1 × T ∗M → R satisfying the Abbondandolo–Schwarz growth conditions. Assume that ϕ

has only finitely many fixed points. Then ϕ has simple periodic orbits of arbitrarily large period.

This paper has Appendix A in which we show that a more classical approach is possible if we
restrict to Hamiltonians that are in addition strictly fibrewise convex. More precisely, we obtain
a (Lagrangian) action functional on the (completed) loop space Λα

τ M which we show satisfies
the Palais–Smale condition provided that σ admits a primitive of at most linear growth, H is
fibrewise strictly convex and satisfies the Abbondandolo–Schwarz growth conditions, and |δ|τ
is sufficiently small. The Palais–Smale condition allows the construction of the Morse complex
so one can recover again the homology of the loop space. We expect that it would be possible to
prove Corollary C in the Lagrangian setting by combining the methods of Appendix A with the
work of Lu [15,16] or Mazzucchelli [17].

2. Constructing the Floer homology HFα∗(H,σ,τ)

2.1. Preliminaries

Denote by R(M) the set of Riemannian metrics on M . Suppose g = 〈·,·〉 ∈ R(M). The metric
defines a horizontal–vertical splitting of T T ∗M : given z = (q,p) ∈ T ∗M

TzT
∗M = T h

z T ∗M ⊕ T v
z T ∗M ∼= TqM ⊕ T ∗

q M;
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here T h
z T ∗M = ker(κg : TzT

∗M → T ∗
q M), where κg is the connection map of the Levi-Civita

connection ∇ of g, and T v
z T ∗M = ker(dπ(z) : TzT

∗M → TqM). Given ξ ∈ T T ∗M we denote
by ξh and ξv the horizontal and vertical components. Technically speaking ξh ∈ TM and ξv ∈
T ∗M , although we consistently use the “musical” isomorphism v 
→ 〈v, ·〉 to identify TM with
T ∗M . The horizontal–vertical splitting also determines an almost complex structure Jg called
the metric almost complex structure via

Jg =
( −1

1

)
.

Recall that an almost complex structure J on T ∗M is dλ-compatible if the bilinear form
GJ (·,·) := dλ(J · ,·) defines a Riemannian metric on T ∗M . The metric almost complex struc-
ture Jg is compatible for every Riemannian metric g on M , and we abbreviate Gg := GJg . We
denote the set of all dλ-compatible almost complex structures by J (T ∗M) and equip it with
the C∞

loc-topology.
Denote ΛτT

∗M := C∞(Sτ , T
∗M). Given x = (q,p) ∈ ΛτT

∗M and r � 1 we define

‖p‖Lr
g(Sτ ) :=

( τ∫
0

|p|r dt

)1/r

for 1 � r < ∞,

and

‖p‖L∞
g (Sτ ) := sup

t∈Sτ

∣∣p(t)
∣∣.

Similarly given ξ ∈ TxΛτT
∗M and J ∈ J (T ∗M) we define

‖ξ‖Lr
GJ

(Sτ ) :=
( τ∫

0

[
GJ (ξ, ξ)

]r/2
dt

)1/r

.

Given X ∈ Γ (End(TM)) we define

‖X‖L∞
g

:= sup
q∈M

sup
{∣∣X(q)v

∣∣: v ∈ TqM, |v| = 1
}
.

Let us now fix a closed 2-form σ ∈ Ω2(M), and consider the symplectic form ωσ = dλ + π∗σ
from the Introduction. We denote by Jσ the open set of almost complex structures J on T ∗M
that are tamed by ωσ – this just means that the bilinear form ωσ (J · ,·) is positive definite. We
say that J ∈ Jσ is uniformly tame if J is also dλ-compatible (i.e. J ∈ Jσ ∩ J (T ∗M)), and
there exists some positive constant ε > 0 such that

ωσ (J ξ, ξ) � εGJ (ξ, ξ) for all ξ ∈ T T ∗M.

The pair (σ, g) defines a bundle endomorphism Y = Yσ,g ∈ Γ (End(TM)) called the Lorentz
force of σ via:

σq(u, v) = 〈
Y(q)u, v

〉
.
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The following lemma will be very useful.

Lemma 2 (Uniformly tame almost complex structures).

1. Fix g ∈ R(M). If

‖Yσ,g‖L∞
g

� 1 (2.1)

then the almost complex structure Jg is uniformly tame (with ε = 1/2).
2. Denote by Rσ (M) ⊆ R(M) the set of Riemannian metrics on M for which (2.1) holds.

Given any g0 ∈ R(M), if υ > ‖Yσ,g‖L∞
g

then the rescaled metric g := υg0 lies in Rσ (M).
3. Given g ∈ R(M) let

Ug := {
J ∈ J

(
T ∗M

)
: ‖J − Jg‖L∞

Gg
� 1/7

}
.

Then if g ∈ Rσ (M) and J ∈ Ug then J is uniformly tame (with ε = 1/4):

ωσ (J ξ, ξ) � 1

4
GJ (ξ, ξ) for all ξ ∈ T T ∗M.

Proof. (1). Write Y = Yσ,g and let ξ ∈ T T ∗M . Then

ωσ (Jgξ, ξ) − 1

2
Gg(ξ, ξ) = 1

2
Gg(ξ, ξ) + π∗σ(Jgξ, ξ)

= 1

2
Gg(ξ, ξ) + 〈

Y(Jgξ)h, ξh
〉

= 1

2
Gg(ξ, ξ) − 〈

Yξv, ξh
〉
,

� 1

2

(∣∣ξh
∣∣2 + ∣∣ξv

∣∣2) − ∣∣ξv
∣∣∣∣ξh

∣∣
=

(
1√
2

∣∣ξh
∣∣ − 1√

2

∣∣ξv
∣∣)2

� 0.

(2). For any X ∈ Γ (End(TM)) one has

‖X‖L∞
υg

= ‖X‖L∞
g

,

and since Yσ,υg = 1
υ
Yσ,g we see that if υ � ‖Yσ,g‖L∞

g
then ‖Yσ,υg‖L∞

υg
� 1.

(3). First note that for any J ∈ J (T ∗M) we have

GJ (ξ, ξ) = ω0(J ξ, ξ)

= ω0(JgJ ξ, Jgξ)

= Gg(J ξ, Jgξ)

= Gg(Jgξ, Jgξ) + Gg

(
(J − Jg)ξ, Jgξ

)
�

(
1 − ‖J − Jg‖L∞

)
Gg(ξ, ξ).
Gg
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Thus if g ∈ Rσ (M) and J ∈ J (T ∗M) satisfies ‖J − Jg‖L∞
Gg

� 1/7 then

ωσ (J ξ, ξ) − 1

4
GJ (ξ, ξ) = 3

4
GJ (ξ, ξ) + π∗σ(J ξ, ξ)

= 3

4
GJ (ξ, ξ) + 〈

Y(Jgξ)h, ξh
〉 + 〈

Y
(
(J − Jg)ξ

)h
, ξh

〉
(∗)

� 3

4
GJ (ξ, ξ) − 1

2
Gg(ξ, ξ) − ‖J − Jg‖L∞

Gg
Gg(ξ, ξ)

� 1

4
Gg(ξ, ξ) − 3

4
‖J − Jg‖L∞

Gg
Gg(ξ, ξ) − ‖J − Jg‖L∞

Gg
Gg(ξ, ξ)

� 1

4

(
1 − 7‖J − Jg‖L∞

Gg

)
Gg(ξ, ξ) � 0,

where (∗) used the first part of the lemma. �
Assume that α ∈ [S1,M] is a σ -atoroidal class. Fix a reference point ∗ ∈ M , and fix a refer-

ence loop qα ∈ Λα
1 M such that qα(0) = ∗. Given any q ∈ Λα

τ M , we define

Aσ (q) :=
∫

[0,1]×Sτ

w∗σ,

where w : [0,1] × Sτ → M is any smooth map such that w(0, t) = qα(t/τ ) and w(1, t) = q(t).
Since α is σ -atoroidal, Aσ is well defined (i.e. independent of the choice of w), and one sees
immediately that

dAσ = aσ on Λα
τ M. (2.2)

Fix a point ∗̃ ∈ M̃ that projects onto our fixed reference point ∗ ∈ M . We denote by q̃α : [0,1] →
M̃ the lift of qα to M̃ with q̃α(0) = ∗̃. The following lemma is based on [7, Lemma 2.4], and
explains the importance of the condition (σ1).

Lemma 3 (The quadratic isoperimetric inequality). Assume σ satisfies condition (σ1) and α ∈
[S1,M] is a σ -atoroidal class. There exist a constant C0 = C0(σ, g) > 0 and a constant C1 =
C1(σ, g,α) > 0 such that for all q ∈ Λα

τ M one has

∣∣Aσ (q)
∣∣ � C0

( τ∫
0

∣∣q̇(t)
∣∣dt

)2

+ C1.

Proof. Let θ denote a primitive of σ̃ such that for all z ∈ M̃ there exists a constant Θz such that

sup |θq | � Θz(r + 1).

q∈B(z,r)
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Now let q ∈ Λα
τ M , and let w : [0,1]×Sτ → M denote a smooth map such that w(0, t) = qα(t/τ )

and w(1, t) = q(t), together with the additional property that if w̃ : [0,1] × [0, τ ] → M̃ denotes
the lifting of w to the universal cover such that w̃(0, t) = q̃α(t/τ ) then

1∫
0

∣∣∂sw̃(s, i)
∣∣ds � d, for i = 0,1,

where d := diam(M,g). Set

Θ := Θ∗̃, �α :=
1∫

0

∣∣q̇α(t)
∣∣dt, �(q) :=

τ∫
0

∣∣q̇(t)
∣∣dt.

Then we have∣∣Aσ (q)
∣∣ =

∣∣∣∣ ∫
[0,1]×Sτ

w∗σ
∣∣∣∣

=
∣∣∣∣ ∫
[0,1]×[0,τ ]

w̃∗σ̃
∣∣∣∣

�
∣∣∣∣∣

1∫
0

θ
(
∂sw̃(s,0)

)
ds

∣∣∣∣∣ +
∣∣∣∣∣

τ∫
0

θ
(
∂t w̃(1, t)

)
dt

∣∣∣∣∣ +
∣∣∣∣∣

1∫
0

θ
(
∂sw̃(s,1)

)
ds

∣∣∣∣∣
+

∣∣∣∣∣
τ∫

0

θ
(
∂t w̃(0, t)

)
dt

∣∣∣∣∣
� Θ(d + 1)d + Θ

(
d + �(q) + 1

)
�(q) + Θ(d + �α + 1)d + Θ(�α + 1)�α.

The desired statement follows with

C0 := (2 + d)Θ;
C1 := Θ(d + 1)d + Θ(d + 1) + Θ(d + �α + 1)d + Θ(�α + 1)�α. �

2.2. The action functional

Throughout this section assume that σ satisfies (σ1) and α ∈ [S1,M] is a σ -atoroidal class.
Fix a τ -periodic Hamiltonian H : Sτ × T ∗M → R. Denote by Pα

τ (H,σ ) ⊆ Λα
τ T ∗M the set

of closed τ -periodic orbits of XH,σ belonging to Λα
τ T ∗M :

Pα
τ (H,σ ) = {

x ∈ Λα
τ T ∗M: ẋ = XH,σ (t, x)

}
(Λα

τ T ∗M denotes those τ -periodic loops x whose projection to M lies in Λα
τ M). Denote by

φ
H,σ
t : T ∗M → T ∗M the flow of XH,σ . In order to construct the Floer complex associated to

H,σ and α we need to make the following standard assumption on the triple (H,σ,α):
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(N) All the elements x ∈ Pα
τ (H,σ ) are non-degenerate, that is, the linear map dφH,σ

τ (x(0)) ∈
Sp(Tx(0)T

∗M) does not have 1 as an eigenvalue.

Remark 4. In fact, as far as Theorem A is concerned, the assumption that condition (N) is
satisfied can be relaxed. Indeed, the point is that by making a very small perturbation of H

along the 1-periodic orbits we can create a new Hamiltonian H̃ which still satisfies all the other
requirements of Theorem A, and also such that H̃ satisfies condition (N). Then Theorem A tells
us that the Floer homology HFα∗ (H̃ , δσ, τ ) is well defined, and moreover if Ĥ is another such
perturbation then by Theorem 12 below we have HFα∗ (H̃ , σ, τ ) ∼= HFα∗ (Ĥ , σ, τ ). In other words,
we can still define HFα∗ (H,σ, τ ) even when condition (N) is not satisfied, by simply setting

HFα∗ (H,σ, τ )
def= HFα∗ (H̃ , σ, τ )

for any such perturbation H̃ .

The action functional AH,σ : Λα
τ T ∗M → R that we will work with is defined by

AH,σ (x) := AH (x) + Aσ (π ◦ x),

where AH denotes the standard Hamiltonian action functional

AH (x) :=
∫
Sτ

λ∗x −
τ∫

0

H(t, x) dt.

It is not hard to check that a loop x ∈ Λα
τ T ∗M is a critical point of AH,σ if and only if x ∈

Pα
τ (H,σ ).
In order to be able to obtain the necessary compactness results needed to define the Floer

homology, following Abbondandolo and Schwarz [3, Section 1.5] we impose two growth condi-
tions on H . In the statement of the following definition, Z ∈ Vect(T ∗M) denotes the Liouville
vector field, which is uniquely defined by the equation iZdλ = λ.

Definition 5. A Hamiltonian H ∈ C∞(Sτ × T ∗M,R) satisfies the Abbondandolo–Schwarz
growth conditions if the following two requirements hold:

(H1) There exist h1 > 0 and k1 � 0 such that

dH(t, q,p)Z(q,p) − H(t, q,p) � h1|p|2 − k1 for all (t, q,p) ∈ Sτ × T ∗M.

(H2) There exist h2 > 0 and k2 � 0 such that∣∣∇qH(t, q,p)
∣∣ � h2|p|2 + k2 for all (t, q,p) ∈ Sτ × T ∗M,∣∣∇pH(t, q,p)
∣∣2 � h2|p|2 + k2 for all (t, q,p) ∈ Sτ × T ∗M. (2.3)

Here we have chosen a Riemannian metric g on M , and ∇qH and ∇pH denote the horizon-
tal and vertical components of the gradient ∇H of H under the splitting T T ∗M ∼= TM ⊕ T ∗M
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induced by the Riemannian metric (see Section A.1 for the precise definition). Whilst the con-
stants hi, ki depend on the choice of metric g on M , the existence of such constants does not (see
[3, p. 273]).

We now define a constant δ0(H,σ ) associated to a pair (H,σ ), where H satisfies the
Abbondandolo–Schwarz growth conditions, and σ satisfies (σ1). This is the constant that ap-
pears in the statement of Theorem A.

Definition 6. Firstly, given a Riemannian metric g ∈ R(M), define

η1(H,g) := sup
{
h1 > 0: H satisfies (H1) with respect to h1 and some k1 � 0

};
η2(H,g) := inf

{
h2 > 0: H satisfies (2.3) with respect to h2 and some k2 � 0

}
.

The reason that η2(H,g) is the infimum over the constants h2 for which (2.3) is satisfied (rather
than over the constants h2 for which (H2) is satisfied) is that this part of the argument – specif-
ically, Lemma 10 – does not require any assumptions on the growth of ∇qH . This assumption
comes into play later on, cf. Section 3.1. Note that if H satisfies both (H1) and (H2) then
0 < η1(H,g), η2(H,g) < ∞.

Now set

δ0(H,σ,g) :=
{

η1(H,g)
2C0(σ,g)η2(H,g)

, if σ satisfies (σ1) but not (σ0),
∞, if σ satisfies (σ0),

(2.4)

where the constant C0(σ, g) was defined in Lemma 3. Finally set

δ0(H,σ ) := sup
g∈R(M)

δ0(H,σ,g) ∈ (0,∞].

Remark 7. Observe that

δ0(H,σ,υg) = δ0(H,σ,g) for all υ > 0.

Thus we can alternatively define

δ0(H,σ ) := sup
g∈Rσ (M)

δ0(H,σ,g) ∈ (0,∞],

where Rσ (M) was defined in Lemma 2.2.

2.3. The Floer equation

Fix a Riemannian metric g ∈ Rσ (M), and a Hamiltonian H ∈ C∞(Sτ × T ∗M,R) satisfying
the Abbondandolo–Schwarz growth conditions (H1) and (H2). Condition (H2) implies that there
exists a constant hσ,g � 0 such that∣∣XH,σ (t, q,p)

∣∣ � hσ,g

(
1 + |p|2) for all (t, q,p) ∈ Sτ × T ∗M. (2.5)
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Observe that

λ(XH,σ ) = dH(Z) (2.6)

(recall Z denotes the Liouville vector field); in particular λ(XH,σ ) does not depend on σ . Indeed,

λ(XH,σ ) + π∗σ(Z,XH,σ ) = ωσ (Z,XH,σ ) = dH(Z),

and

π∗σ(Z,XH,σ ) = 0

as dπ(Z) ≡ 0.
Fix a σ -atoroidal class α ∈ [S1,M] and δ ∈ R. Thus the action functional AH,δσ :

Λα
τ T ∗M → R is defined. Given a family J = (Jt )t∈Sτ ⊆ Jσ , denote by ∇JAH,δσ the vector

field on Λα
τ T ∗M defined by

∇JAH,δσ (x) = Jt (x)
(
ẋ − XH,δσ (t, x)

)
.

With these definitions one has

dAH,σ (x)(ξ) = 〈〈∇JAH,σ (x), ξ
〉〉
L2

GJ
(Sτ )

, (2.7)

where 〈〈·,·〉〉L2
GJ

(Sτ ) denotes the possibly non-symmetric inner product given by

〈〈ξ, ζ 〉〉L2
GJ

(Sτ ) :=
τ∫

0

ωσ (Jt ξ, ζ ) dt.

We remind the reader that since the almost complex structures J = (Jt )t∈Sτ are only assumed to
be tamed by ωσ (rather than compatible), the order in (2.7) is important, that is, in general

dAH,σ (x)(ξ) 	= 〈〈
ξ,∇JAH,σ (x)

〉〉
L2

GJ
(Sτ )

.

Given critical points x−, x+ ∈ Pα
τ (H, δσ ) we denote by

M α
τ (x−, x+,H, δσ,J) ⊆ C∞(

R × Sτ , T
∗M

)
the set of smooth maps u : R × Sτ → T ∗M that satisfy the Floer equation

∂su + ∇JAH,δσ (u) = 0 (2.8)

and submit to the asymptotic conditions

lim
s→±∞u(s, t) = x±(t), lim

s→±∞ ∂su(s, t) = 0, (2.9)

both limits being uniform in t .
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More generally, we denote by M α
τ (a, b,H, δσ,J) the set of maps u ∈ C∞(R × Sτ , T

∗M)

satisfying (2.8) and

a � AH,δσ

(
u(s, t)

)
� b for all (s, t) ∈ R × Sτ .

Recall the definition of the set Ug of almost complex structures from Lemma 2.3. The fol-
lowing theorem is central to defining the Floer homology HFα∗ (H, τ, σ ), and will be proved in
Section 3.1 below.

Theorem 8 (L∞ bounds on gradient flow lines). Suppose g ∈ Rσ (M), τ |δ| < δ0(H,σ,g) and
α ∈ [S1,M] is a σ -atoroidal class. There exists a smaller neighborhood Vg ⊆ Ug of Jg such
that for any family J = (Jt )t∈Sτ ⊆ Vg , and for all −∞ < a � b < ∞, there exists a compact set
K = K(a,b,J) ⊆ T ∗M such that for any u ∈ M α

τ (a, b,H, δσ,J) one has

u(R × Sτ ) ⊆ K.

2.4. Defining the Floer homology groups

Let us now fix:

• a closed 2-form σ ∈ Ω2(M) that satisfies condition (σ1),
• a σ -atoroidal class α ∈ [S1,M],
• a Riemannian metric g ∈ Rσ (M),
• a Hamiltonian H ∈ C∞(Sτ × T ∗M,R) that satisfies the Abbondandolo–Schwarz growth

conditions (H1) and (H2),
• a constant δ ∈ R such that τ |δ| < δ0(H,σ,g), and such that (H, δσ,α) satisfies condition (N).

We will now explain how Theorem 8 allows us to define the Floer homology groups
HFα∗ (H, δσ, τ ). All this material is now standard (and essentially identical to [3, Section 1.7]),
and we refer the reader to any of a number standard sources (e.g. Salamon’s lecture notes [20])
for more details.

For each x ∈ Pα
τ (H, δσ ), let μCZ(x) denote the Conley–Zehnder index of x. In order to de-

fine the Conley–Zehnder index we choose a vertical preserving symplectic trivialization (see [3]);
the fact that c1(T

∗M,ωσ ) = 0 means that the value of μCZ(x) is independent of this choice
of trivialization. Note however that our sign conventions match those of [5] not [3]. The non-
degeneracy condition (N) implies that μCZ(x) is always an integer.

Given k ∈ Z let

Pα
τ (H, δσ )k := {

x ∈ Pα
τ (H, δσ ): μCZ(x) = k

}
.

The moduli spaces M α
τ (x−, x+,H, δσ,J) all carry a free R-action given by (s0 · u)(s, t) :=

u(s − s0, t), and we denote by M α
τ (x−, x+,H, δσ,J)/R the quotient space under this action. For

a generic choice of J = (Jt )t∈Sτ ⊆ Vg , it follows from Theorem 8 and standard Floer-theoretic
arguments that the quotient moduli spaces M α

τ (x−, x+,H, δσ,J)/R all carry the structure of a
(μCZ(x−) − μCZ(x+) − 1)-dimensional manifold. Moreover if μCZ(x−) = μCZ(x+) + 1 then
M α(x−, x+,H, δσ,J)/R is actually compact (and hence a finite set).
τ
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We define the Floer chain group CFα
k (H, δσ, τ ) to be the free Z2-module generated by the

elements of Pα
τ (H, δσ )k . Note that CFα

τ (H, δσ, τ ) may not be finitely generated. The boundary
operator ∂(J) : CFα

k (H, δσ, τ ) → CFα
k−1(H, δσ, τ ) is defined by

∂(J)(x) :=
∑

y∈Pα
τ (H,δσ )k−1

n(x, y)y, x ∈ Pα
τ (H, δσ )k,

where

n(x, y) := #2
(
M α

τ (x, y,H, δσ,J)/R
)

denotes the parity of the finite set M α
τ (x, y,H, δσ,J)/R. This is well defined since the sum

contains only finitely many non-zero terms, thanks to the forthcoming Remark 11.
The usual argument [20], tells us that ∂(J) ◦ ∂(J) = 0, and hence we may define the Floer ho-

mology HFα∗ (H, δσ, τ ) to be the homology of the chain complex {CFα∗ (H, δσ, τ ), ∂(J)}. It is ac-
ceptable to omit the J from the notation for the homology HFα∗ (H, δσ, τ ), as any two (generically
chosen) families J and J′ produce chain homotopic chain complexes (see [3, Theorem 1.20]).

3. Proofs

3.1. The proof of Theorem 8

As mentioned in the Introduction, our proof of Theorem 8 will closely follow Abbondandolo
and Schwarz’ method in [3]. Their method has two distinct stages. The first stage appears as
Lemma 1.12 in [3], and asserts that under the hypotheses of the theorem, there exists a constant
R = R(a, b) > 0 such that for any u = (q,p) ∈ M α

τ (a, b,H, δσ,J) and any interval I ⊆ R it
holds that

‖p‖
W

1,2
g (I×Sτ )

� R
(|I |1/2 + 1

)
. (3.1)

This stage uses heavily the fact that H satisfies conditions (H1) and (H2). The second stage
appears as Theorem 1.14 in [3]. Roughly speaking, the second stage works as follows: firstly, by
Nash’s theorem, we may isometrically embed the Riemannian manifold (M,g) into (RN,geucl).
This embedding in turn induces an isometric embedding of (T T ∗M,Gg) into (R2N,geucl). Under
this embedding if i denotes the canonical almost complex structure on R2N given by

i=
( −1

1

)
then i|T ∗M = Jg . The proof then uses Calderon–Zygmund estimates for the Cauchy–Riemann
operator, together with certain interpolation inequalities, to upgrade Eq. (3.1) to the full statement
of Theorem 8. These estimates only work for J contained in a sufficiently small neighborhood Wg

of Jg : the set Vg in the statement of Theorem 8 is then defined by Vg := Ug ∩ Wg . The proof of
this stage goes through word for word in our situation, and thus in order to prove Theorem 8 it
suffices to prove the first stage, namely Eq. (3.1).

The proof of (3.1) (Lemma 1.12 in [3]) consists of six claims. A careful inspection of their
proof shows that everything apart from Claim 1 and Claim 2 goes through verbatim in our case.
Claims 1 and 2 however require a little more work. The following lemma proves Claim 1.
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Lemma 9. Fix g ∈ Rσ (M). If J = (Jt )t∈Sτ ⊆ Ug and u : R × Sτ → T ∗M satisfies (2.8) and
(2.9) with respect to J, then

‖∂su‖2
L2

Gg
(R×Sτ )

� 4 sup
t∈Sτ

‖Jt‖2
L∞

Gg

(
AH,σ (x−) − AH,σ (x+)

)
.

Proof. The proof is a simple computation using Lemma 2.3 and (2.7).

‖∂su‖2
L2

Gg
(R×Sτ )

� sup
t∈Sτ

‖Jt‖2
L∞

Gg

‖∂su‖2
L2

GJt
(R×Sτ )

� 4 sup
t∈Sτ

‖Jt‖2
L∞

Gg

∞∫
−∞

τ∫
0

ωσ (Jt∂su, ∂su) dt ds

= 4 sup
t∈Sτ

‖Jt‖2
L∞

Gg

∞∫
−∞

(−dAH,σ

(
u(s)

))
(∂su) ds

= 4 sup
t∈Sτ

‖Jt‖2
L∞

Gg

(
AH,σ (x−) − AH,σ (x+)

)
. �

The proof of Claim 2 is somewhat trickier, and we state this below as a separate lemma. It is
this lemma that explains why in our case the constant δ0(H,σ,g) enters the picture.

Lemma 10. Fix g ∈ Rσ (M). Assume τ |δ| < δ0(H,σ,g) and α ∈ [S1,M] is a σ -atoroidal class.
Fix J = (Jt )t∈Sτ ⊆ Ug . Then for all a ∈ R there exists a constant S = S(a) > 0 such that for any
u = (q,p) ∈ M α

τ (−∞, a,H, δσ,J) one has∥∥p(s, ·)∥∥
L2

g(Sτ )
� S

(
1 + ∥∥∂su(s, ·)∥∥

L2
Gg

(Sτ )

)
.

Proof. We begin with the more difficult case where σ satisfies (σ1) but not (σ0), so that by (2.4),
we have

δ0(H,σ,g) = η1(H,g)

2C0η2(H,g)
.

Set

T := sup
t∈Sτ

‖Jt‖L∞
Gg

.

Fix u = (q,p) ∈ M α
τ (−∞, a,H,σ,J) as in the statement of the lemma. Observe that by (2.6)

we have:

λ(∂tu) = λ
(
XH,σ (t, u)

) + λ
(
Jt (u)∂su

)
= dH(t, u)Z(u) + dλ

(
Z(u), Jt (∂su)

)
� dH(t, u)Z(u) − T |p|Gg(∂su, ∂su)1/2.
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Thus if H satisfies (H1) with respect to h1 > 0 and k1 � 0, then

λ(∂tu) − H(t,u) � h1|p|2 − k1 − T |p|Gg(∂su, ∂su)1/2,

and hence

AH

(
u(s, ·)) � h1

∥∥p(s, ·)∥∥2
L2

g(Sτ )
− k1τ − T

∥∥p(s, ·)∥∥
L2

g(Sτ )

∥∥∂su(s, ·)∥∥
L2

Gg
(Sτ )

.

Taking horizontal components of the equation

∂tu = Jt (u)∂su + XH,σ (t, u)

gives

∂tq = (
Jt (u)∂su

)h + ∇pH(t, q,p),

and hence if H satisfies the second of the two conditions needed for (H2) with h2 > 0 and k2 � 0
then

|∂tq|2 � 2
∣∣(Jt (u)∂su

)h∣∣2 + 2
∣∣∇pH(t, q,p)

∣∣2

� 2‖Jt‖2
L∞

Gg

Gg(∂su, ∂su) + 2h2|p|2 + 2k2.

Thus ( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

� τ

τ∫
0

∣∣∂tq(s, ·)∣∣2
dt

� 2τT 2
∥∥∂su(s, ·)∥∥2

L2
Gg

(Sτ )
+ 2τh2

∥∥p(s, ·)∥∥2
L2

g(Sτ )
+ 2τk2.

Thus by Lemma 3,

∣∣Aδσ

(
q(s, ·))∣∣ � |δ|

(
C0

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ C1

)

� 2|δ|C0τT 2
∥∥∂su(s, ·)∥∥2

L2
Gg

(Sτ )
+ 2|δ|C0τh2

∥∥p(s, ·)∥∥2
L2

g(Sτ )
+ |δ|(2C0τk2 + C1),

and hence

a � AH,δσ

(
u(s, ·))

� AH

(
u(s, ·)) − ∣∣Aδσ

(
q(s, ·))∣∣

�
(
h1 − 2|δ|C0τh2

)∥∥p(s, ·)∥∥2
L2

g(Sτ )
− T

∥∥p(s, ·)∥∥
L2

g(Sτ )

∥∥∂su(s, ·)∥∥
L2

Gg
(Sτ )

− 2|δ|C0τT 2
∥∥∂su(s, ·)∥∥2

L2 (Sτ )
− k1τ − |δ|(2C0τk2 + C1).
Gg
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Using the fact that for any c, d,μ > 0 it holds that

cd � μc2 + 1

4μ
d2,

we have that for any μ > 0 it holds that

a �
(
h1 − 2|δ|τC0h2 − μ

)∥∥p(s, ·)∥∥2
L2

g(Sτ )
−

(
2|δ|C0τT 2 + 1

4μ
T 2

)∥∥∂su(s, ·)∥∥2
L2

Gg
(Sτ )

− k1τ − |δ|(2C0τk2 + C1).

Our choice of δ implies that

h1 − 2|δ|τC0h2 > 0,

and hence for suitably small μ we obtain an equality of the desired form.
Finally consider the case where σ satisfies the stronger condition (σ0). In this case σ̃ admits

a bounded primitive θ , and Lemma 3 can be upgraded to a linear isoperimetric inequality – see
[7, Lemma 4.4]. It is then easy to improve the proof above to work for any δ ∈ R, and we omit
the details. �

We have now verified Claim 2 of Lemma 1.12 in [3]. As discussed above, the remaining parts
of the proof of Lemma 1.12 go through without change in our situation, and thus this concludes
the proof of Eq. (3.1), and hence also of Theorem 8.

Remark 11. This argument also proves that if τ |δ| < δ0(H,σ,g) and the triple (H, δσ,α)

satisfies condition (N), then for any a ∈ R, there are at most finitely many critical points
x ∈ Pα

τ (H, δσ ) with AH,δσ (x) � a. Indeed, the proof shows that if

P := {
x ∈ Pα

τ (H, δσ ): AH,δσ (x) � a
}
,

then there exists a uniform bound on ‖p‖2
L2

g(Sτ )
for all x = (q,p) ∈ P.

Since

|ẋ| = ∣∣XH,σ (t, x)
∣∣ � hσ,g

(
1 + |p|2)

by (2.5), we see that P is bounded in W
1,1
g , and hence in L∞

g . In particular, the set

{
x(0): x ∈ P

}
is precompact in T ∗M , and since it is discrete by condition (N), it is finite.
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3.2. Invariance

The following result completes the proof of Theorem A from the Introduction, whose proof is
similar to [3, Lemma 1.21] and [7, Theorem 2.7]. Indeed, to obtain Theorem A from Theorem 12,
simply take σ0 = σ and σ1 = 0, and apply Theorem 1.

Theorem 12 (Invariance of Floer homology under homotopies). Fix a Riemannian metric g

on M , α ∈ [S1,M] and τ > 0. Suppose we are given:

1. 2-forms σ0 and σ1 that both satisfy (σ1) and are such that α is both σ0-atoroidal and
σ1-atoroidal, and such that g ∈ Rσ0(M) ∩ Rσ1(M). Set

σs := (1 − s)σ0 + sσ1.

2. Hamiltonians H0 and H1 satisfying the Abbondandolo–Schwarz growth conditions. Set

Hs := (1 − s)H0 + sH1.

Choose a smooth function δ : [0,1] → R such that

τ
∣∣δ(s)∣∣ < δ0(Hs, σs, g)

for each s ∈ [0,1], and suppose that both (H0, δ(0)σ0, α) and (H1, δ(1)σ1, α) satisfy condi-
tion (N). Then there exists a continuation map

Ψ : CFα∗
(
H0, δ(0)σ0, τ

) → CFα∗
(
H1, δ(1)σ1, τ

)
inducing an isomorphism

ψ : HFα∗
(
H0, δ(0)σ0, τ

) → HFα∗
(
H1, δ(1)σ1, τ

)
.

Before getting started on the proof, we will introduce some notation. Our assumption

τ
∣∣δ(s)∣∣ < δ0(Hs, σs, g) for all s ∈ [0,1] (3.2)

implies that we can choose bounded functions η1(s), η2(s) and constants k1, k2 � 0 and χ > 0
such that for all s ∈ [0,1]:

1. Hs satisfies (H1) with respect to η1(s) and k1;
2. Hs satisfies (2.3) with respect to η2(s) and k2;
3. If C0(σs, g) and C1(σs, g,α) denote the constants associated to σs from Lemma 3 then

η1(s) − 2
∣∣δ(s)∣∣τC0(σs, g)η2(s) > χ for all s ∈ [0,1]. (3.3)

Set
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η1 := max
s∈[0,1]

η1(s), η2 := max
s∈[0,1]

η2(s);
C0 := max

s∈[0,1]
C0(σs, g), C1 := max

s∈[0,1]
C1(σs, g,α);

d := max
s∈[0,1]

∣∣δ(s)∣∣.
Now fix ε > 0, which we will specify precisely later. Choose a natural number

N � 2 maxs∈[0,1] |δ′(s)|
ε

, (3.4)

and choose a subdivision 0 = r0 < r1 < · · · < rN = 1 such that |ri − ri+1| < 2/N for each i =
0, . . . ,N − 1 and such that for each i = 0, . . . ,N − 1 the following two inequalities hold1:{∣∣Hri+1(t, q,p) − Hri (t, q,p)

∣∣ � ε
(
1 + |p|2);

C0(σri+1 − σri , g) < ε.
(3.5)

Let β : R → [0,1] denote a smooth cut-off function such that β(s) ≡ 0 for s � 0 and β(s) ≡ 1
for s � 1, with 0 � β ′(s) � 2 for all s ∈ R. Now define:

F i
s := Hri + β(s)(Hri+1 − Hri );
νi
s := σri + β(s)(σri+1 − σri );

fi(s) := δ
(
ri + β(s)(ri+1 − ri)

);
ωi

s := dλ + fi(s)π
∗νi

s .

Note that by (3.4),

max
s∈[0,1]

∣∣f ′
i (s)

∣∣ < 2ε for all i ∈ {0,1, . . . ,N − 1}.

Let

A i : Λα
τ T ∗M → R

be defined by

A i (x) := AHri
,δ(ri )σri

(x) = AHri
(x) + Aδ(ri )σri

(π ◦ x),

and let

A i
s : Λα

τ T ∗M → R

1 That it is possible to choose such a subdivision so that the first inequality holds is explained in [3, p. 289], and uses
the fact that both H0 and H1 satisfy (H2), and that M is compact.
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be defined by

A i
s (x) := AF i

s ,fi (s)ν
i
s
(x) = AF i

s
(x) + Afi(s)ν

i
s
(π ◦ x).

Fix J = (Jt )t∈Sτ ⊆ Vg (where Vg is as in the statement of Theorem 8).
Given i ∈ {0,1, . . . ,N − 1} and −∞ < a � b < ∞, denote by

N α
τ

(
a, b,F i

s , fi(s)ν
i
s ,J

)
the set of maps u ∈ C∞(R × Sτ , T

∗M) that satisfy the s-dependent Floer equation

∂su + ∇JA
i
s (u) = 0

and which satisfy

a � A i
s

(
u(s, t)

)
� b for all (s, t) ∈ R × Sτ .

The following statement constitutes most of the work needed to prove Theorem 12.

Lemma 13. If ε > 0 is sufficiently small then given any i ∈ {0,1, . . . ,N − 1} and any
−∞ < a � b < ∞ there exists a compact set Ki = Ki(a, b,J) ⊆ T ∗M such that for all
u ∈ N α

τ (a, b,F i
s , fi(s)ν

i
s ,J) one has u(R × Sτ ) ⊆ Ki .

Proof. Fix i ∈ {0,1, . . . ,N −1}, and fix u = (q,p) ∈ N α
τ (a, b,F i

s , fi(s)ν
i
s ,J). Firstly, note that

by Lemma 3 we have that for all s ∈ R,

∣∣Aνi
s

(
q(s, ·))∣∣ � C0

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ C1; (3.6)

∣∣A(σri+1−σri
)

(
q(s, ·))∣∣ � ε

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ C2, (3.7)

for some constant C2 > 0, where the second equation used (3.5).
The key term we wish to estimate is:

�(u) :=
∞∫

−∞

∣∣∣∣( ∂

∂s
A i

s

)(
u(s, ·))∣∣∣∣ds.

We compute

∣∣∣∣( ∂

∂s
A i

s

)(
u(s, ·))∣∣∣∣ =

∣∣∣∣∣−
1∫

0

(
∂

∂s
F i

s

)(
u(s, t)

)
dt + ∂

∂s
Afi(s)ν

i
s

(
q(s, ·))∣∣∣∣∣

� β ′(s)
1∫ ∣∣(Hri+1 − Hri )(t, u)

∣∣dt +
∣∣∣∣ ∂

∂s
Afi(s)ν

i
s

(
q(s, ·))∣∣∣∣.
0
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We can estimate the first term from (3.5) by

β ′(s)
1∫

0

∣∣(Hri+1 − Hri )(t, u)
∣∣dt � 2ε

(
1 + ∥∥p(s, ·)∥∥2

L2
g(Sτ )

)
.

As for the second term, we compute using (3.6) and (3.7) that∣∣∣∣ ∂

∂s
Afi(s)ν

i
s

(
u(s, ·))∣∣∣∣ = ∣∣f ′

i (s)Aνi
s

(
q(s, ·)) + β ′(s)fi(s)A(σri+1 −σri

)

(
q(s, ·))∣∣

� 2ε

(
C0

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ C1

)
+ 2d

(
ε

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ C2

)

� 2ε(C0 + d)

( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

+ 2εC1 + 2dC2.

Arguing as in the proof of Lemma 10, we have( τ∫
0

∣∣∂tq(s, ·)∣∣dt

)2

� 2τT 2
∥∥∂su(s, ·)∥∥2

L2
Gg

(Sτ )
+ 2τη2

∥∥p(s, ·)∥∥2
L2

g(Sτ )
+ 2τk2,

where as before,

T := sup
t∈Sτ

‖Jt‖L∞
Gg

.

Thus∣∣∣∣ ∂

∂s
Afi(s)ν

i
s

(
q(s, ·))∣∣∣∣ � 4ε(C0 + d)τT 2

∥∥∂su(s, ·)∥∥2
L2

Gg
(Sτ )

+ 4ε(C0 + d)τη2
∥∥p(s, ·)∥∥2

L2
g(Sτ )

+ 4ε(C0 + d)τk2 + 2εC1 + 2dC2.

Putting this together and integrating we conclude

�(u) �
(
2ε + 4ε(C0 + d)τη2

)︸ ︷︷ ︸
:=c1

‖p‖2
L2

g([0,1]×Sτ )
+ 4ε(C0 + d)τT 2︸ ︷︷ ︸

:=c2

‖∂su‖2
L2

Gg
([0,1]×Sτ )

+ 2ε + 4ε(C0 + d)τk2 + 2εC1 + 2dC2︸ ︷︷ ︸
:=c3

.

Arguing as in Lemma 9 we have

‖∂su‖2
L2

Gg
(R×Sτ )

� 4T 2(b − a + �(u)
)

� 4T 2c1‖p‖2
L2([0,1]×Sτ )

+ 4T 2c2‖∂su‖2
L2 ([0,1]×Sτ )

+ 4T 2(b − a + c3),

g Gg
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and thus provided ε > 0 is small enough such that

4T 2c2 � 1

2
,

we conclude that

‖∂su‖2
L2

Gg
(R×Sτ )

� 8T 2c1‖p‖2
L2

g([0,1]×Sτ )
+ 8T 2(b − a + c3). (3.8)

Similarly one has

sup
s∈R

A i
s

(
u(s, ·)) � b + �(u)

� b + c1‖p‖2
L2

g([0,1]×Sτ )
+ c2‖∂su‖2

L2
Gg

([0,1]×Sτ )
+ c3. (3.9)

Arguing as in the proof of Lemma 10 we discover that

c1‖p‖2
L2

g([0,1]×Sτ )
+ c2‖∂su‖2

L2
Gg

([0,1]×Sτ )
+ c3 + b

� A i
s

(
u(s, ·))

=
τ∫

0

(
λ
(
XFi

s ,fi (s)ν
i
s
(t, u)

) − Fs(t, u)
)
dt + Afi(s)ν

i
s

(
q(s, ·))

(∗)

� (χ − μ)
∥∥p(s, ·)∥∥2

L2
g(Sτ )

−
(

2|δ|C0τT 2 + 1

4μ
T 2

)∥∥∂su(s, ·)∥∥2
L2

Gg
(Sτ )

− k1τ − d(2C0τk2 + C1),

where μ > 0 is any positive number and (∗) used (3.3). Take μ = χ/2. Integrating this expression
over [0,1] and rearranging gives(

χ

2
− c1

)
‖p‖2

L2
g([0,1]×Sτ )

�
(

c2 +
(

2|δ|C0τT 2 + 1

2χ
T 2

))
‖∂su‖2

L2
Gg

(R×Sτ )

+ b + c3 + k1τ + d(2C0τk2 + C1).

Substituting in the expression (3.8) for ‖∂su‖2
L2

Gg
(R×Sτ )

we obtain

(
χ

2
− c1 − 8T 2c1

(
c2 +

(
2|δ|C0τT 2 + 1

2χ
T 2

)))
︸ ︷︷ ︸

:=c4

‖p‖2
L2

g([0,1]×Sτ )

� 8T 2(b − a + c3)

(
c2 +

(
2|δ|C0τT 2 + 1

2χ
T 2

))
+ b + c3 + k1τ + d(2C0τk2 + C1)︸ ︷︷ ︸ .
:=c5
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We can choose ε > 0 sufficiently small such2 that c4 > χ/4. Assuming this is so, we have proved
that for any u = (q,p) ∈ N α

τ (a, b,F i
s , fi(s)ν

i
s ,J) one has

‖p‖2
L2

g([0,1]×Sτ )
� 4c5

χ
.

Feeding this into (3.8) and (3.9) we find constants c6, c7 > 0 such that for all such maps u,

‖∂su‖L2
Gg

(R×Sτ ) � c6, sup
s∈R

A i
s

(
u(s, ·)) � c7.

This proves the analogue of Lemma 9, and allows us to prove the analogue of Lemma 10, for
elements of N α

τ (a, b,F i
s , fi(s)ν

i
s ,J). We can proceed exactly as in the proof of Theorem 8 to

obtain the desired compact set Ki . This completes the proof of Lemma 13. �
Armed with Lemma 13, the proof of Theorem 12 is very standard.

Proof of Theorem 12. Fix N ∈ N such that there exists a subdivision 0 = r0 < r1 < · · · < rN = 1
with the property that (3.5) holds for some ε > 0 small enough such that Lemma 13 holds for
each i = 0,1, . . . ,N − 1. After possibly making additional arbitrarily small perturbations of Hs

for s near ri , for each i = 1,2, . . . ,N − 1 (which for simplicity we omit from our notation), we
may assume that (Hri , δ(ri)σri , α) satisfies condition (N) for each i = 0,1, . . . ,N .

Under these assumptions we define for each i = 0,1, . . . ,N − 1 a continuation map

Ψi(J) : CFα∗
(
Hri , δ(ri)σri , τ

) → CFα∗
(
Hri+1, δ(ri+1)σri+1 , τ

)
by

Ψi(J)(x) :=
∑

y∈Pα
τ (Hri+1 ,δ(ri+1)σri+1 )k

ni(x, y)y, x ∈ Pα
τ

(
Hri , δ(ri)σri

)
k
,

where

ni(x, y) := #2N
α

τ

(
x, y,F i

s , fi(s)ν
i
s ,J

)
,

and N α
τ (x, y,F i

s , fi(s)ν
i
s ,J) denotes the (finite) set of maps u : R × Sτ → T ∗M satisfying

∂su + ∇JA
i
s (u) = 0,

and which submit to the asymptotic conditions

lim
s→∞u(s, t) = x(t), lim

s→−∞u(s, t) = y(t), lim
s→±∞ ∂su(s, t) = 0.

2 Here of course it is important to note that this choice can be made independently of both N and i.
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Standard Floer-theoretical arguments (see for instance [20]) tell us that the Ψi(J) are chain maps
that induce isomorphisms

ψi : HFα∗
(
Hri , δ(ri)σri , τ

) → HFα∗
(
Hri+1, δ(ri+1)σri+1, τ

)
for i = 0,1, . . . ,N −1 on homology. The chain map Ψ from the statement of the theorem is then
defined as the composition

Ψ := ΨN−1(J) ◦ · · · ◦ Ψ1(J) ◦ Ψ0(J). �
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Appendix A. The Lagrangian framework

In this appendix we outline an alternative approach to obtaining some of the results of this
paper without using the machinery of Floer homology. Roughly speaking, this method can be
used to recover all the results proved in this paper for a more restricted class of Hamiltonian
systems: the so-called convex quadratic growth Hamiltonians, which are those Hamiltonians
H : Sτ × T ∗M → R which satisfy the Abbondandolo–Schwarz growth conditions and in addi-
tion are strictly fibrewise convex.

Given such a Hamiltonian H , the idea is to study the Lagrangian action functional SL,δσ on
the atoroidal components of the (completed) τ -periodic loop space of M , where L is the Fenchel
dual Lagrangian of H . The key point is to show that (for τ |δ| sufficiently small), the functional
SL,δσ satisfies the Palais–Smale condition, and this allows one to construct the Morse complex
of SL,δσ .

A.1. The Lagrangian action functional

Fix a Riemannian metric g on M . Suppose L ∈ C∞(TM,R). Then dL(q, v) ∈ T ∗
(q,v)TM, and

thus its gradient ∇L(q, v) (with respect to the Gg-metric on TM) lies in T(q,v)TM. Thus we can
speak of the horizontal and vertical components

∇qL(q, v) := ∇L(q, v)h ∈ TqM;
∇vL(q, v) := ∇L(q, v)v ∈ TqM.

Thinking of ∇qL as a map TM → TM (so its derivative is a map d(∇qL) : TTM → TTM), we
define

∇qqL(q, v)(w) := d(∇qL)(q, v)(ξw)v,

where ξw ∈ T(q,v)TM is the unique vector such that ξh
w = w and ξv

w = 0. Similarly we define

∇qvL(q, v)(w) := d(∇qL)(q, v)(ζw)v,
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where this time ζw ∈ T(q,v)TM is the unique vector such that ζ h
w = 0 and ζ v

w = w. We define
maps ∇qvL and ∇vvL in exactly the same way, starting with ∇vL instead of ∇qL. Note that the
operator ∇vvL(q, v) : TqM → TqM coincides with the second derivative of the map v 
→ L(q, v)

in the vector space TqM . If L is time-dependent then these notations still make sense, with
∇qqL(t, q, v) := ∇qqLt (q, v) etc., where Lt(q, v) := L(t, q, v).

We will be interested in time-dependent Lagrangians L ∈ C∞(Sτ × TM,R) that satisfy the
following convex quadratic growth conditions:

(L1) There exists �1 > 0 such that for all (t, q, v) ∈ Sτ × TM it holds that

∇vvL(t, q, v) � �11.

(L2) There exists �2 > 0 such that for all (t, q, v) ∈ Sτ × TM it holds that∣∣∇vvL(t, q, v)
∣∣ � �2,

∣∣∇vqL(t, q, v)
∣∣ � �2

(
1 + |v|),∣∣∇qqL(t, q, v)

∣∣ � �2
(
1 + |v|2).

Whilst the constants �1 and �2 depend on the choice of metric g on M , the existence of such
constants does not (see [18, Proposition 3.3.1]). Note that the assumption (L1) implies that
∇vL(t, q, ·) : TqM → T ∗

q M is a diffeomorphism for each (t, q) ∈ Sτ × M , and hence we may
define the Fenchel dual Hamiltonian H ∈ C∞(Sτ × T ∗M,R) by

H(t, q,p) := p(v) − L(t, q, v), where ∇vL(t, q, v) = p. (A.1)

It is not hard to check that asking L to satisfy (L1) and (L2) implies that H satisfies the
Abbondandolo–Schwarz growth conditions (H1) and (H2). Going the other way round, if
H ∈ C∞(Sτ × T ∗M,R) satisfies (H1) and (H2) and in addition is strictly fibrewise convex,
then there is a unique Lagrangian L ∈ C∞(Sτ × TM,R) called the Fenchel dual Lagrangian
of H for which ∇vL(t, q, ·) is a diffeomorphism for each (t, q) ∈ Sτ × M , and which is related
to H by (A.1). Moreover, this Lagrangian L satisfies (L1) and (L2).

Denote by LτM := W 1,2(Sτ ,M) the Sobolev completion of the free loop space ΛτM =
C∞(Sτ ,M), and as before given α ∈ [S1,M] denote by L α

τ M the component of LτM belong-
ing to α. Unlike ΛτM , the space LτM carries the structure of a Hilbert manifold, and therefore
is much better suited for doing Morse homology on. As before we denote by ‖ · ‖

W
1,2
g (Sτ )

the

W
1,2
g -metric on L α

τ M .
In this appendix we study the Lagrangian action functional SL,σ : L α

τ M → R associ-
ated to a Lagrangian L satisfying (L1) and (L2), together with a 2-form σ satisfying (σ1) on a
σ -atoroidal class α ∈ [S1,M]. As with the Hamiltonian action functional AH,σ , the Lagrangian
action functional SL,σ is defined as the sum

SL,σ (q) := SL(q) + Aσ (q),

where SL is the standard Lagrangian action functional

SL(q) :=
τ∫
L

(
t, q(t), q̇(t)

)
dt
0
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(note SL is defined on all of LτM), and Aσ is defined as before (only now on the completed
loop space L α

τ M).
A standard computation (which does not use assumptions (L1) and (L2) and only requires

that α is a σ -atoroidal class) tells us that if q ∈ L α
τ M and (qs)s∈(−ε,ε) ⊆ L α

τ M is a variation
of q with ∂

∂s
|s=0qs(t) =: ξ(t) then, writing Y = Yσ,g for the Lorentz force defined in Section 2.1,

we have:

∂

∂s

∣∣∣∣
s=0

SL,σ (qs) =
τ∫

0

〈∇qL(t, q, q̇), ξ
〉 + 〈∇vL(t, q, q̇),∇t ξ

〉 + 〈
Y(q)q̇, ξ

〉
dt, (A.2)

which we can rewrite as

∂

∂s

∣∣∣∣
s=0

SL,σ (qs) =
τ∫

0

〈∇qL(t, q, q̇) − ∇t

(∇vL(t, q, q̇)
) + Y(q)q̇, ξ

〉
dt.

Thus ∂
∂s

|s=0SL,σ (qs) = 0 for all such variations qs if and only if q satisfies the Euler–Lagrange
equations

∇qL(t, q, q̇) − ∇t

(∇vL(t, q, q̇)
) + Y(q)q̇ = 0. (A.3)

Since ∇vvL(t, q, v) is invertible by (L1), we can rewrite this as

∇t q̇ = [∇vvL(t, q, q̇)
]−1(∇qL(t, q, q̇) − ∇qvL(t, q, q̇)q̇ + Y(q)q̇

)
.

In the special case σ = 0, the following theorem is due Abbondandolo and Schwarz [4] (see
also [18, Proposition 3.4.1] for a detailed proof). However a careful inspection of their proof
reveals that everything still goes through in our setting.

Proposition 14. Let σ ∈ Ω2(M) denote a closed 2-form and α ∈ [S1,M] a σ -atoroidal class,
and let L ∈ C∞(Sτ × TM,R) satisfy (L1) and (L2). Then SL,σ : L α

τ M → R is of class C1,
and its differential dSL,σ is Gâteau differentiable and locally Lipschitz continuous. Moreover
its critical points are precisely the (smooth) solutions of the Euler–Lagrange equation (A.3), and
the second Gâteau differential d2SL,σ (q) at a critical point q is a Fredholm operator of finite
Morse index.

Recall that a C1-functional S : M → R on a Riemannian Hilbert manifold M satisfies the
Palais–Smale condition if every sequence (qm)m∈N ⊆ M for which S (qm) is bounded and
‖dS (qm)‖ → 0 admits a convergent subsequence (here ‖ · ‖ denotes the dual norm on T ∗

qm
M ).

The main result we wish to prove in this appendix is the following statement.

Theorem 15. Let σ ∈ Ω2(M) satisfy (σ1), let α ∈ [S1,M] denote a σ -atoroidal class, and
let L ∈ C∞(Sτ × TM,R) satisfy (L1) and (L2). Then there exists δ0(L,σ,g) > 0 such that if
τ |δ| < δ0(L,σ,g) then SL,δσ : L αM → R satisfies the Palais–Smale condition.
τ
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This theorem was proved for the case σ = 0 originally by Benci [8]; our proof however will
closely follow that of Abbondandolo and Figalli [1, Appendix A]. The proof of Theorem 15
makes use of Lemma 3.

Proof of Theorem 15. It follows from (L1) that there exists a constant D > 0 such that
L(t, q, v) � �0|v|2 −D for all (t, q, v) ∈ Sτ × TM. Thus for any q ∈ L α

τ M by Lemma 3 one has

SL,δσ (q) � SL(q) − ∣∣Aδσ (q)
∣∣ �

(
�0 − |δ|C0τ

)‖q̇‖2
L2

g(Sτ )
− (|δ|C1 + D

)
. (A.4)

Define

δ(L,σ,g) := �0

C0
, (A.5)

and fix δ ∈ R such that τ |δ| < δ(L,σ,g). Suppose (qm)m∈N ⊆ L α
τ M is a sequence such that

SL,δσ (qm) is bounded and ‖dSL,δσ (qm)‖ → 0 in the dual norm of T ∗
qm

L α
τ M . Then (A.4) im-

plies that the sequence (q̇m) is bounded in L2
g . Since

dist
(
qm(t), qm(s)

)
�

t∫
s

|q̇m|dr � |s − t |1/2‖q̇m‖L2
g(Sτ ),

the sequence (qm) is equicontinuous, and the Arzelà–Ascoli theorem implies that up to passing
to a subsequence, we may assume that qm converges uniformly to some q ∈ C0(Sτ ,M).

We now employ the localization argument of Abbondandolo and Figalli, which allows us to
reduce the problem to one on Rn (roughly speaking, this involves making an intelligent choice
of a chart on L α

τ M about q – see [18, Remark 3.4.1]). As a result, from now on let us assume L

is defined on Sτ × U × Rn for some open set U of Rn, with σ ∈ Ω2(U), and that (qm) ⊆ LτU

is a sequence such that SL,δσ (qm) is bounded and ‖dSL,δσ (qm)‖ → 0 in the dual norm on
T ∗

qm
LτU , with (q̇m) bounded in L2 and qm converging uniformly to some q ∈ C0(Sτ ,U).

This automatically implies that q ∈ L α
τ U , and up to passing to a subsequence, qm converges

weakly to q in LτRn. To complete the proof we need to show that this convergence is strong
in W 1,2. Since (qm) is bounded in W 1,2, we have dSL,δσ (qm)(qm − q) → 0, and hence by (A.2)
(expressed now in the simpler setting of Rn)

τ∫
0

(
∂qLt (qm, q̇m) · (qm − q) + ∂vLt (qm, q̇m) · (q̇m − q̇) + δY (qm)q̇m · (qm − q)

)
dt → 0.

The term ∂qLt (qm, q̇m) is bounded in L2 by (L2). Similarly Y(qm)q̇m is bounded in L2, and
consequently we have

τ∫
0

∂vLt (qm, q̇m) · (q̇m − q̇) dt → 0.

From this it is straightforward to show that ‖q̇m − q̇‖L2
g(Sτ ) → 0 using (L1) and (L2); the proof

is identical to [18, Proposition 3.5.2], and hence we omit the details. �



U. Frauenfelder et al. / Journal of Functional Analysis 262 (2012) 3062–3090 3089
In general the functional SL,σ is not of class C2. In fact, arguing as in [4, Proposition 3.2],
one sees that SL,σ is of class C2 if and only if the function v 
→ L(t, q, v) is a polynomial of
degree at most 2 for each (t, q) ∈ Sτ × M . One would think that this means that in general there
is no hope of doing infinite dimensional Morse theory with SL,σ . Indeed, such a Morse theory
needs at least C2-regularity – for example, the Morse lemma requires C2-regularity – see [10].
Nevertheless, under a suitable non-degeneracy assumption (see condition (N) below), it is still
possible to construct a Morse complex for SL,δσ (see Theorem 17 below). The only missing
ingredient we still need for this is the existence of a pseudo-gradient for SL,σ , which we will
discuss shortly in Proposition 16.

The final condition we impose is a non-degeneracy condition:

(N′) Every solution q of the Euler–Lagrange equations (A.3) is non-degenerate, which means
that there are no non-zero periodic Jacobi fields along q .

Asking for q to be a non-degenerate solution is equivalent to requiring q to be a non-degenerate
critical point of SL,σ , in the sense that the symmetric bilinear form d2SL,σ (q) on TqL α

τ M is
non-degenerate. Moreover if H is the corresponding Fenchel dual Hamiltonian then (L,σ,α)

satisfies condition (N′) if and only if (H,σ,α) satisfies condition (N).
The following result can be proved in exactly the same way as [4, Theorem 4.1].

Proposition 16. Let σ ∈ Ω2(M) satisfy (σ1), and let L ∈ C∞(Sτ ×TM,R) satisfy (L1) and (L2).
Fix a σ -atoroidal class α ∈ [S1,M], and assume that (L,σ,α) satisfies condition (N′). Then
there exists a pseudo-gradient for SL,σ . That is, there exists a smooth bounded vector field G
on L α

τ M whose zeros are precisely the smooth solutions of the Euler–Lagrange equations (A.3),
together with a continuous function ε ∈ C(R,R+) such that

dSL,σ (q)G (q) � ε
(
SL,σ (q)

)∥∥dSL,σ (q)
∥∥ for all q ∈ L α

τ M,

and such that for any solution q ∈ Λτ
αM of (A.3) one has

d2SL,σ (q)(ξ, ζ ) = 〈∇G (q)ξ, ζ
〉
W

1,2
g (Sτ )

for all ξ, ζ ∈ W 1,2(q∗TM
)

(here ∇G (q) : TqL α
τ M → TqL α

τ M is defined by ∇G (q)ξ := [G ,X](q), where X is any vector
field on L α

τ M such that X(q) = ξ ).

As mentioned above, Proposition 14, Theorem 15, and Proposition 16 imply that one can
define the Morse complex of SL,δσ for τ |δ| < δ0(L,σ,g). We refer the reader to [2] for more
information on the construction of the Morse complex, and for the proof of the following Morse
homology theorem.

Theorem 17. Let σ ∈ Ω2(M) satisfy (σ1), and let L ∈ C∞(Sτ × TM,R) satisfy (L1) and (L2).
Fix a σ -atoroidal class α ∈ [S1,M], and fix δ ∈ R such that τ |δ| < δ0(L,σ,g), and assume that
(L, δσ,α) satisfies condition (N′). Denote by CMα∗ (L, δσ, τ ) the free Z2-module generated by
the solutions q of the Euler–Lagrange equations (A.3), graded by their Morse index (as a critical
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point of SL,δσ ). Then it is possible to define a map ∂Morse : CMα∗ (L, δσ, τ ) → CMα
∗−1(L, δσ, τ )

such that ∂Morse ◦ ∂Morse = 0, and such that the associated Morse homology

HMα∗ (L, δσ, τ ) := H∗
(
CMα∗ (L, δσ, τ ); ∂Morse)

is isomorphic to the singular homology H∗(L α
τ M;Z2).
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