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ABSTRACT

It is casy '~ prove that if A is a real imeducibie squaie mainiz and ¥ 2 real
nonsingular diagonal matrix D exists such that AD is symmetric and positive
semidefinite, then for any real diagonal matrix ¥, AY has only real eigenvalues. This
paper proves the converse result that if no such D exists, then for some ¥, AY will
possess some nonreal eigenvalues.

1. INTRODUCTION

It is easy to see that if A is a real irreducible square matrix for which a
nonsmgu!arrealdmgonalmatnx D exists such that AD is symmetric and
positive semidefinite, then for any real disgonal matriv ¥, AY hac only real
eigenvalues. If AD is positive dehmte and has the Cholesky faetonzahon
AD = LLT, then cigeavalues of AY are also eigenvalues of the symmetric
matrix LY(D~1Y)L, and the result is clear in this case. On the other hand, if
AD were positive semidefinite and AY had some nonrea! eigenvalues, then a
slight perturbation to the diagonals of A would make AD positive definite
without shifting the nonreal eigenvalues to the real line. This contradiction
shows that the case of singular A is also covered.

This paper considers the converse of this result as stated in the theorem
bel ww. It has an immediate application in the analysis of linear and nonhnear
stability for a general class of numerical methods for cidinaiy dilfeicuiial
equations [2, 3].

THEOREM. IansarealmeduabIeanmatnxfbrwhwhnononsmgu
lar real n X n diagmal matrix D exists such that AD is symmetric and
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positive semidefinite, then there exists a real n X n diagonal mairix Y such
that AY possesses nonveal eigenvalues.

The justification for this assertion is organized as a sequence of lemmas
with a formal proof of the theorem itself at the end. We first consider the
case of 2X2 matrices and matrices containing an appropziate 2X2 subma-

Lemva 1. Ifi,j€ {1,2,...,n} exist such that in the n X n matrix A,
a;;a;,+0, and such that no nonzero d; and d; exist such that the 2x2
mairix

a,d; aijdj]
ayd;, a;d;
is symmetric and positive semidefinite, then real y, and y; exist such that

a.¥; ay Y,
Cu¥%:  8;Y;

has nonreal eigenvalues.

Proof. We consider three cases:

(i? a,0;0:;a <0,
(i) @,;8;,+#0,a;,,=0,
(iii) a;8,8;a;>0, |a,jaj,|>|a“a”|,

which we can easily see cover all essentially different possibilities. To obtain
nonreal eigenvalues, we may choose y, and y; as follows:

(i? Vi=8; Y; =08y g
(“) y;=4a;a,, y;= —(1+ay),
(i) y,=a,, y;= —a,. u

2. THE CASE OF SYMMETRIC MATRICES

We new consider the possibility that although D exists such that AD is
symmetric, it is not possible to find such a D for which AD is positive
semidefinite. Without loss of generality, we may assume that A itself is
symmietric and that it satisfies the requirements of the following lemma.
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LemMma & If A is an iveducible symmetric n X n matrix with n> 2
such that the principal (n — 1) X(n — 1) minor is positive definite, a,_, > 0,
and det(A) <0, then a real diagonal Y exists such that AY has nonreal
eigenvaluss.

Proof. Let Y =diag(l,1,...,1, —x), where x is positive. Suppose that
o(AY)CR for all z. I x is sufficiently small, say x < x,, then n — 1 of the
eigenvalues of AY are positive because their limiting values as 1 — 0 are the
positive eigenvalues of the {(n —1)X(n — 1) principal submatrix. Also, be-
cause the product of the eigenvalues is det(AY)= -xdet(A)>0 the
remaining eigenvalue is also positive. if x =1x,, where x,>X""l¢,, /a,..,
then, because the trace is negative but the determinant is positive, AY has at
least two nonpositive eigenvalues. If 6(AY)CR for all x €[x,, x,], the set
of eigenvalues would depend continuously on x. This implies that for some
x € [x,, x;], AY has a zero eigenvalue. Since det( AY ) > 0, this is impossible.

]

3. THE CASE OF 3Xx3 MATRICES

In this section we will assume that n >3 and that the contingencies
included within Lemmas 1 and 2 do not arise. We will consider the possibility
that distinct i, j, k € {1,2,3,...,n} exist such that a,,a,k..,‘,#a #8508 i By
permutmgtherowsandcolumns we may assumi€ that i=1, j=2 ‘
and, because we may choose g, =ys;=--- =y,=90, we can restnct our-
selves to n = 3. It is convenient to divide up the work according as one of the
products @,989,a5, and @,485,a, is or is not equal to zero.

Levma 31 Ifn=3 and @,000584,#0, G 138559, =8, then a real
diagonal Y exists such that AY has nonreal eigenvalues.

Proof. We consider four cases:

() ay=ag=ay5=0,

(i) for one and only ore i, cay i=1,4a,%0,

(iii) for one and only one value of 4, say i:=3. u,; =0,
v) tori=123 a,+0.

In case (i), becanse of Lemma 1, we may assume that a3 =@z =a5 =01t
is found that the characteristic polynomial of AY, with ¥ =1, is given by

p(A) =det(A —AI) =aya0a5— A%,
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which has only one real zero. In case (ii), again because of Lemma 1, we
assume that a3 = a3y = ag =0. In this case, for Y = diag(y,, ¥, ¥5)

p(h) = det(AY - AI) = 80893831 Y1Ys¥s + ‘:';1191"2 — A3,

which has a nonreal pair of eigenvalues if y,y, is chosen to have the same
sign as @,,8,904;95. In case (iii), because of Lemma 1, we assume that
@3 = G39 = 0. The characteristic polynomial of AY is

P(A) =8,0843053,¥1YY3 — (“nazz — B384 )Y YA + (an!h + "szys)"z =A%

If y,+ 0 and y, # 0 are chosen such that p‘ has two real zeros, say A, and
Ag, then y; can be chosen so that p(A) <O for all A €A, A,]. It follows
that p has only a single real zero. In case (iv), since @4,a5,8,; =0, one of
these factors is zero. Suppose without loss of generality that a,, =0, and
choose Y = diag( — %8 95833/a 198930 3,, 835, a33 ) for x positive. We find that

Gg833 21389 ) G))829C233
A =—.a.c—x{ + ) —(1+x——) 2— s,
p(A) \aga; 4584 : Q12093a3; wok

where g = A — 1, which has only a single real zero if x is sufficiently small. ®

LevMa 32. If n=3 and 0+ a,304,a,, # 81383585, 0, then a real
diagonal Y exists such that AY has nonreal eigenvalues.

Proof. Let
— 2 -
€y =0G11893G33 — G190 918138 3y
-2
Co = Qg9ll1303) — G819 938 39,
Ca =028 ,080; — Q18128 20G
3= G332 198 9) — Q31838 393G 93.

We note that if ¢, <0, then we may assume that c,, c; > 0, since otherwise
one of the submatrices

[an e [au 313]
G am]’ 3 a4y
would hiave been covered by Lemma 1 and because we can arbitrarily

multiply by 2 nonsingular diagonal matrix. For the same reason we may
assume that a,),a0,a53>0 and that ¢,y =a,;,a,,=a,,,a3/a,3> 1. Let
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0 =(az5/a5;)"2 We also writs

2y = a0, — aya,50440,

Zy= a8 ~ 8190138450,

23 = aalsy — 0198138530

and, in cases (i), (ii) below,

Y——-diag( 0%, a3, a%z).

] 9
Zy 2y 23

In cases (ii), (iti), (iv) below, where @,,8,,00,> 0, ¢, <0, and c,,¢;> 0, let
t €[0,1) and u, v > 0 be defined so that

a1,05,0° = a00,,850(1 - t),
afiag0(l— 1) =a,0a,38,50(1+ u),

ada..(1—t) =a5,a,30,50(1+ v),

so that
A=D,AD,,
where
i 1 1
A=|1 14+u (1-t)07!}|,
1 (1-t)6 1+v
. a g, ag,f
Dl—mag(lsam(l“t)’am(l—t) }
[ @181 -t)
D2=dlag( ;3230 ,am,als)-
We consider four cases:

() €1,C9053> 0 0r 210843853 <0,
(ii) c < 05, ue > t2 > 0, Q19813895 > 0,
(i) ¢; <0, t22 uv> 0, apn48e,>0,
(iv) ¢; <0, one or more of £, u, v is zero, 4,52,42; > 0.
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In case (i), we note that z,, 2,5, 23> 0. The characteristic polynomial of
AY — [ is found to be

A — (a19813800) (371 + 231 + 231 ) N2 - 6%(0 - 1)°
X 65,0%03:(2,2025) "' =N —al2 - B,
say, where af > 0, B # 0, and this polynomial has only one distinct real zero.
In cases (i), (iii), (iv), because o(AY)=o(AY), where Y= D,YD,, we

may, without loss of generality, assume that A is equal to A. For case (i), it is
found that z,= —t(1—¢), 23=u+¢, z;=v +¢, so that

21393327 + 23 + 33 ) =uv — 12+ e ¥(w + 0 +2t),
and, just as in case (i), a8 >0, 8+ 0.
For case (jii), let the characteristic polynomial of AY —1I be A3 — a2 +
BA — v. 1t is found that
a=yl+y2(l+u)+y3(l+ v)—3,
B =y,ys8 + yyysv + ygus[ s + 0 + uv + 2t — 2]
—2[yy+ys(1+ u)+yy(1+ 0)] +3,
v=ysps[uo— 2+ T] - g-a—1
+ywass[(1-2)(0+ 671 -2) - T],
where T is an arbitrary positive number. We will show that it is always
possible to select nonzero y,, y,,y; such that, simultaneously, 8 =0 and
Yotis(uo —t>+T)=a+1. Furthermore, in this choice of y,,y,.%,, the
coefhclent awxllnotvamshlf =(1- t)(0+0 - .»..;,sothat by

unplymg the exictencs o5 aunreal easemaiues
it g, =(t —1)/t, it is found that 2 = 0 implies

[t(u+ 0+ uo+2t — £2)ys — (0 +2¢ + vt)]
X [t{u+ 0+ uv +2¢ — 12)y, — (u +2¢ + ut)]

=(t2+u)(t®+0)
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with sclation
yo= [0 +2t + ot + K(¢2+ o)) [t(u+ 0 + uo +2¢ —¢2)] 7,
¥s=[u+2¢t +ut + K12+ u)] [t(u + 0 + uv +2¢ —£2)] 71,

for K a nonzero number. Substitute into y,y,y(uv —t2+T)=a+1, and it
is found that K must satisfy

K[(£2+ 0)*(t + u)*+ T(e2+ 0)(1 — t)(u+2¢ + ut)]
+ KU (22 + u)’(e + 0)*+ T(e2 4+ u)(1— £) (0 +2¢ + ot)]
+[2(22 + u)(£2 + 0)(¢ + u)(t + v)
+T(1 —t)(t* + t3(44+3u + 30 + un) + #(2u +20 +2uv) +2uv)] =0.
(3.1)
Multiply by K and write down the condition for the resulting quadratic

equation to have distinct real roots. This condition is found to be T(PT + Q)
> 0, where

P=(1-1t)2(t +2)°(t2— 2t —u—o0—uv)*>0,
Q=4(1-t){(t2+ u)(t2+ o)tR(t)

" |

R(t)=t5—at*+{d - 3u— 20— 2unj:® + (4u +40+3uv)t?
+[(u + 0)*+ uo(u + 0+ uo)] t — u®.
It is found that
R{(20)2) = (o) /2(uV2 + 0/2) u + 0 + (u0) /(2 - (u0)/%)] >0

and that |

R(t)=t¥2—1)(6—5t)+t(u+v)8—6¢)

+6uot{l—¢t)+{u+0)*+ uo(u+ o+ uv)
>0
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for ¢ € [(uv)'/2,1), implying that T(PT + Q) is always positive for uo <2<
1. Hence, (3.1) always has two real distinct roots, and the corresponding
values of y, and y, lead to 8 =0 and y=y,ysys(Ty — T). The possibility
that a =9 for each of the two values of K can be dismissed, because if this
were 5o, then the left hand side of (3.1), regarded as a function of X, would
be a multiple of the equation for a =0, which is

K1+ u)(t2+0)+ K Y1+ 0)(t2+4)
+[uo+¢(~2+u+0)—3t2+2t%] =0. (3.2)

If the coefficients of K and K~! in (3.1) and (3.2) are in proportion, it is
found that

(u—o)(1—¢)(uo—£2+T)=0.

This implies either T + uo — ¢2 =0, giving the value a= —1, or else v = .
This latter possibility must be rejected because for u <t <1, the constant
term in (3.1) is positive and the constant term in (3.2) is equal to

g(t)=u®+t(—2+2u) - 3t2+2¢3,

which is negative, since g(u)= — 2u(1 — w?) <0 and g'(t)= — 2(1 - u) -
6t(1—¢) <O.

For case (iv), in which tuv = 0, we assume without loss of generality that
v > «. We consider four subcases:

A t=0, u,0>0,

B)t=u=0,0>0,

©) t=u=0v=0,

D) u=0,¢t0>0.

For subcase (A), choose Y = diag(1, x /%, x /v), where x> 0. For A an
eigenvaluc of AY, let p=x/A, so that p satisfies the equation

[ G+d-2
(1+ ——ua——)p“ ~[2+x(1+u1+ o~ 1)] u?
+[1+2@+u" + 07| p-z=0.

For x sufficiently small, this has only one real root, as can be seen by
considering the limiting case.
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For subcase (B), choose Y=diag(l,1,x) and let pg=A"! for A an
eigenvalue, so that p satisfies

g(p)=x(0+06"1 - 2)p®— 2xop® + 2+ x(1+0))p—1=0.
For x sufficiently small, the quadratic
g'(p)=3x(0+0"1— 2)u? - dxop + [2+ x(1+ v)]

has nonreal zeros, implying that the same holds for g.

For subcase (C), choose Y =1 so that the characteristic polynomial is
(0 + 07! — 2)+3A% — \* which has nonreal zeros.

In subcase (D), the argument in case (iii) can be repeated, the only
changes being that now R(0)=0, R’(t) >0, implying that R(¢)>0 for
t €(0,1), and that now the option © = # dces not need to be considered. H

4. FURTHER CASES WITH n >4

In this section we consider the case n>4 in which no nonsingular
diagonal D exists for which AD can be symmetric. We first establish a
preliminary result, for which the proof makes use of some standard terminol-
ogy and some elementary results from the theory of graphs j1).

LemMa 4.1. Let A be an irreducible n X n matrix for which no nonsin-
gular diagonal matrix D exists such that AD is symmetric. Then there exists
an integer m < n and distinci N(1), N2),..., N(m) € {1,2,...,n}, such that
the m X m matrix B with elements defined by b;; = a ;) nj, has the proper-
tes

by;=0 unless li—jl=0,1, 0rm—1,
blmbm.m—l e b32b21 # bmbm Tt bm—l,mbml +0. (4-1)

Pioof. Let G denote the digraph with vertex set V= {1,2,...,n} and
edge set E= {(i, j):a;;#0,i+ j}. Because A is irreducible, any two mem-
bers of V are path-connected We distinguish two cases:

(i) G is not symmetric,
(ii) G is symmetric.

In case (i) there exists a pair of vertices I, J such that (I,J) € E, (!, I)eE.
Choose a path from J to I, and consider the cycle made up from i, J, and



10 J. C. BUTCHER

the remaining members of the path from j to I. In case (ii), let T denote a
tree spanning the vertex set V for which {4, j} is an arc of T only if (i, j) isa
member of E. For each arc {i, j} of T, define the ratio d,/d;, so that
a;;d;=a;d, Up to an arbitrary nonzero factor, thlsdeﬁnesdl,dg, .d,
umquely SmceAD:snotsymnetm,&exeenstI ]suchthat,mththe
values of the D elements that bave been assigned, a;;d,+#a;d,. Select a
cycle in G made up from (I,]) together with the sequence of edges
connectinrg J to I corresponding to arcs in T.

In both cases (i) and (i), we have 1denhﬁed a cycle in G, made up from
vertices N(1), N(2),..., N(m) such that b, b _ . -- b b, #b by, --
b 1mbm1 # 0. Without loss of generality, suppose that amongst all cycl&s
with this property, the length m is the minimum possible value. It is easy to
verify that this implies the impossibility of an edge (N(i), N(§)) in Eunlas
(4.1) is satisfied.

For the type of matrix under consideration in this section, we can,

according to Lemma 4.1, restrict ourselves to matrices of the form given in
the next result.

LemMma 4.2. If A is given by

(a;, a 0 0O 0 a,, |
@y Gy 4y O 0 0
O ap ay ay ¢ 0
A=| 0 0 ay ay 0 o |,
0 0 0 0 - a,,., G,
L %n1 0 0 ¢ - 2h,n-1 Zan
where
Qalp n-10n—1n-2 " "Go #ljelg; - a,.F 0,

then Y exisis such that AY has nonseal eigenvalues.

Proof. We distinguish two cases:

(i) all diagonal elements of A are Zero,
(i) at east one diagonal element of A, say a,,, is nonzerc.
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In case (i}, because of Lemma 1,

G1n=0aq-1=0p_1p-2= """ =8g = 0.

Hence, with Y defined so that

det(Y) = (@905 -~ @) ",

it is found that AY has eigenvalues equal to exp(27ki/n), for k=0,1....,
n — 1. In case (ii), we assume that the result of this lemma is already proved
for lower integers than n. Since the case n =3 has already been established
in Lemmas 3.1 and 3.2, the proof for any n will then follow by an induction
argument. Let Y = diag(y,, ¥s,---,¥,) be chosen such that for the (n — 1) X
(n — 1) matrix

™~ -

STV Q281
a”— am o e e a -—
ay ay
032 a:n 034 e 0
A= 0 Gy By - 0 ,

anla12 anlaln

- 0 0 e @, ————

I an an |

AY possesses nonreal eigenvalues. Let Y = diag(l, xy;, xys,..., 25,); the
characteristic polynomial of AY is found to satisfy the relation

det{ AY — 2AI) = a,,x"'det( AY — AI) — z"Adet( AT — AI),
where A is identical with A except for the deletion of the first row and first
column. For sufﬁclenﬂy small x it is easy to see (for example by the Rouché

theorem) that if A is a complex eigenvalue of A, then there is an eigenvalue
A of A such that x~ A is arbitrarily close to A. ]

5. CUNCLUDING REMARKS

It remains to present the formal justification of the main result.

Proof of the Theorem. In the case n =2, the existence of Y is shown in
Lemma 1.
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If a nonsingular diagonal D exists such that AD is symmetric but cannoi
be made positive semidefinite, then without loss of generality, we may
suppose that D =1, and that at least one diagonal element of A, say a,), is
positive. Since A is irreducible and can be assumed to have no submatrix
covered by Lemma 1, it follows that all diagonals are positive. We can now
construct a set of indices I such that if A is the submatrix formed by
selecting only those rows and columns of A whose index numbers lie in 1,
then A has the determinants of all its proper principal minors positive, but
the determinant of A itself is negative. An algorithm for constructing this
index set is to generate in turn index sets I, I,,... such that I, = {1}, and
for k=2,3,..., I,=I,_, if d(I;_;V{k})=0and I, =1, ,U{k} other-
wise, where for an index set J, 4(J) is the determinant of the curresponding
submatrix. The index set I is then defined as the first I, for which d{I,) <0.
The matrix A then satisfies the requirements of Lemma 2.

Hence, if nonsingular D exists such that AD is symmetric, but cannot be
positive semidefinite, then Y can be found so that AY has nonreal eigenval-
ues.
We now consider the alternative possibility that no nonsingular D exists
for which AD is symmetric. If n =3, or an appropriate submatrix of this size
exists, then the existence of Y is proved in Lemmas 3.1 and 3.2. Finally, if
n > 4, we have shown in Lemma 4.1 that A must contain a submatrix of a
particular form. If the size of the submatrix is less than 4, then the result is
covered by Lemmas 1, 3.1, and 3.2. If n > 4, then the existence of Y is
proved in Lemma 4.2. [

Fart of this work was carried out during visits to AT&T Beil Laboratories,
Murray Hill, New Jersey and to the Cenire for Mathematics and Computer
Science, Amsterdam, The Netherlands. The author would like to express his
appreciation for the assistance he received during those visits.
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