JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 75, 219-222 (1980)

Separability in the Strict Topology

Seki A. Choo

Department of Mathematics, Manchester College, North Manchester, Indiana 46962

Submitted by C. L. Dolph

Let X be a completely regular Hausdorff space and E be a locally convex Hausdorff space. Then $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0), (C_b(X), \beta) \otimes_{\epsilon} E =$ $(C_b(X) \otimes E, \beta)$ and $(C_b(X), \beta_1) \otimes_{\epsilon} E = (C_b(X) \otimes E, \beta_1)$. For a separable space $E, (C_b(X, E), \beta_0)$ is separable if and only if X is separably submetrizable. As a corollary, for a locally compact paracompact space X, if $(C_b(X, E), \beta_0)$ is separable, then X is metrizable.

INTRODUCTION

Since the introduction by Buck [1] of the strict topology on the space $C_b(X)$ of bounded continuous functions on a locally compact Hausdorff space X, many studies have been done about the strict topology ([3, 3, 7, 8, 11–13], etc.). In this paper, X denotes a completely regular Hausdorff space, $C_b(X)$ all bounded continuous real-valued functions on X, E a locally convex Hausdorff space over the real numbers, $C_b(X, E)$ all bounded continuous functions from X into E, $C_b(X) \otimes_{\epsilon} E$ the tensor product, where ϵ is the topology of uniform convergence on sets of the form $S \times T$, S and T being equicontinuous sets of $(C_b(X), \beta_0)'$ and E', respectively.

For a compact subset (zero subset) $Q \subseteq \beta X \setminus X$, βX is the Stone-Céch compactification of X, let $C_Q(X) = \{f \mid_X : f \in C(\beta X), f = 0 \text{ on } Q\}$. The topology β_Q on $C_b(X, E)$ is defined by the seminorms $\|\cdot\|_h$, h ranging through the elements of $C_Q(X), \|f\|_h = \sup_{x \in X} \|h(x)f(x)\|, f \in C_b(X, E)$. The topology $\beta(\beta_1)$ on $C_b(X, E)$ is defined to be the intersection of the topologies β_Q as Q ranges through compact subsets (zero subsets) of $\beta X \setminus X$. Sentilles [11] showed that $W \in \beta(\beta_1)$ iff $W \in \beta_Q$ for all $Q \subset \beta X \setminus X$, and $W \in \beta(\beta_1)$ iff for each Q there exists $V_Q \in \beta_Q$ such that $W \supset \langle \bigcup_Q V_Q \rangle$, where $\langle \bigcup_Q V_Q \rangle$ denotes the absolutely convex hull of $\bigcup_Q V_Q$.

The strict topology β_0 on $C_b(X, E)$ is defined by the family of seminorms $\|\cdot\|_{h,p}$, as *h* varies through all real-valued functions on *X* vanishing at infinity and *p* ranges over all continuous seminorms on $E - \|f\|_{h,p} = \sup_{x \in X} p(h(x) f(x))$, $f \in C_b(X, E)$. When *E* is a normed space, it is proved [5] that $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0)$ and $(C_b(X, E), \beta_0)' = M_t(X, E')$. For a locally convex *E*, $(C_{ro}(X, E), \beta_0)' = M_t(X, E')$, where $C_{re}(X, E)$ are those elements of $C_b(X, E)$

which have relatively compact images in E[7]. $M_t(X, E') = \{\mu: B(X) \to E', \mu \text{ is a measure and for every } x \in E, \mu_x: B(X) \to R$, defined by $\mu_x(B) = \langle \mu(B), x \rangle$, is in $M_t(X)$ }, where B(X) is the family of Borel sets of X and E' is the topological dual of E[2]. Since $C_b(X) \otimes E$ is dense in $C_{rc}(X, E)$ in the topology of uniform convergence on X, a topology finer than β_0 , the result $(C_{rc}(X, E), \beta_0)' = M_t(X, E')$ is equivalent to $(C_b(X) \otimes E, \beta_0)' = M_t(X, E')$. Consequently, $(C_b(X, E), \beta_0)' = M_t(X, E')$ (by Theorem 2) which answers the question raised in [5]. Also, it is proved that $(C_b(X) \otimes E, \beta_0) = (C_b(X), \beta_0) \otimes_{\epsilon} E$ in [2] and $(C_b(X, E), \beta_0)$ is a Mackey space when X is a P-space and E is a normed space [8].

A collection $\{f_{\alpha}\}_{\alpha \in I}$ of $C_b(X)$ such that $0 \leq f_{\alpha} \leq 1$ for each α is called a partition of unity of X if $\sum_{\alpha \in I} f_{\alpha} = 1$ and the collection $\{\{f_{\alpha} > 0\}: \alpha \in I\}$ is locally finite [4].

LEMMA 1. If q is a continuous seminorm on E, $h_0 \in C_b(X, E)$ and $\epsilon > 0$, then there exists a partition of unity $\{f_{\alpha}\}_{\alpha \in I}$ on X and points $\{x_{\alpha}\}_{\alpha \in I}$ in X such that $\sup_{x \in X} q(h_1(x) - h_0(x)) < \epsilon$ where $h_1(x) = \sum_{\alpha \in I} h_0(x_{\alpha}) f_{\alpha}(x), x \in X$.

Proof. Define $d: X \times X \to R$ by $d(x, y) = q(h_0(x) - h_0(y))$. Then d is the continuous pseudo-metric on X. The relation $x \sim y$ if and only if d(x, y) = 0 is an equivalence relation on X, and the collection of equivalence classes \bar{x} is a metric space X_d by defining $\bar{d}(\bar{x}, \bar{y}) = d(x, y)$. The natural map $\pi_d: X \to X_d$ by $\pi_d(x) = \bar{x}$ is continuous. Let $\{f_\alpha^0\}$ be a continuous partition of unity on X_d subordinate to the covering $\{B(\bar{x}, \epsilon)\}_{\bar{x} \in X_d}$, $B(\bar{x}, \epsilon)$ being the open ball with center at \bar{x} and radius ϵ . For each α , choose $\bar{x}_\alpha \in X_d$ such that $f_\alpha^0(\bar{x}) = 0$ when $\bar{d}(\bar{x}, \bar{x}_\alpha) = d(x, x_\alpha) \ge \epsilon$, where $x_\alpha \in X$ with $\pi_d(x_\alpha) = \bar{x}_\alpha$. Now put $f_\alpha = f_\alpha^0 \circ \pi_d$. Then $\{f_\alpha\}$ is a partition of unity on X. Let $h_1(x) = \sum_{\alpha \in I} h_0(x_\alpha) f_\alpha(x)$, $x \in X$. Then a little effort shows that $\sup_{x \in X} q(h_1(x) - h_0(x)) \leqslant \sup_{x \in X} \sum_{\alpha \in I} f_\alpha(x) q(h_0(x_\alpha) - h_0(x)) < \epsilon$.

THEOREM 2. $C_b(X) \otimes E$ is β_0 -dense in $C_b(X, E)$.

Proof. Suppose $A \not\subseteq C_b(X, E)$, A the closure of $C_b(X) \otimes E$ in $(C_b(X, E), \beta_0)$. Then there is $h_0 \in C_b(X, E)$ such that $h_0 \notin A$. Since A is a closed subspace and $\{h_0\}$ is compact, by the Separation Theorem there is a $\mu \in (C_b(X, E), \beta_0)'$ such that $\mu \equiv 0$ on $C_b(X) \otimes E$ and $\mu(h_0) > \epsilon$ for some $\epsilon > 0$. Since the uniform topology is finer than β_0 , there exists a continuous seminorm q on E such that $f \in C_b(X, E)$, $\sup_{x \in X} q(f(x)) \leq 1$ implies that $|\mu(f)| \leq 1$.

If we let B be the closed absolutely convex hull of $h_0(x)$, $E_0 = \bigcup_{n=1}^{\infty} nB$ and $\|\cdot\| = \|\cdot\|_B$ be the Minkowski functional for B, then the topology induced by E on E_0 is weaker than the norm topology on E_0 ((E_0 , $\|\cdot\|_B$) is a normed space [9, p. 26]).

Let *d* be the continuous pseudo-metric on *X*, $d(x, y) = q(h_0(x) - h_0(y))$. Then by the lemma, there exists a partition of unity $\{f_{\alpha}\}_{\alpha \in I}$ and $\{x_{\alpha}\}_{\alpha \in I} \subset X$ such that $\sup_{x \in X} q(h_1(x) - h_0(x)) < \epsilon/2, \quad h_1(x) = \sum_{\alpha \in I} h_0(x_\alpha) f_\alpha(x), \quad x \in X. \text{ Then } F = C_b(X, E) \cap C_b(X, E_0) \supset (C_b(X) \otimes E_0) \cup \{\sum_{\alpha \in I_0} h_0(x_\alpha) f_\alpha; I_0 \subset I\}. \text{ Considering } F$ as a subspace of $(C_b(X, E_0), \beta_0)$, and using the fact that the $\|\cdot\|$ -topology on E_0 is finer than the one induced by E (or that B is bounded) we see that $\mu_0 = \mu \mid_F \in F'$ and so by the Hahn-Banach theorem, μ_0 can be extended so as to become an element of $(C_b(X, E_0), \beta_0)'$. Since $\mu_0 \equiv 0$ on $C_b(X) \otimes E_0$, it follows from the denseness of $C_b(X) \otimes E_0$ in $(C_b(X, E_0), \beta_0)$ [5, p. 852] that $\mu_0 \equiv 0$ on F, which gives $\mu_0(h_1) = 0$ and so $\mu(h_1) = 0$ (note $h_1 \in F$). Since $\sup_{\alpha \in X} q(h_1(x) - h_0(x)) < \epsilon/2$, we get $|\mu(h_1 - h_0)| < \epsilon/2$ and so $|\mu(h_0)| < \epsilon/2$. This is a contradiction.

THEOREM 3. $(C_b(X), \beta) \otimes_{\epsilon} E = (C_b(X) \otimes E, \beta)$, where β is the induced topology.

Proof. First we want to show that $\epsilon \ge \beta$. Let $\{f_{\alpha}\}_{\alpha \in I}$ be a net in $C_b(X) \otimes E$ such that $f_{\alpha} \to 0$ in ϵ . $W = \langle \bigcup_{O \in \beta X \setminus X} V_O \rangle$, $V_O = \{f \in C_b(X) : \sup_{x \in X} || f(x) h_O(x) || \le 1\}$, $h_O \in C_O(X)$. Then W^0 , the polar of W, is equicontinuous subset of $(C_b(X), \beta)' = M_\tau(X)$. $W^0 = K = \{\mu \in M_\tau(X) : |\mu(f)| \le 1, \forall f \in W\}$.

Let S be an equicontinuous subset of E'. Then $f_{\alpha} \to 0$ uniformly on $S \times K$, which implies that given $\eta > 0$ there is $\alpha_0 \in I$ such that $\sup_{\mu \in K} \sup_{g \in S} |\mu(g \circ f_{\alpha})| \leq \eta$, $\forall \alpha \geqslant \alpha_0$. Thus $|((g \circ f_{\alpha})/\eta)| \leq 1$, $\forall \alpha \geqslant \alpha_0$, $\forall \mu \in K$, $\forall g \in S$. $((g \circ f_{\alpha})/\eta) \in K^0 = W^{oo}$, $\forall \alpha \geqslant \alpha_0$, $\forall g \in S$. But W is $(C_b(X), M(X))$ -closed [6, p. 34], so by the bipolar theorem $((g \circ f_{\alpha})/\eta) \in W = W^{oo}, \forall \alpha \geqslant \alpha_0$, $\forall g \in S$. This means that $f_{\alpha} \to 0$ in β .

To see $\beta \ge \epsilon$, let $\{f_{\alpha}\}_{\alpha \in I}$ be a net in $C_b(X) \otimes E$ such that $f_{\alpha} \to 0$ in β . Let K be an equicontinuous subset of $(C_b(X), \beta)'$ and let S be an equicontinuous subset of E'. Since K^0 is a zero nhd of $(C_b(X), \beta)$, for every compact set $Q \subseteq \beta X \setminus X$, there exists an $h_o \in C_o(X)$ such that $K^0 \supset \{g \in C_b(X): \sup_{x \in X} || g(x) h_o(x) || \le 1$. Now, let $S^0 = \{x \in E: |f(x)| \le 1, \forall f \in S\}$ and $|| ||_{S^0}$ be the Minkowski functional corresponding to S^0 . Since $f_{\alpha} \to 0$ in β , given $\eta > 0$, there exists $\alpha_0 \in I$ such that $|| h_o f_{\alpha} ||_{S^0} \le \eta$, $\forall \alpha \ge \alpha_0$ and so $|| h_o f_{\alpha} / \eta ||_{S^0} \le 1$, $\forall \alpha \ge \alpha_0$, which implies that $|| ((h_0 g \circ f_{\alpha}) / \eta) || \le 1$, $\forall \alpha \ge \alpha_0$, $\forall g \in S$. This proves that $|| \mu(g \circ f_{\alpha}) || \le \eta$, $\forall \alpha \ge \alpha_0$, $\forall g \in S$, $\forall \mu \in K$, and hence $f_{\alpha} \to 0$ in ϵ .

Theorem 4. $(C_b(X), \beta_1) \otimes_{\epsilon} E = (C_b(X) \otimes E, \beta_1).$

Proof. The proof is similar to the above.

A topological space X is called submetrizable if it can be mapped by a one-toone continuous function onto some metric space Z. If Z is separable, then we say that X is separably submerizable [12].

THEOREM 5. Let E be a separable space. Then $(C_b(X, E), \beta_0)$ is separable if and only if X is separably submetrizable. **Proof.** If X is separably submetrizable, then $(C_b(X), \beta_0)$ is separable [12, p. 509]. Let $L: (C_b(X), \beta_0) \times E \to (C_b(X), \beta_0) \otimes E$ be the canonical bilinear mapping. Then the image $L(C_b(X) \times E)$ is separable, and so $(C_b(X) \otimes E, \beta_0)$ is separable since $C_b(X) \otimes E$ is the linear hull of $L(C_b(X) \times E)$ and $(C_b(X) \otimes E, \beta_0) \otimes E$, $\beta_0 = (C_b(X), \beta_0) \otimes_{\epsilon} E$ [2]. Thus by the density, $(C_b(X, E), \beta_0)$ is separable.

Let $(C_b(X, E), \beta_0)$ be separable. Then fix $f \in E'$, the dual of E and $f \neq 0$ and define $T: (C_b(X, E), \beta_0) \to (C_b(X), \beta_0)$ by $T(g) = f \circ g$ for all g in $C_b(X, E)$. Since $f \in E'$, there is a continuous seminorm q on E such that $|f(y)| \leq q(y)$, $\forall y \in E$. Let $\{g_\alpha\} \subset C_b(X, E)$ such that $g_\alpha \to 0$ in β_0 . Then $\sup_{x \in X} q(h(x)g_\alpha(x))$ $\to 0$, where h is a real-valued function which vanishes at infinity. For all $x \in X$, $h(x)g_\alpha(x) \in E$ and so $|f(h(x)g_\alpha(x))| \leq q(h(x)g_\alpha(x))$ which implies that $\sup_{x \in X} |h(x)f \circ g_\alpha(x)| \leq \sup_{x \in X} q(h(x)g_\alpha(x))$. This proves that T is continuous, and it is easy to see T is onto. Therefore $(C_b(X), \beta_0)$ is separable, and hence Xis separably submetrizable [12, p. 509].

COROLLARY 6. Let X be locally compact paracompact. If $(C_b(X, E), \beta_0)$ is separable, then X is metrizable.

References

- R. C. BUCK, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
- S. A. CHOO, Strict topology on spaces of continuous vector-valued functions, Canad. J. Math. 4 (1979), 890-896.
- 3. J. B. CONWAY, The strict topology and compactness in the space of measures, II, Trans. Amer. Math. Soc. 126 (1967), 474-486.
- 4. J. DUGUNDJI, "Topology," Allyn & Bacon, Boston, 1965.
- R. A. FONTENOT, Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853.
- 6. R. B. KIRK, Measures in topological spaces and B-compactness, Indag. Math. 31 (1969), 172-183.
- 7. A. KATSARAS, Spaces of vector measures, Trans. Amer. Math. Soc. 206 (1975), 313-328.
- S. S. KHURANA AND S. A. CHOO, Strict topology and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284.
- 9. H. H. SCHAEFER, "Topological Vector Spaces," Macmillan, New York, 1966.
- 10. A. H. SCHUCHAT, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 376-397.
- 11. F. D. SENTILLES, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336.
- W. H. SUMMERS, Separability in the strict and substrict topologies, Proc. Amer. Math. Soc. 35 (1972), 507-514.
- R. F. WHEELER, The strict topology for P-spaces, Proc. Amer. Math. Soc. 41 (1973), 466-472.