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Let X be a completely regular Hausdorff space and E be a locally convex
Hausdorff space. Then Cy(X) ® E is dense in (Cy( X, E), 8;), (Co(X), B) X E =
(Cy(X) ® E, B) and (Cy(X), 1) R E = (C(X) ® E, B1). For a separable space
E, (C(X, E), By) is separable if and only if X is separably submetrizable. As a
corollary, for a locally compact paracompact space X, if (Cy(X, E), 8,) is se-
parable, then X is metrizable.

INTRODUCTION

Since the introduction by Buck [1] of the strict topology on the space C,(X)
of bounded continuous functions on a locally compact Hausdorff space X, many
studies have been done about the strict topology ([3, 3, 7, 8, 11-13], etc.). In
this paper, X denotes a completely regular Hausdorff space, C,(X) all bounded
continuous real-valued functions on X, E a locally convex Hausdorff space over
the real numbers, Cy(X, E) all bounded continuous functions from X into E,
Cy(X) @, E the tensor product, where ¢ is the topology of uniform convergence
on sets of the form S x T, .S and T being equicontinuous sets of (C,(X), B,)
and E’, respectively.

For a compact subset (zero subset) O C BX\X, BX is the Stone-Céch com-
pactification of X, let C(X) = {f|5: f€ C(BX),f = 0 on Q}. The topology Bo
on Cy(X, E)is defined by the seminorms || - {, , 4 ranging through the elements of
Co(X), 11 flln = SUPyey Il H(x) f(#)], f € Cy(X, E). The topology B(8,) on C,(X; E)
is defined to be the intersection of the topologies B, as O ranges through compact
subsets (zero subsets) of AX\X. Sentilles [11] showed that We f(8,) iff We g,
for all Q CBX\X, and We B(B,) iff for each O there exists V', € B, such that
WO {Uq Vg, where {|Jo V> denotes the absolutely convex hull of (J, ¥, .

The strict topology B, on Cy(X, E) is defined by the family of seminorms
Il 1z, » @ 2 varies through all real-valued functions on X vanishing at infinity
and p ranges over all continuous seminorms on E—|| f |l , = supcx p(A(x) f (¥)),
fe Cy(X, E). When E is a normed space, it is proved [5] that C,(X)® E is
dense in (Cy( X, E), By) and (Cy( X, E), By) = M (X, E’). For a locally convex:E,
(Cr X, E), By = M(X, E’), where C,(X, E) are those elements of Cy(X, E)
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which have relatively compact images in E [7]. M(X, E') = {u: B(X) —~ E', p is
a measure and for every x € F, p,: B(X) — R, defined by p,(B) = {u(B), x, is
in M,(X)}, where B(X) is the family of Borel sets of X and E’ is the topological
dual of E [2]. Since C,(X) & E is dense in C, (X, E) in the topology of uniform
convergence on X, a topology finer than f;, the result (C, (X, E), B,) =
M, E') is equivalent to (Cy(X)&E,B,) = M/(X, E'). Consequently,
(Cy(X, E), By) = M(X, E') (by Theorem 2) which answers the question raised
in [5]. Also, it is proved that (Cy(X) @ E, By) = (Cy(X), By) ®. E in [2] and
(Cy(X, E), By) is a Mackey space when X is a P-space and E is a normed space
[8].

A collection {f,},e; of Cy(X) such that 0 < f, <C 1 for each « is called a parti-
tion of unity of X if 3, f, =1 and the collection {{f, > 0}: a €1} is locally
finite [4].

LemMmA 1. If q is a continuous seminorm on E, hye Co(X, E) and ¢ > 0, then
there exists a partition of unity {f.}.e; on X and points {x,},c; in X such that
SUPsex 4U(x) — hof)) < € where (x) = ¥ocr o) £x), x € X.

Proof. Define d: X x X — R by d(x,v) = g(hy(x) — ho(»)). Then d is the
continuous pseudo-metric on X. The relation & ~ v if and only if d(», y) =0
is an equivalence relation on X, and the collection of equivalence classes & is a
metric space X', by defining d(, ¥) == d(x, ¥). The natural map =,; X — X, by
mg(x) = ¥ is continuous. Let {f.%} be a continuous partition of unity on X,
subordinate to the covering {B(#, €)}zcx, , B(¥, €) being the open ball with center
at ¥ and radius e. For each o, choose ¥, € X such that £,%(%) == 0 when d(%, ¥,) ==
d(x, x,) == €, where x,€.X with 74{x,) == &,. Now put f, = f%om,. Then
{f.} 1s a partition of unity on X. Let /y(x) = X .c; Ao(x,) ful), x€ X. Then a
little effort shows that sup,ey g(f(x) — Ao(%)) < suUppey D ger ful®@) glho(x,) —
ho(x)) L €.

THEOREM 2. C(X) & E is By-dense in Cy(X, E).

Proof. Suppose A € C(X, E), 4 the closure of C,(X) ® E in (Cy(X, E), By)-
Then there is i, € Cy(X, E) such that iy ¢ A. Since A4 is a closed subspace and
{ho} 1s compact, by the Separation Theorem there is a u € (Cy(X, E), By) such
that 2 = 0 on Cy(X) ® £ and u(hy) > € for some € > 0. Since the uniform
topology is finer than f,, there exists a continuous seminorm ¢ on E such that
f€ (X, ), sup,ey q(f(x)) < 1 implies that | u(f); < L.

If we let B be the closed absolutely convex hull of 4y(x), £, = Uy ., 2B and
[i -1 =il - |z be the Minkowski functional for B, then the topology induced by
E on E, is weaker than the norm topology on E, ((E,, ||  il3) is a normed space
[9, p. 26]).

Let d be the continuous pseudo-metric on X, d(x, ¥) = ¢(hy(x) — ho(¥)). Then
by the lemma, there exists a partition of unity {f,},.; and {x,},.; C X such that
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SUPsex GU(x) — ho(3)) < €f2, hy(x) = et hox)f(x), ¥ X. Then F—
Co(X, E) N Cy(X,, Eg) O (Co(X) @ Eo) U {Zaes, Hol*a) for Iy C I}. Considering F
as a subspace of (Cy(X, E,), Bo), and using the fact that the || - [|-topology on E,
is finer than the one induced by E (or that B is bounded) we see that u, =
@ |r€ F' and so by the Hahn-Banach theorem, p, can be extended so as to become
an element of (Cy(X, Ey), By)'. Since py =0 on C(X) ® E,, it follows from
the denseness of Cy(X) ® E, in (Cy(X, E,), By) [5, p. 852] that uy =0 on F,
which gives po(f,) = 0 and so u(f;) = 0 (note Ay € F). Since sup,cy ¢(fy(x) —
ho(x)) << /2, we get | u(hy — hy)| << €/2 and so [ u(hy)| < €/2. This is a contra-
diction.

THEOREM 3. (Cy(X), B) @ E = (Cy(X) ® E, B), where B is the induced
topology.

Proof. First we want to show that € == 8. Let {f,},; be a net in Cy(X) ® E
such that f, —~0ine. W = (Uogesx\x Vo>, Vo = {f € Cy(X): supucx || f (%) ho(x)]
< 1}, hope Co(X). Then WY, the polar of W, is equicontinuous subset of
(Co(X), BY = MX). WO = K —{we MX): | u(f)| <1, ¥fe W},

Let S be an equicontinuous subset of E'. Then f, —» 0 uniformly on S x K,
which implies that given 5 > 0 there is o € [ such that sup,.x sup,es | g © f,)}
<, Vo= ag. Thus [((g o f)fm)| < 1, Vo= oy, Yue K, Vg S. ((gf)f) €
K% = W VYa > o, Vg e S. But Wis (C(X), M(X))-closed [6, p. 34], so by
the bipolar theorem ((g o f,)n) e W = W, Ya > «y, Vg € S. This means that
fi—>0in§B.

To see B == ¢, let {f,}ses e a net in Cy(X) & E such that f, — 0 in 8. Let K be
an equicontinuous subset of (C,(X), 8)" and let S be an equicontinuous subset
of E’. Since K is a zero nhd of (Cy(X), B), for every compact set Q C SX\X,
there exists an kg € Co(X) such that K°® D {g e C,(X): sup,ey || g(x) ho(x)l] < 1.
Now, let S* ={xeE:|f(x)] <1,¥fe S} and || ||so be the Minkowski func-
tional corresponding to S° Since f, — 0 in 8, given 5 > 0, there exists oy e/
such that H hOff! HS“ <, Va = o and so Hhofm/n HSO <L Vaz Qg » which
implies that [|((kog o f)M)I < 1, Va = o, Vg€ S. This proves that | u(g o £))|
<, Va=ap, Vge S, Vue K, and hence f, -0 in «.

THEOREM 4. (Cy(X), By) R E = (Cy(X) @ E, By).

Proof. The proof is similar to the above.

A topological space X is called submetrizable if it can be mapped by a one-to-
one continuous function onto some metric space Z. If Z is separable, then we say
that X is separably submerizable [12].

THEOREM 5. Let E be a separable space. Then (Cy(X, E), B,) is separable if
and only if X is separably submetrizable.
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Proof. If X is separably submetrizable, then (C,(X), B,) is separable [12,
p. 509]. Let L: (Cy(X), By) X E— (Cy(X), By) ® E be the canonical bilinear
mapping. Then the image L(Cy(X) x E) is separable, and so (Cy(X) ® E, B,) is
separable since Cy(X) ® E is the linear hull of L(Cy(X) X E) and (Cy(X) ®
E, By) = (Cy(X), By) ®. E [2]. Thus by the density, (Cy(X, E), B,) is separable.

Let (Cy(X, E), B,) be separable. Then fix f e E’, the dual of E and f 0 and
define T: (Cy(X, E), By) = (Co(X), By) by T(g) =fog for all g in Cy(X, E).
Since fe E’, there is a continuous seminorm ¢ on E such that | f(y)| < ¢(¥),
Vye E. Let {g,} C Cy(X, E) such that g, - 0 in B,. Then sup,.y ¢(h(x) g.(x))
— 0, where % is a real-valued function which vanishes at infinity. For all x € X,
Mx)g (x)e E and so | f(A(x)g(x))] < g(h(x)g,(x)) which implies that
SUPex | A(%) f o g (%) << supgex g(h(x) g.(x)). This proves that T is continuous,
and it is easy to see T is onto. Therefore (Cy(X), B,) is separable, and hence X
is separably submetrizable [12, p. 509].

CoOROLLARY 6. Let X be locally compact paracompact. If (Cy(X, E), By) s
separable, then X is metrizable.
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