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Orthogonal Clifford analysis is a higher dimensional function theory offering both a
generalization of complex analysis in the plane and a refinement of classical harmonic
analysis. During the last years, Hermitean Clifford analysis has emerged as a new and
successful branch of it, offering yet a refinement of the orthogonal case. Recently in
[F. Brackx, B. De Knock, H. De Schepper, D. Peña Peña, F. Sommen, submitted for
publication], a Hermitean Cauchy integral was constructed in the framework of circulant
(2 × 2) matrix functions. In the present paper, a new Hermitean Hilbert transform
is introduced, arising naturally as part of the non-tangential boundary limits of that
Hermitean Cauchy integral. The resulting matrix operator is shown to satisfy properly
adapted analogues of the characteristic properties of the Hilbert transform in classical
analysis and orthogonal Clifford analysis.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In engineering sciences, and in particular in signal analysis, the one-dimensional Hilbert transform of a real signal u(t),
depending on a one-dimensional time variable t , has become a fundamental tool. For a suitable function or distribution u(t)
its Hilbert transform is given by the Cauchy Principal Value

H[u](t) = − 1

π
Pv

+∞∫
−∞

u(τ )

τ − t
dτ .

Though initiated by Hilbert, the concept of a “conjugated pair” (u, H[u]), nowadays called a Hilbert pair, was developed
mainly by Titchmarch and Hardy.

The multidimensional approach to the Hilbert transform usually is a tensorial one, considering the so-called Riesz trans-
forms in each of the Cartesian variables separately. As opposed to these tensorial approaches, Clifford analysis (see e.g.
[7,11,12]) is particularly suited for a treatment of multidimensional phenomena where all dimensions are encompassed at
the same time as an intrinsic feature. Clifford analysis essentially is a higher dimensional function theory offering both a
generalization of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis.
In the standard case, so-called orthogonal Clifford analysis focuses on monogenic functions, i.e. null solutions of the rotation
invariant vector valued Dirac operator

∂X =
m∑

j=1

e j∂x j
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where (e1, . . . , em) forms an orthonormal basis for the quadratic space R
0,m underlying the construction of the real Clifford

algebra R0,m . The theory of Hardy spaces and the multidimensional Hilbert transform in the orthogonal Clifford analysis
framework is nowadays well established, see [5,10,12]. However we want to draw the reader’s attention on the paper [13]
of Horváth who, to our knowledge, was the first to define a vector valued Hilbert transform using Clifford algebra.

During the last years another branch of Clifford analysis has emerged, offering yet a refinement of the orthogonal case:
Hermitean Clifford analysis, focusing on the simultaneous null solutions of two complex Hermitean Dirac operators. Complex
Dirac operators were already studied in [14–16]; however, a systematic development of the associated function theory
including the invariance properties with respect to the underlying Lie groups and Lie algebras is still in full progress, see
[2,3,9].

Clearly, an essential result in the further development of this function theory is a Cauchy integral formula for Hermitean
monogenic functions taking values in the complex Clifford algebra C2n . A first result in this respect has been obtained
in [17], however considering null solutions of only one of the Hermitean Dirac operators and moreover presenting a, as
termed by the authors themselves, “fake” Cauchy kernel, which fails to be monogenic. In our recent article [6] a Cauchy
integral formula for Hermitean monogenic functions, generalizing the traditional Martinelli–Bochner formula for functions
of several complex variables, was presented in the framework of circulant (2 × 2) matrix functions. The aim of this paper is
to show that the non-tangential boundary limits of this Cauchy integral reveal a new Hilbert-like matrix operator.

In Section 2 we recall how, in a natural way, Hermitean Clifford analysis can emerge from orthogonal Clifford analysis
by means of the introduction of a so-called complex structure on the involved Clifford algebra. Section 3 then recalls the
boundary value theory of the orthogonal Cauchy integral, including some properties of the (associated) Hilbert transform.
Section 4 is devoted to the Hermitean Cauchy integral, including some aspects of the indispensable framework of circulant
(2 × 2) matrix functions in which it is constructed. In Section 5, a new matrix operator pops up as part of the non-
tangential boundary values of the Hermitean Cauchy integral. It is shown that this operator has a close connection to the
Hilbert transform in the orthogonal case, showing some quite similar properties as well.

2. Preliminaries

Let R
0,m be endowed with a non-degenerate quadratic form of signature (0,m), let (e1, . . . , em) be an orthonormal basis

for R
0,m and let R0,m be the real Clifford algebra constructed over R

0,m . The non-commutative multiplication in R0,m is
governed by

e jek + eke j = −2δ jk, j,k = 1, . . . ,m. (1)

A basis for R0,m is obtained by considering for a set A = { j1, . . . , jh} ⊂ {1, . . . ,m} the element e A = e j1 . . . e jh , with 1 �
j1 < j2 < · · · < jh � m. For the empty set ∅ one puts e∅ = 1, the identity element. Any Clifford number a in R0,m may thus
be written as a =∑A e AaA , aA ∈ R, or still as a =∑m

k=0[a]k , where [a]k =∑|A|=k e AaA is the so-called k-vector part of a

(k = 0,1, . . . ,m). The Euclidean space R
0,m is embedded in R0,m by identifying (x1, . . . , xm) with the Clifford vector X given

by

X =
m∑

j=1

e j x j .

Note that the square of a vector X is scalar valued and equals the norm squared up to a minus sign: X2 = −〈X, X〉 = −|X|2.
The dual of the vector X is the vector valued first order differential operator

∂X =
m∑

j=1

e j∂x j

is called Dirac operator. It is precisely this Dirac operator which underlies the notion of monogenicity of a function, a notion
which is the higher dimensional counterpart of holomorphy in the complex plane. A function f defined and differentiable
in an open region Ω of R

0,m and taking values in R0,m is called (left) monogenic in Ω if ∂X [ f ] = 0. As the Dirac operator
factorizes the Laplacian, �m = −∂2

X , monogenicity can be regarded as a refinement of harmonicity. We refer to this setting
as the orthogonal case, since the fundamental group leaving the Dirac operator ∂X invariant is the special orthogonal group
SO(m;R), which is doubly covered by the Spin(m) group of the Clifford algebra R0,m . For this reason, the Dirac operator is
called a rotation invariant operator.

When allowing for complex constants and moreover taking the dimension to be even, say m = 2n, the same set of
generators as above, (e1, . . . , e2n), still satisfying the defining relations (1), may in fact also produce the complex Clifford
algebra C2n . As C2n is the complexification of the real Clifford algebra R0,2n , i.e. C2n = R0,2n ⊕ iR0,2n , any complex Clifford
number λ ∈ C2n may be written as λ = a + ib, a,b ∈ R0,2n , leading to the definition of the Hermitean conjugation λ† =
(a + ib)† = a − ib, where the bar denotes the usual Clifford conjugation in R0,2n , i.e. the main anti-involution for which
e j = −e j , j = 1, . . . ,2n. This Hermitean conjugation leads to a Hermitean inner product and its associated norm on C2n

given by (λ,μ) = [λ†μ]0 and |λ| =
√

[λ†λ]0 = (
∑

A |λA |2)1/2. The above framework will be referred to as the Hermitean
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Clifford setting, as opposed to the traditional orthogonal Clifford one. Hermitean Clifford analysis then focuses on the simul-
taneous null solutions of two Hermitean Dirac operators ∂Z and ∂Z † , introduced below.

One of the ways for introducing Hermitean Clifford analysis is by considering the complex Clifford algebra C2n and a
so-called complex structure on it, i.e. an SO(2n;R)-element J for which J 2 = −1 (see [2]). More specifically, J is chosen to
act upon the generators e1, . . . , e2n of the Clifford algebra as

J [e j] = −en+ j and J [en+ j] = e j, j = 1, . . . ,n.

Let us recall that the main objects of the Hermitean setting are then conceptually obtained by considering the projection
operators 1

2 (1 ± i J ) and letting them act on the corresponding protagonists of the orthogonal framework. First of all, the

so-called Witt basis elements (f j, f
†
j)

n
j=1 for the complex Clifford algebra C2n are obtained through the action of 1

2 (1 ± i J )
on the orthogonal basis elements e j:

f j = 1

2
(1 + i J )[e j] = 1

2
(e j − ien+ j), j = 1, . . . ,n,

f
†
j = −1

2
(1 − i J )[e j] = −1

2
(e j + ien+ j), j = 1, . . . ,n.

These Witt basis elements satisfy the Grassmann identities

f jfk + fkf j = f
†
jf

†
k + f

†
kf

†
j = 0, j,k = 1, . . . ,n,

and the duality identities

f jf
†
k + f

†
kf j = δ jk, j,k = 1, . . . ,n.

Next we identify a vector X = (X1, . . . , X2n) = (x1, . . . , xn, y1, . . . , yn) in R
0,2n with the Clifford vector X =∑n

j=1(e j x j + en+ j y j) and we denote by X | the action of the complex structure J on X , i.e.

X| = J [X] =
n∑

j=1

(e j y j − en+ j x j).

Note that the vectors X and X | are orthogonal w.r.t. the standard Euclidean scalar product, which implies that the Clifford
vectors X and X| anti-commute. The Hermitean Clifford variables Z and Z † then arise through the action of the projection
operators on the standard Clifford vector X :

Z = 1

2
(1 + i J )[X] = 1

2
(X + i X |),

Z † = −1

2
(1 − i J )[X] = −1

2
(X − i X|).

They can be rewritten in terms of the Witt basis elements as

Z =
n∑

j=1

f j z j and Z † = (Z)† =
n∑

j=1

f
†
j z

c
j

where n complex variables z j = x j + iy j have been introduced, with complex conjugates zc
j = x j − iy j , j = 1, . . . ,n. Finally,

the Hermitean Dirac operators ∂Z and ∂Z † are derived out of the orthogonal Dirac operator ∂X :

∂Z † = 1

4
(1 + i J )[∂X ] = 1

4
(∂X + i∂X |),

∂Z = −1

4
(1 − i J )[∂X ] = −1

4
(∂X − i∂X |)

where we have introduced

∂X | = J [∂X ] =
n∑

j=1

(e j∂y j − en+ j∂x j ).

In terms of the Witt basis elements, the Hermitean Dirac operators are expressed as

∂Z =
n∑

j=1

f
†
j∂z j and ∂Z † = (∂Z )† =

n∑
j=1

f j∂zc
j

involving the classical Cauchy–Riemann operators ∂z j = 1
2 (∂x j − i∂y j ) and their complex conjugates ∂zc

j
= 1

2 (∂x j + i∂y j ) in the

complex z j-planes, j = 1, . . . ,n.
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A continuously differentiable function g on an open subset Ω of R
2n with values in C2n is called a (left) Hermitean

monogenic (or h-monogenic) function in Ω if and only if it satisfies in Ω the system

∂X g = 0 = ∂X | g

or equivalently, the system

∂Z g = 0 = ∂Z † g.

The Hermitean Dirac operators ∂Z and ∂Z † are invariant under the action of a realisation, denoted Ũ(n), of the unitary group

in terms of the Clifford algebra, see [9]. This group Ũ(n) ⊂ Spin(2n) is given by

Ũ(n) = {s ∈ Spin(2n)
∣∣ ∃θ � 0: sI = exp (−iθ)I

}
its definition involving the self-adjoint primitive idempotent I = I1 . . . In , with I j = f jf

†
j = 1

2 (1 − ie jen+ j), j = 1, . . . ,n.
Finally observe for further use that the Hermitean vector variables and Dirac operators are isotropic, i.e.

(Z)2 = (Z †)2 = 0 and (∂Z )2 = (∂Z † )
2 = 0

whence the Laplacian �2n = −∂2
X = −∂2

X | allows for the decomposition

�2n = 4(∂Z ∂Z † + ∂Z †∂Z )

and one also has that

Z Z † + Z † Z = |Z |2 = ∣∣Z †
∣∣2 = |X|2 = |X||2.

3. A pair of Cauchy integrals and Hilbert transforms in the orthogonal setting

Both the Cauchy integral and the Hilbert transform are well-known integral operators which have been thoroughly
studied in the framework of orthogonal Clifford analysis. In this section we define in the same framework, the so-called
associated Cauchy integral and associated Hilbert transform, which are closely related to and satisfy similar properties as
their classical counterparts. Both pairs of transforms were recently introduced in [1,8].

As above, we denote by Ω some open subset of R
2n . We then consider a 2n-dimensional compact differentiable and

oriented manifold Γ ⊂ Ω with C∞ smooth boundary ∂Γ . Further Γ + will stand for Γ̊ , and Γ − for Ω \ Γ .
First of all, the fundamental solutions of the Dirac operators ∂X and ∂X | are respectively given by

E(X) = 1

a2n

X

|X|2n
and E|(X) = 1

a2n

X |
|X|2n

with a2n the area of the unit sphere S2n−1 in R
2n and with

lim|X |→∞ E(X) = 0 and lim|X |→∞ E|(X) = 0. (2)

For a function g ∈ L2(∂Γ ), its Cauchy integral C[g] and associated Cauchy integral C |[g] in Γ ± are then defined by

C[g](Y ) =
∫
∂Γ

E(X − Y ) d̃σ X g(X), Y ∈ Γ ±,

C |[g](Y ) =
∫

∂Γ

E|(X − Y ) d̃σ X | g(X), Y ∈ Γ ±,

the boundedness of the integrals being guaranteed by (2). Here, d̃σ X denotes the vector valued oriented surface element on
∂Γ and d̃σ X | = J [d̃σ X ]. They are explicitly given by means of the following differential forms of order (2n − 1):

d̃σ X =
n∑

j=1

(
e j(−1) j−1 ˜̂dx j + en+ j(−1)n+ j−1˜̂dy j

)
,

d̃σ X | =
n∑

j=1

(
e j(−1)n+ j−1˜̂dy j + en+ j(−1) j ˜̂dx j

)
with ˜̂dx j = dx1 ∧ · · · ∧ dx j−1 ∧ dx j+1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn,˜̂dy j = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dy j−1 ∧ dy j+1 ∧ · · · ∧ dyn.
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If dS(X) stands for the classical surface element on ∂Γ and ν(X) for the outward pointing (w.r.t. Γ +) unit normal vector
in X on ∂Γ , then the surface elements d̃σ X , respectively d̃σ X | , may also be expressed as

d̃σ X = ν(X)dS(X)

respectively

d̃σ X | = ν|(X)dS(X).

The Hilbert transform H[g] and its associated Hilbert transform H|[g] then pop up in a natural way when considering the
non-tangential boundary values of both Cauchy integrals

C±[g](U ) = lim
Y →U
Y ∈Γ ±

C[g](Y ) = ±1

2
g(U ) + 1

2
H[g](U ), U ∈ ∂Γ , (3)

C |±[g](U ) = lim
Y →U
Y ∈Γ ±

C |[g](Y ) = ±1

2
g(U ) + 1

2
H|[g](U ), U ∈ ∂Γ, (4)

where the limits are taken in L2 sense. Explicitly, both transforms are given by the principal value integrals

H[g](U ) = 2 lim
ε→0+

∫
∂Γ \B(U ,ε)

E(X − U ) d̃σ X g(X), U ∈ ∂Γ,

H|[g](U ) = 2 lim
ε→0+

∫
∂Γ \B(U ,ε)

E|(X − U ) d̃σ X | g(X), U ∈ ∂Γ,

with B(U , ε) the open ball in R
2n with centre U and radius ε. We recall their main properties, apart from the above

defining one (see e.g. [10]).

Proposition 1. One has

P(1) H and H| are bounded linear operators on L2(∂Γ );
P(2) H2 = H|2 = 1;
P(3) H∗ = νHν and H|∗ = ν|H|ν|;
P(4) for g ∈ L2(∂Γ ), we have that H[g] = g (respectively H|[g] = g) if and only if g ∈ H2(∂Γ ) (respectively g ∈ H|2(∂Γ )).

The last property P(4) deserves some more explanation. For the open set Γ + one can consider the Hardy spaces H2(Γ +)

and H|2(Γ +) of ∂X -monogenic, respectively ∂X |-monogenic Clifford algebra valued functions, viz

H2(Γ +) = {g :Γ + → R2n: ∂X g = 0 in Γ + and g∂Γ ∈ L2(∂Γ )
}
,

H|2(Γ +) = {g : Γ + → R2n: ∂X | g = 0 in Γ + and g∂Γ ∈ L2(∂Γ )
}

where g∂Γ denotes the non-tangential boundary value of g . It is well known that H2(Γ +) entails the Hardy space H2(∂Γ )

as the closure in L2(∂Γ ) of the space of all non-tangential boundary values of all functions in H2(Γ +). Moreover, both
spaces H2(Γ +) and H2(∂Γ ) are isomorphic, the isomorphism being obtained explicitly by means of the Cauchy integral in
the following way. For a given g ∈ H2(∂Γ ) its Cauchy integral C[g] belongs to H2(Γ +) and

lim
Y →U
Y ∈Γ +

C[g](Y ) = g(U ), U ∈ ∂Γ,

in the L2 sense, so that C[g] may be seen as the ∂X -monogenic extension of g to Γ + . For the corresponding Hardy space
H|2(Γ +) similar conclusions hold.

4. The Cauchy integral in Hermitean Clifford analysis

A first attempt at constructing Hermitean Hilbert transforms for functions in L2(R
2n) has been undertaken in [4]. How-

ever, although the obtained transforms showed some nice and satisfactory properties, one big issue remained unsolved at
that moment: it seemed impossible to construct in the Hermitean context an h-monogenic Cauchy integral in R

2n+1± , such
that those Hermitean Hilbert transforms could be retrieved as part of its non-tangential boundary limits.

A partial result to construct such a Hermitean Cauchy integral for functions in L2(∂Γ ), was obtained in [17], however
presenting the “fake” – as termed by the authors – Cauchy kernel 1

2 (E − iE|), which fails to be h-monogenic.
Of course, if only that class of functions g ∈ L2(∂Γ ) for which H[g] = H|[g] would be considered, then the h-monogenic

Cauchy integral is trivially given by C[g] which in this case coincides with C |[g]. Indeed, for such functions g we have that
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C[g] − C |[g] is a harmonic function in Γ ± with boundary limit equal to zero, as C±[g] = C |±[g]. On account of the maxi-
mum and the minimum principle for harmonic functions this yields that C[g] = C |[g] in Γ ± .

In the general case, it appeared that a matrix approach is the key to obtain the desired result, see the recent paper [6].
In what follows we recall the main results.

First of all we introduce, for further use, the Hermitean counterparts of the pair of oriented surface elements (d̃σ X , d̃σ X |),

applying the same technique as in Section 2, i.e. by means of the action of the projection operators 1
2 (1 ± i J ) on d̃σ X , up to

some deliberately chosen constant factor (see [6] for the specific choice of that constant). The Hermitean oriented surface
elements dσZ and dσZ † are then defined as

dσZ = −1

4
(−1)

n(n+1)
2 (2i)n(d̃σ X − id̃σ X |),

dσZ † = −1

4
(−1)

n(n+1)
2 (2i)n(d̃σ X + id̃σ X |).

Similarly, we introduce E = −(E + iE|) and E† = (E − iE|), starting from the pair of fundamental solutions (E, E|) to the
orthogonal Dirac operators ∂X and ∂X | . Explicitly this yields

E(Z) = 2

a2n

Z

|Z |2n
and E†(Z) = 2

a2n

Z †

|Z |2n

with

lim|Z |→∞E(Z) = 0 and lim|Z |→∞E†(Z) = 0. (5)

Note however that E and E† are not the fundamental solutions to the respective Hermitean Dirac operators ∂Z and ∂Z † ! But
surprisingly, introducing the particular circulant (2 × 2) matrices

D(Z ,Z †) =
(

∂Z ∂Z †

∂Z † ∂Z

)
, E =

( E E†

E† E

)
and δ =

(
δ 0
0 δ

)
one obtains that D(Z ,Z †)E(Z) = δ(Z), so that E may be considered as a fundamental solution of D(Z ,Z †) , when this concept
is reinterpreted in a matrical context. It was exactly this simple observation which has lead to the idea of following matrix
approach in order to establish a Cauchy integral formula in the Hermitean setting, see [6].

Thus, in the same setting of circulant (2 × 2) matrices we associate, with arbitrary continuously differentiable functions
g1, g2 and g defined in Ω and taking values in C2n , the respective matrix functions

G1
2 =

(
g1 g2
g2 g1

)
and G0 =

(
g 0
0 g

)
.

We then call G1
2 (left) H -monogenic if and only if it satisfies the system

D(Z ,Z †)G1
2 = O

where clearly O denotes the matrix with zero entries. This system explicitly reads{
∂Z [g1] + ∂Z † [g2] = 0,

∂Z † [g1] + ∂Z [g2] = 0.

Choosing in particular g1 = g and g2 = g†, it is clear that, in general, the H -monogenicity of the corresponding matrix

G =
(

g g†

g† g

)
will not imply the h-monogenicity of the function g and vice versa. An exception to this general remark clearly occurs in
the special case of scalar (i.e. complex) valued functions, where h-monogenicity (of g) and H -monogenicity (of G) are found
to be equivalent notions.

Another special, yet very important, case occurs when considering the matrix G0: since its H -monogenicity is easily seen
to be equivalent with the h-monogenicity of g , this matrix forms the key for the construction of an h-monogenic extension
to the function g by means of a matrical Cauchy kernel.

Finally note that we have found above that E is H -monogenic in R
2n \ {0}.

From now on we reserve the notations Y and Y | for Clifford vectors associated to points in Γ ± . Their Hermitean coun-
terparts are denoted

V = 1

2
(1 + i J )[Y ] = 1

2
(Y + iY |),

V † = −1
(1 − i J )[Y ] = −1

(Y − iY |).

2 2
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With the Hermitean vector pair (Z , Z †), still corresponding as in Section 2 to the orthogonal pair (X, X|), we associate the
volume element dW (Z , Z †) defined as

dW
(

Z , Z †)= (dz1 ∧ dzc
1

)∧ (dz2 ∧ dzc
2

)∧ · · · ∧ (dzn ∧ dzc
n

)
reflecting integration over each complex z j -plane, j = 1, . . . ,n. The following Hermitean Cauchy–Pompeiu Formula was then
established in [6].

Theorem 2 (Hermitean Cauchy–Pompeiu Formula). If the functions g1 and g2 belong to C1(Ω;C2n), then∫
∂Γ

E(Z − V )dΣ (Z ,Z †)G1
2(X) −

∫
Γ

E(Z − V )
[
D(Z ,Z †)G1

2(X)
]

dW
(

Z , Z †)= { O , if Y ∈ Γ −,

(−1)
n(n+1)

2 (2i)n G1
2(Y ), if Y ∈ Γ +.

This theorem then leads to the following Hermitean Cauchy Integral Formulae for H -monogenic matrix functions G1
2 and

h-monogenic functions g , respectively. Here we have introduced the additional matrix

dΣ (Z ,Z †) =
(

dσZ −dσZ †

−dσZ † dσZ

)
.

Theorem 3 (Hermitean Cauchy Integral Formula I). If the matrix function G1
2 is H -monogenic in Ω then∫

∂Γ

E(Z − V )dΣ (Z ,Z †)G1
2(X) =

{
O , if Y ∈ Γ −,

(−1)
n(n+1)

2 (2i)n G1
2(Y ), if Y ∈ Γ +.

(6)

Corollary 4 (Hermitean Cauchy Integral Formula II). If the function g is h-monogenic in Ω then∫
∂Γ

E(Z − V )dΣ (Z ,Z †)G0(X) =
{

O , if Y ∈ Γ −,

(−1)
n(n+1)

2 (2i)n G0(Y ), if Y ∈ Γ +.
(7)

The matrix function E appearing in the Hermitean Cauchy Integral Formulae (6) and (7) is then called the Hermitean
Cauchy kernel. For functions g1, g2, g ∈ C0(∂Γ ;C2n) the following Hermitean Cauchy integrals C[G0] and C[G1

2] are then
defined

C
[
G1

2

]
(Y ) =

∫
∂Γ

E(Z − V )dΣ (Z ,Z †)G1
2(X), Y ∈ Γ ±,

C[G0](Y ) =
∫

∂Γ

E(Z − V )dΣ (Z ,Z †)G0(X), Y ∈ Γ ±,

which are both H -monogenic in Γ ± , i.e.

D(V ,V †)C
[
G1

2

]
(Y ) = O in Γ ±

and

D(V ,V †)C[G0](Y ) = O in Γ ±.

Notice that both integrals converge, also in case of Ω being not bounded, on account of (5). It was then shown in [6] that
both Hermitean Cauchy integrals can be expressed in terms of the orthogonal Cauchy integrals C and C |, viz

C
[
G1

2

]= (−1)
n(n+1)

2 (2i)n
[

1

2

(
C[g1 − g2] −C[g1 − g2]

−C[g1 − g2] C[g1 − g2]
)

+ 1

2

(
C |[g1 + g2] C |[g1 + g2]
C |[g1 + g2] C |[g1 + g2]

)]
, (8)

C[G0] = (−1)
n(n+1)

2 (2i)n
[

1

2

(
C[g] −C[g]

−C[g] C[g]
)

+ 1

2

(
C |[g] C |[g]
C |[g] C |[g]

)]
. (9)

Taking in particular an H -monogenic matrix function G1
2 in Ω , i.e. D(Z ,Z †)G1

2 = O , or equivalently{
∂X [g1 − g2] = 0,

∂X |[g1 + g2] = 0

then C[g1 − g2] = g1 − g2 and C |[g1 + g2] = g1 + g2 in Γ + . Taking into account (8), we obtain that

C
[
G1

2

]= (−1)
n(n+1)

2 (2i)n G1
2 in Γ +
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in accordance with Theorem 3. On the other hand, if we take an h-monogenic function g in Ω , for which

C[g] = g = C |[g] in Γ +

yields

C[G0] = (−1)
n(n+1)

2 (2i)n G0 in Γ +

on account of (9), thus confirming Corollary 4.

5. A Hilbert transform in Hermitean Clifford analysis

Given functions g1, g2, g ∈ L2(∂Γ ), we will investigate in this section the non-tangential boundary behaviour of the
Hermitean Cauchy integrals C[G1

2] and C[G0]. To that end, we introduce the matrix operator

H = 1

2

(
H + H| −H + H|

−H + H| H + H|
)

its action on the matrix functions G1
2 and G0 being given by matrix multiplication, followed by an operator action on the

level of the entries, e.g.

H[G0] = 1

2

(
(H + H|)[g] (−H + H|)[g]

(−H + H|)[g] (H + H|)[g]
)

.

Now expressing C[G1
2] in terms of C[g1 − g2] and C |[g1 + g2] and C[G0] in terms of C[g] and C |[g], as in (8) and (9),

respectively, and taking into account the classical Plemelj–Sokhotzki formulae (3) and (4), the following results are obtained.

Proposition 5. For functions g1, g2 ∈ L2(∂Γ ), the non-tangential boundary values of its Hermitean Cauchy integral C[G1
2] are given

by

C±[G1
2

]
(U ) = lim

Y →U
Y ∈Γ ±

C
[
G1

2

]
(Y ) = (−1)

n(n+1)
2 (2i)n

(
±1

2
G1

2(U ) + 1

2
H
[
G1

2

]
(U )

)
, U ∈ ∂Γ.

Corollary 6. For a function g ∈ L2(∂Γ ), the non-tangential boundary values of its Hermitean Cauchy integral C[G0] are given by

C±[G0](U ) = lim
Y →U
Y ∈Γ ±

C[G0](Y ) = (−1)
n(n+1)

2 (2i)n
(

±1

2
G0(U ) + 1

2
H[G0](U )

)
, U ∈ ∂Γ.

We call the matrix operator H the Hermitean Hilbert transform. The matrix function G0 being a special case of G1
2, we

now only focus on the last one. Our aim is to establish for that matrical Hilbert transform the traditional properties, similar
to those mentioned in Proposition 1. To this end, we first create the proper framework for dealing with circulant (2 × 2)

matrix functions. First of all, we introduce the vector space

L2(∂Γ ) =
{

G1
2 =

(
g1 g2
g2 g1

)
: g1, g2 ∈ L2(∂Γ )

}
on which, inspired by the C2n valued inner product 〈·,·〉 on L2(∂Γ ) given by

〈 f , g〉 =
∫

∂Γ

f †(X)g(X)dS(X)

we introduce the following bilinear form:

〈·,·〉L2 : L2(∂Γ ) × L2(∂Γ ) −→ (C2n)2×2;((
f1 f2

f2 f1

)
,

(
g1 g2

g2 g1

))
−→

( 〈 f1, g1〉 + 〈 f2, g2〉 〈 f1, g2〉 + 〈 f2, g1〉
〈 f1, g2〉 + 〈 f2, g1〉 〈 f1, g1〉 + 〈 f2, g2〉

)
.

In the lemma below, the proof of which consists of direct calculations, it is stated that 〈·,·〉L2 is a (C2n)2×2 valued inner
product. Notice that we introduce there the Hermitean conjugation on circulant elements of (C2n)2×2, defined as follows:(

a1 a2

a2 a1

)†

=
(

a†
1 a†

2

a† a†

)
, a1,a2 ∈ C2n.
2 1
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Lemma 7. For F 1
2, G1

2, K 1
2 ∈ L2(∂Γ ) and λ ∈ C, we have

(i) 〈F 1
2, λG1

2 + K 1
2〉L2 = λ〈F 1

2, G1
2〉L2 + 〈F 1

2, K 1
2〉L2 ;

(ii) if for all F 1
2 ∈ L2(∂Γ ): 〈F 1

2, G1
2〉L2 = O , then G1

2 = O ;

(iii) (〈F 1
2, G1

2〉L2 )
† = 〈G1

2, F 1
2〉L2 .

Next, we also consider the Hardy spaces

H 2(Γ +)= {G1
2 : Γ + → (C2n)2×2: D(Z ,Z †)G1

2 = O in Γ + and g1|∂Γ , g2|∂Γ ∈ L2(∂Γ )
}

and H 2(∂Γ ), being the L2(∂Γ )-closure of the set of boundary values of elements of H 2(Γ +).
Finally, we need a notion of a so-called “matrical outward pointing unit vector.” An apt choice for our purpose is

V = 1

2

(
ν + ν| −ν + ν|

−ν + ν| ν + ν|
)

observing that indeed V2 = −I , I being the (2 × 2) identity matrix operator. The Hermitean Hilbert transform H then
satisfies the following properties.

Theorem 8. One has

P(1) H is a bounded linear operator on L2(∂Γ );
P(2) H2 = I;
P(3) H∗ = VHV (w.r.t. 〈·,·〉L2 );
P(4) for G1

2 ∈ L2(∂Γ ), we have that H[G1
2] = G1

2 if and only if G1
2 ∈ H 2(∂Γ ).

Proof. P(1) Follows from the fact that both H and H| are bounded linear operators on L2(∂Γ ).
P(2) As both H and H| are involutory operators, we obtain:

H2 = 1

2

(
H + H| −H + H|

−H + H| H + H|
)

1

2

(
H + H| −H + H|

−H + H| H + H|
)

= 1

4

(
H2 + H|2 + H2 + H|2 −H2 + H|2 − H2 + H|2

−H2 + H|2 − H2 + H|2 H2 + H|2 + H2 + H|2
)

= I.

P(3) Let F 1
2 and G1

2 belong to L2(∂Γ ) and be given explicitly by

F 1
2 =

(
f1 f2

f2 f1

)
; G1

2 =
(

g1 g2

g2 g1

)
.

We then have〈
H
[

F 1
2

]
, G1

2

〉
L2

=
〈

1

2

(
H + H| −H + H|

−H + H| H + H|
)(

f1 f2

f2 f1

)
,

(
g1 g2

g2 g1

)〉
L2

= 1

2

(
k1 k2

k2 k1

)
with

k1 = 〈(H + H|)[ f1] + (−H + H|)[ f2], g1
〉+ 〈(H + H|)[ f2] + (−H + H|)[ f1], g2

〉
= 〈 f1,

(
H∗ + H|∗)[g1] + (−H∗ + H|∗)[g2]

〉+ 〈 f2,
(

H∗ + H|∗)[g2] + (−H∗ + H|∗)[g1]
〉

and

k2 = 〈(H + H|)[ f1] + (−H + H|)[ f2], g2
〉+ 〈(H + H|)[ f2] + (−H + H|)[ f1], g1

〉
= 〈 f1,

(
H∗ + H|∗)[g2] + (−H∗ + H|∗)[g1]

〉+ 〈 f2,
(

H∗ + H|∗)[g1] + (−H∗ + H|∗)[g2]
〉
.

So 〈
H
[

F 1
2

]
, G1

2

〉
L2

=
〈(

f1 f2

f2 f1

)
,

1

2

(
(H∗ + H|∗)[g1] (H∗ + H|∗)[g2]
(H∗ + H|∗)[g2] (H∗ + H|∗)[g1]

)〉
L2

+
〈(

f1 f2

f2 f1

)
,

1

2

(
(−H∗ + H|∗)[g2] (−H∗ + H|∗)[g1]
(−H∗ + H|∗)[g1] (−H∗ + H|∗)[g2]

)〉
L2

= 〈F 1
2,H∗[G1

2

]〉
L2
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where we have put

H∗ = 1

2

(
H∗ + H|∗ −H∗ + H|∗

−H∗ + H|∗ H∗ + H|∗
)

= 1

2

(
νHν + ν|H|ν| −νHν + ν|H|ν|

−νHν + ν|H|ν| νHν + ν|H|ν|
)

= VHV .

P(4) Let G1
2 ∈ L2(∂Γ ). Then G1

2 ∈ H 2(∂Γ ) if and only if G1
2 is the non-tangential boundary limit of a certain

F 1
2 ∈ H 2(Γ +), i.e. if and only if there exists a matrix function F 1

2 : Γ + → (C2n)2×2 such that

lim
Γ + NT−−→∂Γ

F 1
2 = G1

2 and D(Z ,Z †) F 1
2 = O . (10)

Putting explicitly

G1
2 =

(
g1 g2

g2 g1

)
; F 1

2 =
(

f1 f2

f2 f1

)
then the characterization (10) of G1

2 ∈ H 2(∂Γ ) reads in terms of the matrix entries: there exist functions f1, f2 : Γ + → C2n

such that⎧⎪⎨⎪⎩
lim

Γ + NT−−→∂Γ

( f1 − f2) = g1 − g2,

lim
Γ + NT−−→∂Γ

( f1 + f2) = g1 + g2
and

{
∂X [ f1 − f2] = 0,

∂X |[ f1 + f2] = 0

which is equivalent with

g1 − g2 ∈ H2(∂Γ ) and g1 + g2 ∈ H|2(∂Γ )

or with

H[g1 − g2] = g1 − g2 and H|[g1 + g2] = g1 + g2 (11)

when taking into account P(4) of Proposition 1. This ends the proof since (11) is equivalent to H[G1
2] = G1

2. �
These properties then lead to following orthogonal decomposition of L2(∂Γ ) in terms of the Hardy space H 2(∂Γ ) with

respect to the inner product 〈·,·〉L2 .

Proposition 9.

L2(∂Γ ) = H 2(∂Γ ) ⊕ V H 2(∂Γ ).

Proof. For all F 1
2 ∈ L2(∂Γ ) one has that F 1

2 + H[F 1
2] ∈ H 2(∂Γ ) since H[F 1

2 + H[F 1
2]] = F 1

2 + H[F 1
2]. Now take an arbitrary

matrix function G1
2 ∈ (H 2(∂Γ ))⊥ , then

0 = 〈F 1
2 + H

[
F 1

2

]
, G1

2

〉
L2

= 〈F 1
2, G1

2 + H∗[G1
2

]〉
L2

which leads to

G1
2 ∈ (H 2(∂Γ )

)⊥ ⇐⇒ H∗[G1
2

]= −G1
2 ⇐⇒ H

[
VG1

2

]= VG1
2 ⇐⇒ VG1

2 ∈ H 2(∂Γ )

⇐⇒ G1
2 ∈ V H 2(∂Γ ). �
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