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Abstract

If V is a commutative algebraic group over a field k, O is a commutative ring that acts on V , and I
is a finitely generated free O-module with a right action of the absolute Galois group of k, then there is
a commutative algebraic group I ⊗O V over k, which is a twist of a power of V . These group varieties
have applications to cryptography (in the cases of abelian varieties and algebraic tori over finite fields) and
to the arithmetic of abelian varieties over number fields. For purposes of such applications we devote this
article to making explicit this tensor product construction and its basic properties.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

In this paper we study twists of powers of commutative algebraic groups. We have been using
and proving special cases of these results elsewhere, and believe that it would be useful to have
a complete theory and complete proofs in the literature in one place. Examples of applications
of these twists that already appear in the literature include: to polarizations on abelian vari-
eties [H], to cryptography ([F,RS1] in the case of abelian varieties over finite fields and [RS2] in
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the case of algebraic tori over finite fields), to constructing abelian varieties over number fields
with Shafarevich–Tate groups of nonsquare order [St], and to bounding below the Selmer rank
of abelian varieties over dihedral extensions of number fields [MR].

Suppose V is a commutative algebraic group over a field k, O is a commutative ring that acts
on V , and I is a finitely generated free O-module with a right action of the absolute Galois group
Gk of k. We will define a commutative algebraic group over k that we will denote I⊗O V , which
is a twist of a power of V .

The general theory underlying the construction of I⊗O V is given in the standard sources dis-
cussing the homological algebra of tensor products of sheaves for the étale topology (see [GV],
particularly Proposition 12.7 on p. 205). In that language, I ⊗O V is a tensor product in the
category of sheaves on the big étale site over Spec(k). This tensor product construction was
introduced by Serre (§2 of [Se1]) in the case where V is an elliptic curve with complex multi-
plication by O and I is a projective O-module with trivial Galois action. It is discussed in detail
by Conrad (§7 of [C]) in the case where V is a group scheme with O-action and I is a projec-
tive O-module with trivial Galois action. Our main objective is to record, in some detail and in
a usable way, the basic features regarding the operation of tensoring an abelian group scheme
over k endowed with a ring O of operators (viewing the group scheme as a sheaf for the big étale
topology over Spec(k)) with a locally constant sheaf over Spec(k) of free O-modules of finite
rank, noting that the new sheaf given by this tensor product construction is again representable
as a group scheme over k with an O-action. To effectively make use of this construction in our
applications, we found that we must pin things down very explicitly. For ease of reading we
provide in this article a largely self-contained treatment.

In Sections 1 and 2, following Milne [Mi] who dealt with the case of abelian varieties, we give
a concrete definition of I ⊗O V , and we prove some important properties. Some basic examples
are given in Examples 1.5. Our construction is functorial in both I and V (Theorem 1.8), and
if I decomposes (up to finite index) as

⊕
i Ji , then I ⊗O V is isogenous to

⊕
i (Ji ⊗ V ) (see

Corollary 2.5). Theorem 2.2 describes the action of Gk on the torsion points of I ⊗O V . We
include a more general explicit construction of I ⊗O V , without the assumption that I is a free
O-module, in an appendix.

If L is a finite Galois extension of k and G := Gal(L/k), then Z[G] ⊗Z V is the restriction
of scalars ResL

k V . Theorem 4.5 shows that ResL
k V is isogenous to

⊕
ρ(Iρ ⊗Z V ), where ρ runs

through the irreducible rational representations of G and Iρ is the intersection of Z[G] with the
ρ-isotypic component of Q[G]. In Section 5 we restrict to the case where L/k is abelian, which
is the case of interest in many of the applications. Similar results were obtained by Diem and
Naumann [DN] in the case of abelian varieties. In Section 6 we study cases where Gal(L/k)

is a semi-direct product, which are needed for the applications in [MR]. We study finite group
actions on I ⊗O V in Section 7; these results have cryptographic significance in the case of
algebraic tori.

We thank Dick Gross for drawing our attention to Conrad’s paper [C].

Notation. Let Z+ denote the set of positive integers. If k is a field, ks will denote a separable
closure of k and Gk := Gal(ks/k). In this paper “ring” will always mean ring with identity, and
“commutative algebraic group” will always mean a commutative algebraic group variety (not
necessarily connected).

If n ∈ Z+, let μn denote the group of n-th roots of unity in Q̄. If G is a finite group, then
Z[G] will denote the group ring, except that Z[μn] denotes the ring of integers of the cyclotomic
field Q(μn).

Suppose k is a field and O is a commutative ring. We consider two categories:
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• FModO(k) is the category whose objects are finitely generated free O-modules with a con-
tinuous right action of Gk , and whose morphisms are Gk-equivariant O-module homomor-
phisms (the modules are given the discrete topology, so a continuous Gk-action is one that
factors through a finite extension of k).

• CAGO(k) is the category whose objects are commutative algebraic groups V over k with
an action of O, i.e., a ring homomorphism O → Endk(V ), and whose morphisms are O-
equivariant homomorphisms defined over k.

If I,J ∈ FModO(k) we will view HomO(I,J ) as a left Gk-module, where for f ∈
HomO(I,J ), γ ∈ Gk , and x ∈ I , we define (f γ )(x) = f (xγ )γ −1. View O ∈ FModO(k) with
trivial Gk-action.

1. Twisting commutative algebraic groups

Fix a field k and a commutative ring O. In this section we construct a functor

FModO(k) × CAGO(k) → CAGO(k),

which we will denote by (I,V ) �→ I ⊗O V . This construction appears in §2 of [Mi] when V is
an abelian variety.

Definition 1.1. Suppose V ∈ CAGO(k) and I ∈ FModO(k). Define the I-twist I ⊗O V of V as
follows. Let d = rankO(I), and fix an O-module isomorphism j :Od ∼−→ I . The homomorphism
O → Endk(V ) induces

H 1(k,GLd(O)
) −→ H 1(k,Autk(V

d)
) −→ H 1(k,Autks(V d)

)
,

and we let cI ∈ H 1(k,Autks(V d)) be the image of the cocycle (γ �→ j−1 ◦ jγ ) under this com-
position. Define I ⊗O V to be the twist of V d by the cocycle cI . Namely, by Corollaire to
Proposition 5 on p. 131 in §III-1.3 of [Se3] (see also §3.1 of [V]), there is a pair (I ⊗O V,φ)

(unique up to isomorphism) where I ⊗O V ∈ CAGO(k) and φ :V d ∼−→ I ⊗O V is an isomor-
phism defined over ks such that for every γ ∈ Gk ,

cI(γ ) = φ−1 ◦ φγ . (1.1)

Remark 1.2. Suppose L is a separable extension of k and GL acts trivially on I . Then jγ = j

for all γ ∈ GL, so cI(γ ) = 1, so φγ = φ by (1.1). Thus the isomorphism φ :V d ∼−→ I ⊗O V is
defined over L.

If we choose a different O-module isomorphism j ′ :Od ∼−→ I in Definition 1.1, then
j ′ = j ◦ α for some α ∈ GLd(O). The cocycles γ �→ j−1jγ and

γ �→ (j ′)−1(j ′)γ = α−1j−1jγ αγ

represent the same class in H 1(k,GLd(O)), so they give rise to the same class cI ∈
H 1(k,Autks(V d)). Thus I ⊗O V is independent of the choice of j .
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If L/k is a Galois extension, V is a commutative algebraic group over k, I ∈ FModO(k), and
A is a commutative k-algebra, let γ ∈ Gk act on A ⊗k L as 1 ⊗ γ and on I ⊗O (V (A ⊗k L)) as
γ −1 ⊗ (1 ⊗ γ ).

Lemma 1.3. Suppose I ∈ FModO(k), V ∈ CAGO(k), and L is a Galois extension of k such that
GL acts trivially on I . Fix an O-module isomorphism j :Od ∼−→ I , and let φ :V d ∼−→ I ⊗O V

be as in Definition 1.1. Then for every commutative k-algebra A, the composition

(I ⊗O V )(A ⊗k L)
∼−→ I ⊗O

(
V (A ⊗k L)

)
of the sequence of O-module isomorphisms

(I ⊗O V )(A ⊗k L)
φ−1−−→ V d(A ⊗k L)

∼−→ Od ⊗O
(
V (A ⊗k L)

) j⊗1−−→ I ⊗O
(
V (A ⊗k L)

)
is a Gk-equivariant O-module isomorphism that is independent of j and is functorial in A, V ,
I , and L.

Proof. Remark 1.2 shows that φ is defined over L, and therefore

φ
(
V d(A ⊗k L)

) = (I ⊗O V )(A ⊗k L).

The Gk-equivariance of the composition and the independence of j follow from (1.1) and the
definition of cI . The functoriality is clear. �
Theorem 1.4. Suppose I ∈ FModO(k) and V ∈ CAGO(k). Let L be a Galois extension of k

such that GL acts trivially on I . Then I ⊗O V represents the functor on commutative k-algebras
A �→ (I ⊗O (V (A ⊗k L)))Gal(L/k). More precisely, for every commutative k-algebra A, the iso-
morphism of Lemma 1.3 restricts to a functorial group isomorphism

(I ⊗O V )(A) ∼= (
I ⊗O

(
V (A ⊗k L)

))Gal(L/k)
.

Proof. This follows directly from Lemma 1.3, since (A ⊗k L)Gk = A and GL acts trivially on I
and L. �
Examples 1.5.

(i) Suppose 0 � d ∈ Z, and I = Od with trivial Galois action. Then I ⊗O V = V d .
(ii) Suppose χ is a quadratic character of Gk , and I is a free, rank-one Z-module with Gk

acting via χ . Then I ⊗Z V is the quadratic twist of V by χ . More generally, if O = Z[μn],
χ :Gk → μn is a homomorphism, and I is a free, rank-one O-module with Gk acting via
χ , then I ⊗O V is the twist of V by χ−1 (in this case the cocycle cI is χ−1).

(iii) Suppose V = Gm, the multiplicative group, and I is a free Z-module. Then I⊗Z V is the al-
gebraic torus whose character module Hom(I⊗Z V,Gm) is Hom(I,Z). See Corollary 1.10
below, and Example 6 in §3.4 of [V].

(iv) If L/k is a finite Galois extension then O[Gal(L/k)] ⊗O V = ResL
k V (see Proposition 4.1

below).



B. Mazur et al. / Journal of Algebra 314 (2007) 419–438 423
Proposition 1.6. Suppose I,J ∈ FModO(k) and V,W ∈ CAGO(k).

(i) There is a functorial Gk-equivariant O-module isomorphism

HomO(I,J ) ⊗O Homks(V ,W)
∼−→ Homks(I ⊗O V,J ⊗O W).

(ii) The isomorphism of (i) restricts to an injective homomorphism

HomO[Gk](I,J ) ⊗O Homk(V ,W) ↪→ Homk(I ⊗O V,J ⊗O W).

Proof. Fix O-module isomorphisms On ∼= I and Om ∼= J . These isomorphisms induce (see
Definition 1.1) isomorphisms V n ∼−→ I ⊗O V and Wm ∼−→ J ⊗O W defined over ks, which
induce isomorphisms

HomO(I,J ) ⊗O Homks(V ,W)
∼−→ Mm×n(O) ⊗O Homks(V ,W)

∼−→ Mm×n

(
Homks(V ,W)

) ∼−→ Homks(V n,Wm)
∼−→ Homks(I ⊗O V,J ⊗O W).

The proof of Gk-equivariance is similar to the proof of Gk-equivariance in Lemma 1.3. This
proves (i), and (ii) follows since Gk acts trivially on HomO[Gk](I,J ) ⊗O Homk(V ,W). �
Corollary 1.7. Suppose I,J ∈ FModO(k) and V ∈ CAGO(k).

(i) The isomorphism of Proposition 1.6(i) with W = V and the identity map in Homk(V ,W)

gives a functorial Gk-equivariant O-module homomorphism

HomO(I,J ) −→ Homks(I ⊗O V,J ⊗O V ).

(ii) The map of (i) restricts to a homomorphism

HomO[Gk](I,J ) −→ Homk(I ⊗O V,J ⊗O V ).

(iii) If the map O → Endk(V ) is injective, then the maps in (i) and (ii) are injective.

Proof. Assertions (i) and (ii) follow directly from Proposition 1.6. For (iii), tensoring the in-
jection O ↪→ Endk(V ) with the free O-module HomO(I,J ) shows that HomO(I,J ) ↪→
HomO(I,J ) ⊗O Endk(V ) is injective. Now (iii) follows from the injectivity in Proposi-
tion 1.6. �

If f ∈ HomO(I,J ) we will often write fV for the image of f under the map of Corol-
lary 1.7(i).

Theorem 1.8. The map (I,V ) �→ I ⊗O V is a functor from FModO(k) × CAGO(k) to
CAGO(k).

Proof. This follows directly from Proposition 1.6(ii). �
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Corollary 1.9. Suppose I,J ∈ FModO(k), V ∈ CAGO(k), and k ⊆ F ⊆ ks. If I and J are
isomorphic as O[GF ]-modules, then the group varieties I ⊗O V and J ⊗O V are isomorphic
over F .

Proof. If f :I → J is a GF -equivariant isomorphism, then the image of f under the functorial
map of Corollary 1.7(i) is an isomorphism over F from I ⊗O V to J ⊗O V . �
Corollary 1.10. If I ∈ FModZ(k), then Homks(I ⊗Z Gm,Gm) ∼= HomZ(I,Z).

Proof. Apply Proposition 1.6(i) with J = O = Z and V = W = Gm. �
2. Properties of the twists I ⊗O V

For this section, fix a field k, a commutative ring O, and a commutative algebraic group
V ∈ CAGO(k).

Theorem 2.1. Suppose I ∈ FModO(k). Then:

(i) I ⊗O V is a commutative algebraic group of dimension rankO(I)dim(V ),
(ii) I ⊗O V is connected if and only if V is connected,

(iii) if L is a separable extension of k and GL acts trivially on I , then I ⊗O V is isomorphic
over L to V rankO(I).

Proof. Fix a separable extension L/k such that GL acts trivially on I . Since I is isomorphic as
a GL-module to OrankO(I), I ⊗O V is isomorphic over L to OrankO(I) ⊗O V = V rankO(I) by
Corollary 1.9, giving (iii). The remaining assertions follow easily. �

Suppose n ∈ Z+. If B is an abelian group, let B[n] denote the subgroup of elements of order
dividing n in B . If W is a commutative algebraic group over k, let W [n] denote the Gk-module
W(ks)[n], and if � is a prime let

T�(W) := lim←−−m
W

[
�m

]
,

the �-adic Tate module of W .

Theorem 2.2. Suppose I ∈ FModO(k), n ∈ Z+, and � is prime. Then there are Gk-equivariant
isomorphisms (with γ ∈ Gk acting on the right-hand sides as γ −1 ⊗ γ ), functorial in I and V ,

(i) (I ⊗O V )(ks) ∼= I ⊗O (V (ks)),
(ii) (I ⊗O V )[n] ∼= I ⊗O (V [n]),

(iii) T�(I ⊗O V ) ∼= I ⊗O (T�(V )).

Proof. (See Proposition 6(b) of [Mi].) The first assertion follows from Lemma 1.3 with A = k

and L = ks. Since I is a free O-module,(
I ⊗O

(
V

(
ks)))[n] ∼= I ⊗O

(
V [n]),

so (ii) follows from (i), and (iii) follows by taking the inverse limit of (ii) with n = �m. �
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Lemma 2.3. Suppose I,J ∈ FModO(k) with I ⊆ J and J /I is free (as an O-module). Then
the induced sequence of commutative algebraic groups over k

0 −→ I ⊗O V −→ J ⊗O V −→ (J /I) ⊗O V −→ 0

is exact.

Proof. Since J /I is free, there is an O-module isomorphism J ∼= I ⊕ (J /I). It follows by
Corollary 1.9 that J ⊗O V ∼= (I ⊗O V )⊕ ((J /I)⊗O V ) over ks, so the sequence of the lemma
is a (split) exact sequence over ks. But then the sequence is exact over k. �

Define a k-isogeny in CAGO(k) or in FModO(k) to be a k-morphism whose kernel and
cokernel are annihilated by some positive integer.

Lemma 2.4. If I,J ∈ FModO(k) and s :I → J is a k-isogeny, then the induced map

sV :I ⊗O V → J ⊗O V

is a k-isogeny.

Proof. Suppose n ∈ Z+ is such that n ·ker(s) = 0 and n · coker(s) = 0. Then there is a k-isogeny
t :J → I such that t ◦ s and s ◦ t are both multiplication by n2, so sV ◦ tV ∈ Endk(J ⊗O V ) and
tV ◦ sV ∈ Endk(I ⊗O V ) are both multiplication by n2. Therefore sV is a k-isogeny. �
Corollary 2.5. Suppose I,J1, . . . ,Jt ∈ FModO(k), and I ⊗Z Q ∼= ⊕t

i=1(Ji ⊗Z Q) as O[Gk]-
modules. Then I ⊗O V is k-isogenous to

⊕t
i=1(Ji ⊗O V ).

Proof. In this case I is k-isogenous to
⊕

i Ji , so by Lemma 2.4, I ⊗O V is k-isogenous to
(
⊕

i Ji ) ⊗O V ∼= ⊕
i (Ji ⊗O V ). �

Proposition 2.6. Suppose I,J ∈ FModO(k). Then there is a natural isomorphism

(I ⊗O J ) ⊗O V ∼= I ⊗O (J ⊗O V )

over k.

Proof. Suppose A is a commutative k-algebra. Then applying Theorem 1.4 and Lemma 1.3 with
L = ks (suppressing the subscripts O and k from the tensor products)

(
I ⊗ (J ⊗ V )

)
(A) ∼= (

I ⊗ (
(J ⊗ V )

(
A ⊗ ks)))Gk

∼= (
I ⊗ (

J ⊗ (
V

(
A ⊗ ks))))Gk

= (
(I ⊗J ) ⊗ (

V
(
A ⊗ ks)))Gk

∼= (
(I ⊗J ) ⊗ V

)
(A).

These isomorphisms are functorial in A, so the proposition follows from a variant of the Yoneda
Lemma (see for example Proposition VI-2 of [EH]). �
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3. Annihilator modules

The results of this section will be used in Sections 4 and 7.
Fix a finite Galois extension L/k, a commutative ring O, and a commutative algebraic

group V ∈ CAGO(k), and let G := Gal(L/k). Let FModO(L/k) denote the full subcategory
of FModO(k) whose objects are the O[Gk]-modules in FModO(k) on which GL acts trivially.

Definition 3.1. For I ∈ FModO(L/k), define a left O[G]-module

Î := HomO[G]
(
I,O[G])

with O[G] acting by (α · f )(x) = α · f (x) for every α ∈O[G], f ∈ Î , and x ∈ I . Also define an
O-module homomorphism π :O[G] → O by π(

∑
g∈G agg) = a1.

Part (i) of the following lemma shows that Î is independent of the choice of L.

Lemma 3.2.

(i) For each K ∈ FModO(L/k), the map f �→ π ◦f defines an isomorphism of left Gk-modules

K̂ ∼−→ HomO(K,O).

(ii) If I,J ∈ FModO(L/k), I ⊆ J , and J /I is a projective O-module, then the canonical

sequence 0 → Ĵ /I → Ĵ → Î → 0 is exact.

Proof. For (i), see for example Proposition VI.3.4 of [B]. Assertion (ii) follows from (i), since
the exact sequence of O-modules 0 → I → J → J /I → 0 splits if J /I is projective. �
Lemma 3.3. Suppose I,J ∈ FModO(L/k), I ⊆ J , and J /I is a free O-module. Then

I ⊗O V =
⋂

f ∈Ĵ /I
ker

(
fV :J ⊗O V → O[G] ⊗O V

)
,

where fV is the image of f under the map

HomO[G]
(
J /I,O[G]) ↪→ HomO[G]

(
J ,O[G]) −→ Homk

(
J ⊗O V,O[G] ⊗O V

)
coming from Corollary 1.7(ii).

Proof. Choose an O-basis {f1, . . . , fd} of HomO(J /I,O). For every i let φi ∈ Ĵ /I be the
inverse image of fi under the isomorphism of Lemma 3.2(i) (with K = J /I), so π ◦ φi = fi ,



B. Mazur et al. / Journal of Algebra 314 (2007) 419–438 427
with π defined in Definition 3.1. Then there is a commutative diagram of O-modules, with the
top line an exact sequence of O[G]-modules

0 J /I
⊕φi

⊕fi

∼=

O[G]d
πd

C 0.

Od

(3.1)

Then (⊕fi)
−1 ◦πd gives a splitting of the top exact sequence, so C is isomorphic as an O-module

to the kernel of πd , which is free. Therefore we can apply Lemma 2.3 both to the top line of (3.1)
and to the exact sequence 0 → I → J → J /I → 0 to obtain an exact sequence

0 → I ⊗O V → J ⊗O V
⊕(φi )V−−−−→ (

O[G] ⊗O V
)d → C ⊗O V → 0.

By Lemma 3.2(i), φ1, . . . , φd generate Ĵ /I , so

I ⊗O V = ker
(⊕(φi)V

) =
⋂

f ∈Ĵ /I
ker(fV ). �

Definition 3.4. If I is a right ideal of O[G], let I⊥ denote the left annihilator of I , i.e., I⊥ is the
left ideal of O[G] defined by

I⊥ := {
α ∈O[G]: αI = 0

}
.

A (right or left) ideal I of O[G] is saturated if O[G]/I is a projective O-module.

A finitely generated Z-module is projective (or equivalently, free) if and only if it is torsion-
free. Thus when O = Z, intersecting with Z[G] (inversely, tensoring with Q) gives a one-to-one
correspondence between the ideals of Q[G] and the saturated ideals of Z[G].

Lemma 3.5. Let λ :O[G] → Ô[G] be the ring isomorphism that sends α ∈ O[G] to left multi-
plication by α. Then:

(i) If I is a right ideal of O[G] then the restriction of λ induces an isomorphism

I⊥ ∼−→ Ô[G]/I.

(ii) If I is a saturated right ideal of O[G], then I = {α ∈ O[G]: I⊥ · α = 0}.
(iii) If I is a saturated two-sided ideal of O[G], then λ induces an isomorphism O[G]/I⊥ ∼−→

EndO[G](I) (and EndO[G](I) = Î).
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Proof. Suppose I is a right ideal of O[G]. The map Ô[G] → O[G] defined by f �→ f (1) is
a right and left inverse of λ. Thus λ is an isomorphism and there is a commutative diagram with
exact rows

0 I⊥

λ

O[G]
λ ∼=

O[G]/I⊥

λ

0

0 Ô[G]/I Ô[G] Î

(3.2)

where the right-hand vertical map is injective by definition of I⊥. The snake lemma shows that
the left-hand vertical map is an isomorphism, which proves (i).

Now suppose I is saturated. If β ∈ O[G] − I , then there is an O-module homomorphism
from O[G]/I to O that is nonzero on β . Now (ii) follows from (i), along with Lemma 3.2(i)
with K = O[G]/I .

Since I is saturated, by Lemma 3.2(ii) the bottom right-hand map of (3.2) is surjective,
and hence the right-hand vertical map is an isomorphism. If I is a two-sided ideal, then
λ(O[G]/I⊥) ⊆ EndO[G](I) ⊆ Î , so equality must hold and the proof of (iii) is complete. �
4. Decomposing the restriction of scalars

In this section we decompose the restriction of scalars of a commutative algebraic group.
Theorems 4.5, 5.2, and 5.5 were proved by Diem and Naumann in §3.4 and §3.5 of [DN] in the
case of abelian varieties.

Fix a finite Galois extension L/k, a commutative ring O, and a commutative algebraic group
V ∈ CAGO(k), and let G := Gal(L/k). Let ResL

k V denote the Weil restriction of scalars of V

from L to k (see for example §1.3 of [W] or §3.12 of [V]). Then for every commutative k-algebra
A there is an isomorphism, functorial in A,

(
ResL

k V
)
(A) ∼= V (A ⊗k L). (4.1)

Proposition 4.1. There is a canonical isomorphism over k, functorial in V ,

O[G] ⊗O V ∼= ResL
k V .

Proof. Let OG := ⊕
g∈GO, V G := ⊕

g∈G V , and for g ∈ G let pg :V G → V be the projection

onto the g component. Using the O-module isomorphism j :OG → O[G] defined by j ((xg)) =∑
g xgg

−1, Definition 1.1 gives a pair (O[G] ⊗O V,φ) where φ :V G ∼−→ O[G] ⊗O V is an iso-

morphism over L. Let η := p1 ◦φ−1 :O[G]⊗O V → V . The cocycle cO[G] ∈ H 1(k,Autks(V G))

of Definition 1.1 satisfies ph ◦ cO[G](g) = pg−1h for every g,h ∈ G, so (using (1.1)),

ηg = p1 ◦ (
φ−1)g = p1 ◦ cO[G](g)−1 ◦ φ−1 = pg ◦ φ−1.

Therefore ⊕ηg :O[G] ⊗O V → V G is an isomorphism (it is equal to φ−1), so by the definition
of ResLV in §1.3 of [W], O[G] ⊗O V ∼= ResLV over k. �
k k
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For the rest of this section we will take O = Z and write simply “⊗” in place of “⊗Z”. The
functorial map of Corollary 1.7(ii) (with I = J = Z[G]) and Proposition 4.1 give natural ring
homomorphisms

Z[G] ∼= EndZ[G]
(
Z[G]) → Endk

(
Z[G] ⊗ V

) ∼−→ Endk

(
ResL

k V
)
. (4.2)

If α ∈ Z[G], then we denote its image under (4.2) by αV ∈ Endk(ResL
k V ).

Proposition 4.2. If I is a saturated right ideal of Z[G], then:

(i) I ⊗ V = ⋂
α∈I⊥ ker(αV : ResL

k V → ResL
k V ).

(ii) For every commutative k-algebra A there is a functorial isomorphism

(I ⊗ V )(A) ∼= {
v ∈ V (A ⊗k L): I⊥ · v = 0

}
.

(iii) If further I is a two-sided ideal, then there is a natural injective ring homomorphism

(
Z[G]/I⊥) ⊗ Endk(V ) ↪→ Endk(I ⊗ V ).

Proof. By Lemma 3.5(i), Ẑ[G]/I ∼= I⊥. By Lemma 3.3 (with J = Z[G]) and Proposition 4.1,
we have (i). Assertion (ii) follows from (i) and (4.1).

If I is a two-sided ideal, then Z[G]/I⊥ ∼−→ EndZ[G](I) by Lemma 3.5(iii). Now (iii) follows
from Proposition 1.6(ii) (with J = I and W = V ). �

The group ring Q[G] is semisimple, and decomposes into a direct sum of minimal two-sided
ideals

Q[G] =
⊕

ρ

Q[G]ρ (4.3)

indexed by the irreducible rational representations ρ of G. Here Q[G]ρ is the ρ-isotypic compo-
nent of Q[G], i.e., the sum of all left ideals of Q[G] isomorphic to ρ.

Definition 4.3. If ρ is an irreducible finite-dimensional rational representation of Gk , choose
a finite Galois extension L/k such that ρ factors through G := Gal(L/k), define

Iρ := Q[G]ρ ∩ Z[G] ∈ FModZ(k),

and define the ρ-twist of V by

Vρ := Iρ ⊗ V.

Remark 4.4. Note that Iρ is well-defined up to Z[Gk]-isomorphism, independent of the choice
of L, and therefore Vρ is well-defined up to isomorphism over k. Since Q[G]ρ is a Q-vector
space, Iρ is a saturated ideal of Z[G].
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Theorem 4.5. Suppose L/k is a finite Galois extension, V is a commutative algebraic group
over k, and G := Gal(L/k). Then ResL

k V is isogenous over k to
⊕

ρ Vρ , direct sum over all
irreducible rational representations of G.

Proof. This follows from Proposition 4.1, (4.3), and Corollary 2.5 with I = Z[G] and with
{J1, . . . ,Jt } = {Iρ : ρ an irreducible rational representation of G}. �
5. Abelian twists

Fix a finite abelian extension L/k and a commutative algebraic group V over k, and let G =
Gal(L/k) and O = Z.

The irreducible rational representations of G are in one-to-one correspondence with the cyclic
extensions of k in L. (See for example Exercise 13.1 of [Se2].) Namely, if ρ is an irreducible
rational representation let Fρ be the fixed field of the kernel of ρ, and if F is a cyclic extension
of k in L let ρF (or ρF/k , if we need to specify the field k) denote the unique irreducible rational
representation of G with kernel Gal(L/F). If [F : k] = d then dimρF = ϕ(d), where ϕ is the
Euler ϕ-function.

Definition 5.1. Suppose F is a cyclic extension of k in L, and ρF is the corresponding irreducible
rational representation of G. Let Q[G]F denote the ρF -isotypic component of Q[G], and let

IF := Q[G]F ∩ Z[G], VF := IF ⊗ V

(these were denoted Q[G]ρF
, IρF

, and VρF
in (4.3) and Definition 4.3). When necessary to

specify the ground field k, we will write IF/k and VF/k . Let RF denote the maximal order of the
field Q[G]F .

By Remark 4.4, IF and VF are well-defined up to isomorphism, independent of the choice of
field L containing F , and IF is saturated in Z[G].

The following result is a special case of Theorem 4.5.

Theorem 5.2. If L/k is a finite abelian extension and V is a commutative algebraic group over k,
then ResL

k V is isogenous over k to
⊕

F VF , direct sum over all cyclic extensions F of k in L.

If k ⊆ F ⊆ L, let

NL/F :=
∑

g∈Gal(L/F)

g ∈ Z[G].

Define

ΩL := {fields F : k ⊆ F � L} ⊇ Ω ′
L := {F : k ⊆ F � L, [L : F ] prime}.

Then every element of ΩL is a subfield of some element of Ω ′
L, and we define

WL :=
⋂

F∈ΩL

ker(NL/F,V ) =
⋂

F∈Ω ′
ker(NL/F,V ) ⊆ ResL

k V,
L
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where NL/F,V ∈ Endk(ResL
k V ) is the image of NL/F under (4.2). We will see in Theorem 5.8(i)

below that if L/k is cyclic, then WL = VL. In the non-cyclic case we have the following.

Proposition 5.3. If L/k is abelian but not cyclic, then dim(WL) = 0.

Proof. Since L/k is not cyclic, there are a prime p and a field M such that k ⊆ M ⊂ L and
Gal(L/M) ∼= (Z/pZ)2. Since there are exactly p + 1 degree p extensions of M in L, in Z[G]
we have the identity ∑

M�F�L

NL/F = p + NL/M.

Since WL is in the kernel of all the norm maps in this identity, it follows that WL is contained in
the kernel of multiplication by p, so dim(WL) = 0. �

Suppose for the rest of this section that L/k is cyclic. Theorems 5.5, 5.8, and 5.9 below are our
main results about VL in the cyclic case. Let r := |G| = [L : k], and fix a generator τ of G. For
d ∈ Z+ let Φd ∈ Z[x] denote the d-th cyclotomic polynomial, and let Ψd(x) := (xd −1)/Φd(x) ∈
Z[x].

Lemma 5.4.

(i) IL = Ψr(τ)Z[G] and I⊥
L = Φr(τ)Z[G].

(ii) Every isomorphism χ :G ∼−→ μr induces a ring isomorphism RL
∼−→ Z[μr ]. This ring iso-

morphism is G-equivariant, with g ∈ G acting on Z[μr ] as multiplication by χ(g).
(iii) The projection Q[G] � Q[G]L given by (4.3) induces a G-module isomorphism

Z[G]/I⊥
L

∼−→ RL.

(iv) IL = ∏
primes�|r (ζ� − 1)RL, where for each prime � dividing r , ζ� is a primitive �-th root of

unity in RL.

Proof. Let S = Q[x]/(xr − 1)Q[x]. Since G is cyclic of order r , the homomorphism
η : Q[G] → S that takes τ to x is a Q[G]-module isomorphism, where τ acts on S as multipli-
cation by x. Since Q[G]L ∼= Q[x]/Φr(x)Q[x] ∼= Ψr(x)S ⊆ S as Q[G]-modules, and Q[G] (and
hence S) has a unique Q[G]-submodule isomorphic to Q[G]L, we have η(Q[G]L) = Ψr(x)S. It
follows that the isomorphism η : Z[G] ∼= Z[x]/(xr − 1)Z[x] maps IL (resp., I⊥

L ) isomorphically
onto the ideal generated by Ψr(x) (resp., by Φr(x)). Both assertions of (i) now follow.

If χ :G ∼−→ μr is an isomorphism, then τ �→ x �→ χ(τ) induces isomorphisms Q[G]L ∼−→
Q[x]/Φr(x)Q[x] ∼−→ Q(μr ). The composition maps the maximal order RL isomorphically to
the maximal order Z[μr ], giving (ii).

Using (i) and (ii), there is a commutative diagram

0 Φr(x)Z[x]/(xr − 1)Z[x] Z[x]/(xr − 1)Z[x] Z[x]/Φr(x)Z[x] 0

0 I⊥
L

∼= η

Z[G] λ

∼= η

RL

∼=

0
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with vertical isomorphisms, where the map λ is induced by Q[G] � Q[G]L. Since the top row
is exact, so is the bottom row, giving (iii).

Let μ denote the Möbius function. Then

Ψr(x) = (
xr − 1

)
/Φr(x) =

∏
d|r, d �=1

(
xr/d − 1

)−μ(d)
. (5.1)

In Z[x]/Φr(x)Z[x], x is a primitive r-th root of unity, so xr/d has order d , so xr/d − 1 is a unit
in Z[x]/Φr(x)Z[x] unless d is a prime power. When d �= 1 is a prime power, μ(d) = −1 if d

is prime, and μ(d) = 0 otherwise. By (i), η(IL) is generated by Ψr(x), so by (5.1), the ideal
λ(IL) of RL is generated by

∏
�|r (ζ� − 1). Since IL ⊆ Q[G]L, λ is the identity map on IL. This

proves (iv). �
Theorem 5.5. Suppose L/k is a cyclic extension of degree r , and V is a commutative algebraic
group over k. Then:

(i) VL is a commutative algebraic group of dimension ϕ(r)dim(V ).
(ii) If V is connected then VL is connected.

(iii) VL is isomorphic over L to V ϕ(r).
(iv) There is an injective ring homomorphism RL ⊗ Endk(V ) ↪→ Endk(VL).

Proof. Parts (i), (ii), and (iii) follow from Theorem 2.1, since rankZ IL = dimρL = ϕ(r). Part
(iv) follows from Proposition 4.2(iii) and Lemma 5.4(iii). �
Lemma 5.6. The ideal of Z[x]/(xr − 1)Z[x] generated by Φr(x) is also generated by each of
the following sets

(i) {(xr − 1)/(xd − 1): d | r, d �= r},
(ii) {(xr − 1)/(xr/� − 1): � | r, � prime}.

Proof. The identity xr − 1 = ∏
d|r Φd(x) shows that Φr(x) divides (xr − 1)/(xd − 1) for every

divisor d < r of r . On the other hand, Theorem 1 of [dB] or [Re] shows that Φr(x) is a Z[x]-
linear combination of {(xr − 1)/(xd − 1): d | r, d �= r}. This proves (i). Every element in the set
(i) is divisible by one of the elements in its subset (ii), so this completes the proof. �
Lemma 5.7. Each of the sets {Φr(τ)}, {NL/F : F ∈ ΩL}, {NL/F : F ∈ Ω ′

L} generates the ideal
I⊥

L ⊆ Z[G].

Proof. If k ⊆ F ⊆ L and [F : k] = d , then NL/F goes to (xr − 1)/(xd − 1) under the isomor-
phism Z[G] ∼−→ Z[x]/(xr − 1)Z[x]. Thus by Lemma 5.6, the three sets of this lemma generate
the same ideal of Z[G]. By Lemma 5.4(i), this ideal is I⊥

L . �
Recall that if α ∈ Z[G], then αV ∈ Endk(ResL

k V ) denotes its image under (4.2).

Theorem 5.8. Suppose L/k is a cyclic extension of degree r , and V is a commutative algebraic
group over k. Then:
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(i) VL = ⋂
F∈ΩL

ker(NL/F,V ) = ⋂
F∈Ω ′

L
ker(NL/F,V ) = ker(Φr(τ )V ) ⊆ ResL

k V , where τ is
any generator of Gal(L/k).

(ii) If A is a commutative k-algebra, then

VL(A) ∼= {
α ∈ V (A ⊗k L): NL/F (α) = 0 for every F ∈ ΩL

}
.

In particular,

VL(k) ∼= {
α ∈ V (L): NL/F (α) = 0 for every F ∈ ΩL

}
.

Both assertions also hold with ΩL replaced by Ω ′
L.

Proof. Assertion (i) (resp., (ii)) follows from Lemma 5.7 and Proposition 4.2(i) (resp., (ii)).

Theorem 5.9. Suppose L/k is a cyclic extension of degree r , and V is a commutative algebraic
group over k. Suppose that � is prime and g ∈ Gk . Let d be the order of the restriction of g

to G := Gal(L/k). If the characteristic polynomial of g acting on T�(V ) is
∏

i (X − αi) with
αi ∈ Q̄�, then the characteristic polynomial of g acting on T�(VL) is

∏
i,ζ

(X − αiζ )ϕ(r)/ϕ(d)

where ζ runs through all primitive d-th roots of unity.

Proof. By Lemma 5.4(ii), the eigenvalues of the generator τ ∈ G acting on IL ⊗Q = RL ⊗Q are
exactly the primitive r-th roots of unity in Q̄, each with multiplicity one. It follows that the eigen-
values of g acting on IL are the primitive d-th roots of unity, each with multiplicity ϕ(r)/ϕ(d).
The result now follows from the isomorphism T�(VL) ∼= IL ⊗ T�(V ) of Theorem 2.2(iii). �
Proposition 5.10. Suppose L/k is cyclic, F and M are extensions of k in L, F ∩ M = k, and
L = FM . If V is a commutative algebraic group over k, then (VF )M ∼= VL over k.

Proof. Let d = [F : k] and e = [M : k]. Then de = r . Since L/k is cyclic, d and e are relatively
prime. By Lemma 5.4(ii,iv), there are isomorphisms of Z[G]-modules IF

∼= Z[μd ], IM
∼= Z[μe],

and IL
∼= Z[μr ], where the chosen generator τ of G acts on the right-hand sides as multiplication

by ζd , ζe, and ζr , respectively, and where the roots of unity are chosen so that ζdζe = ζr . Then
the natural map Z[μd ] ⊗Z Z[μe] ∼−→ Z[μr ] is an isomorphism of Z[G]-modules. Hence IL

∼=
IM ⊗Z IF , and the proposition follows from Proposition 2.6. �
Remark 5.11. Suppose k ⊆ F ⊆ L. Let NL/F : Z[G] → Z[G] denote multiplication by∑

h∈Gal(L/F) h. Then NL/F factors as

NL/F : Z[G] RL/F

Z[Gal(F/k)] ιL/F

Z[G]
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where RL/F is the natural projection map. Since ker(RL/F ) and coker(ιL/F ) are torsion-free,
Lemma 2.3 shows that the induced maps RL/F,V and ιL/F,V in the composition

NL/F,V : ResL
k V

RL/F,V

ResF
k V

ιL/F,V

ResL
k V (5.2)

are surjective and injective, respectively. In [RS1,RS2,RS3], the primitive subgroup of ResL
k V

corresponding to L was defined to be TL := ⋂
k⊆F�L ker(RL/F,V ). By (5.2), ker(RL/F,V ) =

ker(NL/F,V ). So when L/k is cyclic, TL = VL = WL (the last equality by Theorem 5.8(i)).

6. Semidirect products

Suppose for this section that L/k is a finite Galois extension, and G := Gal(L/k) is a semi-
direct product Γ � H of a normal cyclic subgroup Γ = Gal(L/K) of order r by a subgroup
H = Gal(L/M). There is a diagram

L

M

H

K

Γ

k

and we view Z[Γ ] and Z[H ] as subrings of Z[G], so Z[G] = Z[Γ ]Z[H ] = Z[H ]Z[Γ ]. Let ρL/K

be the (unique) irreducible faithful rational representation of Γ , and Q[Γ ]L/K the ρL/K -isotypic
component of Q[Γ ]. Let IL = IL/K ⊆ Z[Γ ] be the ideal Q[Γ ]L/K ∩ Z[Γ ] of Definition 5.1, so
IL ∈ FModZ(K).

In this section we will show (Theorem 6.3 below) that the commutative algebraic group
VL/K = IL ⊗ V ∈ CAGZ(K) of Definition 5.1 has a model over k of the form JL ⊗ V ∈
CAGZ(k) for a suitable right ideal JL of Z[G]. This is needed for the applications in [MR],
in the case where G is a dihedral group of order 2r .

Define

NH :=
∑
h∈H

h ∈ Z[H ] ⊆ Z[G].

Lemma 6.1. The abelian group JL := NHIL is a saturated right ideal of Z[G].

Proof. For h ∈ H , the representation ρh
L/K of Γ defined by ρh

L/K(γ ) = ρL/K(hγ h−1) is an

irreducible faithful rational representation of Γ , so ρh
L/K

∼= ρL/K . Hence hILh−1 = IL in Q[G],
so for h ∈ H and γ ∈ Γ we have

NHILh = NH hIL = NHIL, NHILγ = NHIL,

so NHILZ[G] = NHIL. Since IL ⊆ Z[Γ ] is saturated, JL ⊆ Z[G] is saturated. �
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Definition 6.2. Define VL/k := JL ⊗ V where JL := NHIL as in Lemma 6.1. This definition
depends on the subgroup H of G; if necessary we will denote VL/k by VL/k,H . Theorem 6.3
below shows that if H ′ is another subgroup with G = Γ � H ′, then VL/k,H ′ is isomorphic to
VL/k,H over K .

Theorem 6.3. Over K there is an isomorphism VL/k
∼= VL/K , where VL/K (resp., VL/k) is given

by Definition 5.1 (resp., Definition 6.2).

Proof. Left multiplication by NH is an isomorphism IL → JL of right GK -modules. By Corol-
lary 1.9 with F = K , VL/K = VIL

is isomorphic over K to VL/k = VJL
. �

7. Finite group actions on I ⊗ V

In this section we study the action of symmetric groups on the group varieties I ⊗ V . When
V is an algebraic torus, these results provide insights into some known cryptosystems (see [RS2,
RS3]).

Fix a finite Galois extension L/k and let G := Gal(L/k) (and O = Z). Fix also a commuta-
tive algebraic group V over k that is not isogenous to the trivial group, i.e., so that the natural
map Z → Endk(V ) is injective. If σ ∈ EndZ(Z[G]), let σV ∈ EndL(ResL

k V ) denote the endomor-
phism given by the functorial map of Corollary 1.7(i) (with I = J = Z[G]). If I is a saturated
right ideal of Z[G], view I ⊗V ⊆ ResL

k V via Lemma 2.3 (with J = Z[G]) and Proposition 4.1.

Lemma 7.1. Suppose that I is a saturated right ideal of Z[G], and σ ∈ EndZ(Z[G]). Then the
following are equivalent:

(i) σ(I) ⊆ I .
(ii) σV (I ⊗ V ) ⊆ I ⊗ V .

Proof. If σ(I) ⊆ I then σ |I ∈ EndZ(I). By the functoriality of I �→ I ⊗V , we have σV |I⊗V ∈
EndL(I ⊗ V ). Thus (i) ⇒ (ii).

Conversely, suppose σV (I ⊗ V ) ⊆ I ⊗ V and let λ : Z[G] → EndZ(Z[G]) denote the map
that sends α ∈ Z[G] to left multiplication by α. Suppose α ∈ I and β ∈ I⊥. Then αZ[G] ⊆ I ,
so αV ∈ Endk(ResL

k V ) factors through I ⊗ V , i.e., αV (ResL
k V ) ⊆ I ⊗ V . Therefore

(
λ(β) ◦ σ ◦ λ(α)

)
V

(
ResL

k V
) = βV

(
σV

(
αV

(
ResL

k V
))) ⊆ βV (I ⊗ V ) = 0

by Proposition 4.2(i). By Corollary 1.7(iii), the map EndZ(Z[G]) → Endks(ResL
k V ) is injective,

so λ(β) ◦ σ ◦λ(α) = 0, and thus β · σ(α) = (λ(β) ◦ σ ◦λ(α))(1) = 0. Therefore I⊥σ(I) = 0, so
σ(I) ⊆ I by Proposition 3.5(ii). Thus (ii) ⇒ (i). �

Let ΣH denote the group of permutations of a set H . If σ ∈ ΣG, let σ̂ ∈ AutZ(Z[G]) denote
the automorphism induced by σ , and let σ̂V ∈ AutL(ResL

k V ) denote the corresponding automor-
phism of ResL

k V .

Lemma 7.2. Suppose that L/k is cyclic and σ ∈ ΣG. Then the restriction of σ̂V to VL is an
automorphism of VL if and only if
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(*) for every g ∈ G and subgroup H ⊆ G of prime order, σ(gH) = σ(g)H .

Proof. Since σ has finite order, the restriction of σ̂V to VL is an automorphism if and only if
σ̂V (VL) ⊆ VL, which by Lemma 7.1 happens if and only if σ̂ (IL) ⊆ IL. Write G = G1 ×· · ·×Gt

where each Gi is of prime power order, |Gi | = p
ri
i , ordered so that p1 < · · · < pt . For 1 � i � t ,

let Hi be the subgroup of Gi of order pi , and let NHi
= ∑

h∈Hi
h ∈ Z[G]. By Lemma 5.7,

I⊥
L =

t∑
i=1

Z[G]NHi
. (7.1)

If σ satisfies (*) then σ̂ (NHi
α) = NHi

· σ̂ (α) for every α ∈ Z[G] and every i, so

I⊥
L · σ̂ (IL) =

∑
i

Z[G]NHi
· σ̂ (IL) =

∑
i

Z[G] · σ̂ (NHi
· IL) = 0,

since NHi
· IL = 0 for all i. By Proposition 3.5(ii) we conclude that σ̂ (IL) ⊆ IL, so by

Lemma 7.1, σ̂V |VL
∈ Aut(VL).

Conversely, suppose (*) fails to hold for some H . Take j minimal so that there is a γ ∈ G

with σ(γHj ) �= σ(γ )Hj . Replacing σ by τσ(γ )−1 ◦ σ ◦ τγ (where τg ∈ ΣG is left multiplication
by g ∈ G) we may assume without loss of generality that σ(1) = 1, σ(Hj ) �= Hj , and σ(gHi) =
σ(g)Hi for all g ∈ G and i < j . It follows that σ−1(gHi) = σ−1(g)Hi for all g ∈ G and i < j ,
so

σ−1
(

g
∏
i<j

Hi

)
= σ−1(g)

∏
i<j

Hi for every g ∈ G. (7.2)

Let πi :G → Gi be the projection map. For 1 � i � t , fix 1 �= δi ∈ Hi such that

δi /∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πi

(
σ−1(Hj )

)
if i > j,

σ−1(Hj ) if i = j,

πi

(
σ−1(Hj ) ∩ δj

∏
i<j

Hi

)
if 1 < i < j.

The first is possible since pi > pj if i > j ; the second since σ(Hj ) �= Hj ; and the third because
it follows from (7.2) that the elements of σ−1(Hj ) lie in distinct cosets of

∏
i<j Hi , and |Hi | =

pi � 3 if i > 1.
If S ⊆ {1, . . . , t}, let δS = ∏

i∈S δi . Note that δS = 1 if and only if S = ∅. We claim that if
σ(δS) ∈ Hj , then either S = ∅, or else S = {1, j} and j �= 1 (in which case δS = δ1δj ). To prove
the claim, suppose S �= ∅ (so δS �= 1) and σ(δS) ∈ Hj . Then πi(δS) ∈ πi(σ

−1(Hj )). Note that
πi(δS) is δi if i ∈ S and is 1 otherwise. By our constraints on the δi , if i > j then i /∈ S. If j /∈ S,
then applying (7.2) with g = 1 gives σ(δS) ∈ (

∏
i<j Hi) ∩ Hj = {1}, contradicting that σ(1) = 1

and δS �= 1. Thus j ∈ S, and again by our constraints, if 1 < i < j then i /∈ S. Since σ(δj ) /∈ Hj ,
we cannot have S = {j}. We have thus proved the claim.

Let α := ∏t
i=1(1 − δi) = ∑

S(−1)|S|δS ∈ Z[G], with S running over subsets of {1, . . . , t}.
By the claim above, σ̂ (α) = ∑

S(−1)|S|σ(δS) = 1 + ∑
g/∈H agg or 1 + σ(δ1δj ) + ∑

g/∈H agg
j j
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with ag ∈ Z. It follows that NHj
· σ̂ (α) �= 0, since the coefficient of the identity element is either

1 or 2, so σ̂ (α) /∈ IL by Lemma 5.7. Since δi ∈ Hi , we have NHi
(1 − δi) = 0 for all i. Thus

by (7.1), I⊥
L α = 0, so by Proposition 3.5(ii), α ∈ IL. Therefore σ̂ (IL) �⊆ IL, so by Lemma 7.1,

σ̂V (VL) �⊆ VL. �
If |G| is squarefree, and H is a subgroup of G, then there is a unique subgroup J ⊆ G such

that G = H × J , and this decomposition induces an inclusion ΣH ⊆ ΣG.

Theorem 7.3. Suppose L/k is cyclic of squarefree degree, |G| = p1 · · ·pt with distinct primes pi ,
Hi is the subgroup of G of order pi , and σ ∈ ΣG. Then σ̂V |VL

∈ Aut(VL) if and only if σ ∈∏t
i=1 ΣHi

(⊆ ΣG).

Proof. Suppose σ ∈ ∏
i ΣHi

. It is easy to see that for every g ∈ G and every i, σ(gHi) =
σ(g)Hi . By Lemma 7.2, σ̂V |VL

∈ Aut(VL).
Conversely, suppose σ̂V |VL

∈ Aut(VL). By Lemma 7.2, σ(gHi) = σ(g)Hi for all g ∈ G and
all i. Let πi :G → Hi denote the projection, and let σi = σ |Hi

:Hi → G. Let τi = πi ◦ σi ∈ ΣHi
.

It follows easily that σ = ∏t
i=1 τi ◦ πi ∈ σ ∈ ∏

i ΣHi
. �

Appendix A. More general construction

Although in the above discussion we restrict to the case of free O-modules I , the tensor prod-
uct construction (I,V ) �→ I ⊗O V in the appropriate category of sheaves for the étale topology
(as alluded to in the introduction) is quite general. Moreover, this more general construction
can also be formulated in fairly concrete terms. For example, suppose that O is a commutative
noetherian ring, V ∈ CAGO(k), and I is a finitely generated O-module with a continuous right
action of Gk , but do not assume that I is a free O-module. Let L be a finite Galois extension
of k such that GL acts trivially on I , and let G := Gal(L/k). Since O is noetherian, there is an
O[G]-presentation of I , i.e., an exact sequence

O[G]a ψ−→ O[G]b −→ I −→ 0

of right O[G]-modules. By basic properties of the functor V �→ ResL
k V (or for example, by

Corollary 1.7(ii) and Proposition 4.1), ψ induces a k-homomorphism

ψV :
(
ResL

k V
)a → (

ResL
k V

)b
,

and we can define

I ⊗O V := coker(ψV ) ∈ CAGO(k).

One can show that this definition is independent of the choice of L and of the presentation of I ,
and it agrees with Definition 1.1 if I is a free O-module. Further, without the assumption that
the O-modules are free, Theorem 1.8, Corollaries 1.9, 1.10, and 2.5, and Lemma 2.4 all remain
true verbatim, Proposition 1.6 and Corollary 1.7 hold if I and J are projective O-modules,
Theorem 2.2 holds if I is a projective O-module, and Lemma 2.3 holds if I/J is a projective
O-module.

This definition of I⊗O V is essentially the same as Conrad’s definition of his I⊗O[G] ResL
k V

in Theorem 7.2 of [C], using the action of O[G] on ResLV given by (4.2) above.
k
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