
JOURNAL OF ALGEBRA 110, 298-305 (1987) 

Expansions, Free Inverse Semigroups, 
and Schiitzenberger Product 

S. W. MARGOLIS 

Computer Science, Ferguson Burldmg, Umversiry of Nebraska, 
L&coin, Nebraska 68588-0115 

AND 

J. E. PIN 

Laboratoire d’InformatuLue Theorique et de Programmatlon, 4 Place Jussieu, 
Tour 5545, 75252 Paris Cedex 05, France 

Commmica[ed by G. B Preston 

Received November 13, 1984 

In this paper we shall present a new constructron of the free inverse monoid on a 
set A’. Contrary to the prevrous constructions of 19, 111, our construction is sym- 
metric and originates from classrcal ideas of language theory. The mgredlents of this 
construction are the free group on X and the relatron that associates to a word II’ of 
the free monoid on X, the set of all pairs (u, v) such that uu = rr It follows at once 
from our construction that the free inverse monoid on X can be naturally embed- 
ded into the Schltzenberger product of two free groups of basrs X. We shall also 
give some connections with the theory of expansions as developed by Rhodes and 
Bnget 12, 31. ‘(1’ 1987 Academic Press, Inc 

1. THE SCH~TZENBERGER PRODUCT 

The Schiitzenberger product of two monoids was introduced by Schiit- 
zenberger in view of applications to language theory. Given two monoids 
M, and AI*, the Schiitzenberger product O(M,, M2) is defined as follows. 
Let M= M, x M,. Then Y(M), the set of finite subsets of M, is a semiring 
with union as addition and the usual multiplication of subsets as mul- 
tiplication. Then 0 (M,, Mz) is the set of all 2 x 2 matrices P over this 
semiring satisfying the following conditions: 

(1) Pz, = (21, that is, P is upper triangular. 

(2) PII = {(%3 1)) for some m, EMU. 

(3) PI,= {(l, m,)> for some w.2, EM,. 

The multiplication is the usual multiplication of matrices over a semiring. 
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Conditions (2) and (3) above show that an element of 0(&l,, M2) can 
be represented by matrices of the form 

where m, E M,, nz2 E M,, and Q c M, x M,. If we denote union by + (and 
the empty set by 0) the multiplication of two such matrices is given by 

(7 m”,)(: ,p,)=(“h”’ m1:,:,B”2); 
where ~z,R=:(~,~,,~~~J(?c,,?c~)ER} and Q~z~=((s~,~-~~~)~(,~,,-~c~)EQ>. 

Here is a first connection between Schiitzenberger products and inverse 
monoids. 

PROPOSITION 1.1. Let G and H be groups. Then 0 (G, H) is an inverse 
rnonoid. 

Proof. Let P = (/j z) and P = (0” f). Then PPP = P and PPP = P if and 
only if g=g-l, I;=h-i, X + gXh = X, and 8-t g.Xt? = X. The last two 
equations are equivalent to X= g-‘Xh-’ since gX/z c X and gg’X/z ~ i c x 
imply X= g( g ~ ‘X/2 - ’ ) h c gXh c X. It follows that 

-’ g-‘xh-” 
0 h-’ ) 

is the unique inverse of P. Thus c/(G, H) is an inverse monoid. 1 

This last result is also a consequence of the following proposition since it 
is well known that a semidirect product of a group by a semilartice is 
inverse. 

PROPOSITION 1.2. Let G and H be groups. Then 0 (G, H) is isomorphic 
to a semidirect product S * (G x H), where S is the semitattice of subsets of 
G x H under union. 

Proof IfXESand (g,h)EGxH, set 

(g,h)X=gXh-‘= {(gx,~‘h-‘)I(X,~,)EX). 

This defines a left action of G x H on S and we can form the semidirect 
product S * (G x H). Define a function 

q:S*(GxH)+O(G,H) 
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(Xk,h))v= 0” 7 . ( > 
It is bijective since 

Now a simple verification shows that CP is a morphism. Thus O(G, H) is 
isomorphic to S * (G x H). m 

COROLLARY 1.3. If G and H are groups, 0 (G, H) is isomorphic to a 
reverse semidirect product (G x H) *r S. 

ProojI Indeed, if S is a semigroup and G is a group, every semidirect 
product S * G is isomorphic to a reverse semidirect product G *r S and vice 
versa. See [S], for instance. 1 

2. THE FREE INVERSE MONOID 

In this paper, we view an inverse monoid A4 as a monoid with an 
involution, denoted by “~“, satisfying the axioms 

(1) xxx = x, 

(2) (FJ)=jz, 

(3) ,f = x, 
(4) -- -- xxyv = yyx-x. 

Axioms (l), (2), and (3) say that x is an inverse of x and (4) says that 
idempotents commute. If S is a subset of M, the inverse submonoid of A4 
generated by S is the smallest submonoid of A4 containing Su S, where 
S= ($1 s E S}. This is also the smallest inverse monoid containing S. 

Let X be a set. We denote by F(X) the free group on X and by H(X) the 
free inverse semigroup on X. F(X) can be constructed as follows. Let x be a 
disjoint copy of X and let A = Xv X. Then F(X) is the quotient of the free 
monoid A * by the relations x2 = XX = 1, for all x E X In the sequel we shall 
denote by cp: A* + F(X) the canonical morphism. A word of A* is reduced 
if it does not contain a factor of the form XX or ?c,u with x E X. Notice that a 
factor of a reduced word is also reduced. Since the restriction of cp to the 
set of all reduced words is one-to-one, we shall identify F(X) with the set of 
all reduced words of A*. 
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For the free inverse monoid, a number of constructions are known 
[9-111. Let us briefly review the construction of [ 10, 111. A subset S of 
F(X) is called a Schreier system [4,5] if for all words u and u of A*, uu E S 
implies u E S. (In the terminology of [lo] this is a closed subset of F(X).) 
The next proposition is a slightly modified version of Theorem 4.2 of [9]. 

PROPOSITION 2.1. If S and T are two Schreier systems and if g is an 
element of S, then S v gT is a Schreier system. 

It follows that the set 

M = {(S, g)( S is a finite Schreier system and g E S) 

is a monoid under the multiplication 

(X g)( T, 12) = (S u 0, gh). 

In fact M is the free inverse monoid on X [9]. The inverse of (S, g) is 
(g ~ is, g- i j. Furthermore. M is generated (as an inverse monoid) by the 
set 

Let A be an alphabet and let $: A* -+ M be a surjective morphism onto 
a monoid M. We now define the 2-expansion of M relative to $. It was first 
introduced by K. Henckell (private communication) and considered in 
more detail by Birget [2]. 

Let r: A* -+ 9(M x M) be the function defined by 

WT = {(la), v~)~zm= w>. 

In the terminology of language theory [l], it is called a transduction 
from A* to M x M. Notice that uz = ziz implies u+ = v$. Moreover 

LEMMA 2.2. The equivalence - 5 defined on A* by u - ~ w iff UT = VT is a 
congruence on A*. 

Proof. By duality it is sufficient to prove that - r is a right congruence. 
Let U, u E A* be such that uz = vr and let 117~ A*. Let (m,, rn*)E (uw) 2. 
Then there exists a factorization UM~ = xi x2 such that x1$ = m, and 
.x~JI = m2. Now one of the following cases hold. 

(1) There exists a word U’ E A* such that u = x1 U’ and U’W = x2. 
(2) There exists a word w’ E A* such that -7~~ = UU” and w = ~i’x~. 

In the first case, (x1$, u’$) E uz = uz and hence there exist ui, v2 E A* 
such that v1v2=v and vltj=xl$=ml and u’$=u~$. It follows that 
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(a,~), (u~w)I))E(uw)T. But v,*=m, and (tlzw) Ic/ = (u~$)(H$) = 
(u’$)(JI$) = (u’w) $ = X~I,!J = m2 and hence (m,, m,) E (WV) z. In the second 
case, ((UN”) $, x1$) E (uM’) z. But (UN>‘) $ = (v$)(w’$) = (u$)(H,‘$) = 
x1$ =ml and x2+ =m2. Therefore (m,, m2)e (LW)T. Thus (~411~)~~ (VW)T 
and similarly (NV) r = (uH~) r. It follows that - + is a right congruence. 1 

By definition, A*/ - ~ is the 2-expansion of M relative to $, denoted by 
M(2, *). Since II- T u implies u+ = t$, there is a surjective morphism 
A*/-, -+ M and we have the commutative diagram 

A * ------f ,W 
’ //* 

In fact there is a much better description of M(2, II/) using the matrix 
representation of z. (The reader is referred to Cl, Chap. 31 for the basic 
definitions on transductions.) A transducer realizing r is represented by 

for all a E A. 
The matrix representation of this transducer is the monoid morphism 

p: A* -+9’(MxM)‘“* 

defined by 

We claim that M(2, ti) = A*p. Indeed if UP = V,LJ then (u~),~ = (u~)i~, that 
is, uz = vz. Conversely if uz = LX, u$ = vll/ and thus UT = vt. 

It follows that one can identify M(2, $) with a submonoid of O(M, M). 
Thus elements of M(2, $) have the form 

where X is a finite subset of Mx M. IIowever, we do not claim that all 
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matrices of this form are in M(2, +). Since $ is onto, there is a natural 
surjective morphism rc: M(2, $) -+ A4 defined by 

m X ( > 0 m 
71=m. 

Clearly the following diagram is commutative: 

We come back to the case where A = Xu x and $ = cp: A* -+ F(X) is the 
natural morphism onto the free group on A’. Then we have 

fiOPOSITION 2.3. The 2-expansion of F(X) relative to cp is an inverse 
monoid. 

ProoJ Let N be the 2-expansion of F(X) relative to 40. Then N is a sub- 
monoid of O(F(X), F(X)), which is inverse by Proposition 1.1. We need 
only show that every generator of N has an inverse in N. N is generated as _ - 
a monoid by (ap(ae A). Set 

Then we have 

.Ir if a = x E X 
ii= 

x if a = X E 37. 

(aT)(Cr)(az) = (aaa) z 

= ((1~ iatiaj cp), (an (50) cp), ((4 cp, acPh 

={(Lacp), (acp, l))=aT 

t 

- - and similarly (aaa) r = Gr. It follows that iEz is an inverse of at. 1 

We are now ready to state our main result. 

THEOREM 2.4. FI((x) is isomorphic to the 2-expansion of F(X) relative 
to 4p. 

Pro05 Since N is an inverse monoid generated-as an inverse 
monoid--by { xz 1 x E X >, it suffices to prove that there is a surjective 
morphism N + H(X). We use the representation of FI(X) given above. 
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First define a function y: A* + P(F(X)) by 

uy = (uqpl u E A * and there exists M’ E A * such that UM’ = u>. 

Thus uy is the set of left factors of the reduced word uq, where v is a left 
factor of U. It follows that uy is a finite Schreier system such that uv E uy. 

Let &A* --f FZ(X) be the function defined by 

ue = (uy, zap). 

Then 8 is a morphism since for all tl E A * and for all a E A 

Moreover 0 is surjective since FZ(X) is generated (as a monoid) by the set 
{ae(aEA}. 1 

COROLLARY 5.3. FZ(X) is a subnzonoid of 0 (F(X), F(X)). 

ProoJ: Follows immediately from Theorem 5.2. 1 

Corollary 5.3 gives a two-sided construction of FZ(X). In fact 
Theorem 5.2 is just a proof that this two-sided construction is equivalent to 
an oriented construction based on left factors of words in ,4*. Just to cover 
all political bases, we mention that a construction based on right factors is 
also possible. These correspond to embeddings of FZ(X) into semidirect 
and reverse semidirect products of F(X) with an appropriate semilattice. 
We also remark that the notion of a left (right) factor expansion of a 
morphism can be relined to produce the Rhodes expansion, which plays a 
prominent role in finite semigroup theory and has recently been generalized 
to all semigroups. Finally, let us mention the existence of an n-expansion of 
a morphism cp: A* -+ M. It can be embedded into the n-fold Schiitzenberger 
product G (M,..., M) as defined in [12]. See [2, 31 for further details. 
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