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Abstract

The adoption of two distinct boundary conditions for two fermions species on a finite lattice allows to deal with arbitrary
relative momentum between the two particle species, in spite of the momentum quantization rule due to a limited phy
size. We test the physical significance of this topological momentum by checking in the continuum limit the validity
expected energy–momentum dispersion relations.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

Among the restrictions of field theory formula
tions on a lattice, the finite volume momentum qu
tization represents a severe limitation in various p
nomenological applications. For example, in a t
body hadron decay where the energies of the de
products, related by 4-momentum conservation to
masses of the particles involved, cannot assume
physical values unless these masses are consisten
the momentum quantization rule. In this Letter w
propose a solution to the problem based on the
of different boundary conditions for different fermio
species.1

We test the idea in the simplest case of a flavou
quark–antiquark correlation used to determine asy
totically the energy of the corresponding meson.

E-mail address:nazario.tantalo@roma2.infn.it (N. Tantalo).
1 R.P. thanks M. Lüscher for drawing his attention on this po
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this case the fermion and the antifermion are the dif
ent fermion species and we show that suitable dif
ent boundary conditions can propagate a meson w
momentum that can assume continuous values.

Section 2introduces the boundary conditions,Sec-
tion 3 reports on the numerical results andSection 4
summarizes the conclusions.

2. Generalized boundary conditions

In order to explain the method to have continuo
physical momenta on a finite volume we first rederi
for the sake of clarity, the momentum quantization r
in the case of a particle with periodic boundary con
tions (PBC). To this end we consider a fermionic fie
ψ(x) on a 4-dimensional finite volume of topolog
T × L3 with PBC in the spatial directions

(1)ψ(x + �eiL) = ψ(x), i = 1,2,3.

https://core.ac.uk/display/81134412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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This condition can be re-expressed by Fourier tra
forming both members of the previous equation∫

d4p e−ip(x+�eiL)ψ̃(p) =
∫

d4p e−ipxψ̃(p),

(2)i = 1,2,3.

It follows directly from the previous relation that, i
the case of periodic boundary conditions, one has

(3)eipiL = 1 �⇒ pi = 2πni

L
, i = 1,2,3,

where theni ’s are integer numbers. The authors
[1] have first considered a generalized set of bound
conditions, that here we callθ -boundary conditions
(θ -BC), depending upon the choice of a topologi
3-vector�θ

(4)ψ(x + �eiL) = eiθiψ(x), i = 1,2,3.

The modification of the boundary conditions affects
the zero of the momentum quantization rule. Inde
by re-expressingEq. (4) in Fourier space, as alread
done in the case of PBC inEq. (2), one has

ei(pi−θi/L)L = 1 �⇒ pi = θi

L
+ 2πni

L
,

(5)i = 1,2,3.

It comes out that the spatial momenta are still qu
tized as for PBC but shifted by an arbitrarycontinuous
amount (θi/L). The observation that this continuo
shift in the allowed momenta it is physical and c
be thus profitably used in phenomenological appli
tions is the key point of the present work. The gene
ized θ -dependent boundary conditions ofEq. (4)can
be implemented by making a unitary Abelian transf
mation on the fields satisfyingθ -BC

(6)ψ(x) −→ U(θ, x)ψ(x) = e−iθx/Lψ(x).

As a consequence of this transformation the resul
field satisfies periodic boundary conditions but ob
a modified Dirac equation

S[ψ̄,ψ] −→
∑
x,y

ψ̄(x)U(θ, x)D(x, y)U−1(θ, y)ψ(y)

(7)=
∑
x,y

ψ̄(x)Dθ(x, y)ψ(y),

where theθ -dependent lattice Dirac operatorDθ(x, y)

is obtained by starting from the preferred discreti
tion of the Dirac operator and by modifying the defin
tion of the covariant lattice derivatives, i.e., by pass
from the standard forward and backward derivative

∇µψ(x) = 1

a

[
Uµ(x)ψ(x + aµ̂) − ψ(x)

]
,

(8)∇†
µψ(x) = 1

a

[
ψ(x) − U−1

µ (x − aµ̂)ψ(x − aµ̂)
]

to theθ -dependent ones

∇µ(θ)ψ(x) = 1

a

[
λµUµ(x)ψ(x + aµ̂) − ψ(x)

]
,

∇µ(θ)†ψ(x)

(9)= 1

a

[
ψ(x) − λ−1

µ U−1
µ (x − aµ̂)ψ(x − aµ̂)

]
,

where we have introduced

(10)λµ = eiaθµ/L, θ0 = 0.

The authors of Ref.[2] have considered for the firs
time θ -BC in perturbative phenomenological applic
tions. They used the shift in the momentum quant
tion rule, that they called a “finite size momentum
in order to build an external source to probe the t
sor structure of the Wilson operators. A similar ana
sis was then repeated nonperturbatively by the s
group in Ref.[3]. The use ofθ -BC has been consid
ered in different contexts also in[4–8].

In this Letter we point out that the term�θ/L acts as
a true physical momentum.

As a test, we calculate the energy of a mes
made up by two different quarks with differentθ -BC
for the two flavours. We work in theO(a)-improved
Wilson–Dirac lattice formulation of the QCD withi
the Schrödinger functional formalism[9,10] but, we
want to stress that the use ofθ -BC in the spatial
directions is completely decoupled from the cho
of time boundary conditions and can be profita
used outside the Schrödinger functional formalis
for example in the case of standard periodic ti
boundary conditions. Let us consider the followi
correlators

(11)

f
ij
P (θ;x0) = −a6

2

∑
�y,�z,�x

〈
ζ̄i (�y)γ5ζj (�z)ψ̄j (x)γ5ψi(x)

〉
,

where i and j are flavour indices, all the field
satisfy periodic boundary conditions and the t
flavours obey differentθ -modified Dirac equations, a
explained inEqs. (7)–(9). In practice it is adequate t
choose the flavouri with θ = 0, i.e., with ordinary
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PBC, and the flavourj with θ �= 0. After the Wick
contractions the pseudoscalar correlator ofEq. (11)
reads

(12)

f
ij

P (θ;x0) = a6

2

∑
�y,�z,�x

Tr
〈
γ5Sj (θ; �z, x)γ5Si(0;x, �y)

〉
,

where S(θ;x, y) and S(0;x, y) are the inverse o
the θ -modified and of the standard Wilson–Dir
operators, respectively. Note that the projection on
momentum�θ/L of one of the quark legs inEq. (12)
it is not realized by summing on the lattice poin
with an exponential factor but it is encoded in t
θ -dependence of the modified Wilson–Dirac opera
and, consequently, of its inverseS(θ;x, y).

This correlation is expected to decay exponentiall
at large times as

(13)f
ij
P (θ;x0)

x0�1−→ fij e−ax0Eij (θ,a),

where, a part from corrections proportional to t
square of the lattice spacing,Eij is the physical energ
of the mesonic state

(14)Eij (θ, a) =
√

M2
ij +

( �θ
L

)2

+ O
(
a2),

hereMij is the mass of the pseudoscalar meson m
of a i and aj quark–antiquark pair. In the next sectio
we will show the calculation of the meson energies
different flavours and for different choices of�θ . We
will show that after the continuum extrapolations w
will find the expected relativistic dispersion relation

(15)E2
ij = M2

ij +
( �θ

L

)2

.

3. Numerical tests

All the results of this section are obtained in t
quenched approximation of the QCD. We have d
simulations on a physical volume of topologyT × L3

with T = 2L and linear extensionL = 3.2r0, where
r0 is a phenomenological distance parameter rela
to the static quark–antiquark potential[11]. In order
to extrapolate our numerical results to the continu
limit we have simulated the same physical volu
using three different discretizations with number
points(32× 163), (48× 243) and(64× 323), respec-
tively. We have fixed the three values of the bare c
plings corresponding to the different discretizatio
using ther0 scale with the numerical results given
[12]. All the parameters of the simulations are giv
in Table 1. The values of the RGI quark masses
ported inTable 1have been calculated starting fro
the PCAC relation

(16)mPCAC
ii = ∂̃0f

ii
A (0;x0) + acA∂

†
0∂0f

ii
P (0;x0)

2f ii
P (0;x0)

,

where ∂µ, ∂†
µ are the usual forward and backwa

lattice derivatives respectively whilẽ∂µ is defined
Table 1
Parameters of the simulations. The values of the bare couplingshas been chosen in order to fix the extension of the physical volumeL = 3.2r0.
For each value of thek parameter we have simulated all the values of�θ
β L/a k r0mRGI

5.960 16 0.132054 0.645(7)

0.132609 0.520(6)

0.133315 0.362(5)

0.133725 0.269(4)

6.211 24 0.134208 0.655(9)

0.134540 0.521(7)

0.134954 0.354(6)

0.135209 0.251(5)

6.420 32 0.134517 0.676(15)
0.134764 0.540(12)
0.135082 0.365(10)
0.135269 0.262(9)

[θx , θy , θz] = [0.0,0.0,0.0] [1.0,1.0,1.0] [2.0,2.0,2.0] [3.0,3.0,3.0]
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µ)/2. The time correlatorf ij

P (0;x0) has

already been defined inEq. (11)while f
ij

A (0;x0) is
defined in the following relation

(17)

f
ij

A (θ;x0) = −a6

2

∑
�y,�z,�x

〈
ζ̄i (�y)γ5ζj (�z)ψ̄j (x)γ0γ5ψi(x)

〉
.

The improvement coefficientcA has been compute
nonperturbatively in[13]. The RGI quark masses a
connected to the PCAC masses ofEq. (16)from the
following relation

(18)
mRGI

ii = ZM(g0)
[
1+ (bA − bP )ami

]
mPCAC

ii (g0),

where the renormalization factorZM(g0) has been
computed nonperturbatively in[14]. Also the differ-
ence of the improvement coefficientsbA and bP is
known nonperturbatively from[15,16]. In (18) the
massesmi are the bare ones defined as

(19)ami = 1

2

[
1

ki

− 1

kc

]
.

For each value of the simulated quark mas
reported inTable 1 we have inverted the Wilson
Dirac operator for three nonzero values of�θ . Setting
the lattice scale by using the physical valuer0 =
0.5 fm, the expected values of the physical mome
associated with the choices of�θ given in Table 1are
simply calculated according to the following relation

| �p| = |�θ |
L

� 0.125| �θ| GeV=




0.000 GeV,
0.217 GeV,
0.433 GeV,
0.650 GeV,

(20)L � 1.6 fm.

These values have to be compared with the valu
the lowest physical momentum allowed on this fin
volume in the case of periodic boundary conditio
i.e., | �p| � 0.785 GeV.
for
Fig. 1. Effective energiesEij
eff(θ, a;x0), as defined inEq. (21)at fixed cut-off. The results correspond to the simulation done atβ = 6.211 with

r0mRGI
1 = 0.655 andr0mRGI

2 = 0.354. Similar figures could have been shown for other combinations of the simulated quark masses and
the other values of the bare coupling.
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Fig. 2. Continuum extrapolations of the plateau averaged effective energiesEij (θ, a). The results correspond to the quark mas
r0mRGI

1 = 0.650 andr0mRGI
2 = 0.350. Similar figures could have been shown for other combinations of the simulated quark masses.
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At fixed cut-off, for each combination of flavour in-
dices and for each value of�θ reported inTable 1we
have extracted the effective energy from the corre
tions ofEq. (11), f

ij
P (θ;x0), as follows

(21)aE
ij
eff(θ, a;x0) = 1

2
log

(
f

ij
P (θ;x0 − 1)

f
ij
P (θ;x0 + 1)

)
.

In Fig. 1 we show this quantity for the simulatio
performed atβ = 6.211 corresponding tor0m

RGI
1 =

0.655 andr0m
RGI
2 = 0.354, for each simulated valu

of �θ . As can be seen the correlations with higher val
of | �θ | are always greater than the corresponding o
with lower values of the physical momentum

(22)| �θ1| > | �θ2| ⇒ E
ij
eff(θ1, a;x0) > E

ij
eff(θ2, a;x0)

a feature that will be confirmed in the continuum lim
In the continuum extrapolations we have fix

the physical values of the quark masses sligh
interpolating the simulated sets of numerical resu
Being interested in the ground state contribution to
correlation ofEq. (11), we have averaged the effecti
energies over a ground state plateau of physical le
depending upon the quark flavours. We callEij (θ, a)

the result of the average and inFig. 2 we show
a typical continuum extrapolation of this quanti
Similar figures could have been shown for the ot
values of simulated quark masses.

The continuum results verify very well the dispe
sion relations ofEq. (15)as can be clearly seen fro
Fig. 3 in which the square ofEij (θ) for various com-
binations of the flavour indices is plotted versus
square of the physical momenta| �θ |/L. The plotted
lines have not been fitted but have been obtained
using as intercepts the simulated meson masses
by fixing their angular coefficients to one.

4. Conclusions

We have argued that the limitation represented
the finite volume momentum quantization rule can
overcame by using different boundary conditions
different fermion species.

We have supported this observation by calculat
the relativistic dispersion relations satisfied by a se
pseudoscalar mesons in the case of quenched la
QCD. We have shown that the physical moment
carried by these particles can be variedcontinuously
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ell
Fig. 3. Continuum dispersion relations. The data correspond to different combinations of the simulated quark masses and reproduce very w
the expected theoretical behavior, i.e., straight lines having asintercepts the meson masses and as angular coefficients one (seeEq. (15)).
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by enforcing differentθ -boundary conditions (se
Eq. (4)) for the two quarks inside the mesons.

The method proposed can be applied to study
the quantities of phenomenological interest that wo
benefit from the introduction of continuous physic
momenta like, for example, weak matrix elemen
The suggestion can be applied in quenched Q
also in the case of flavourless mesons while can
extended to full QCD in the flavoured case only.
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