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We use a formula derived almost seventy years ago by Madhav Rao connecting the
Jacobi Last Multiplier of a second-order ordinary differential equation and its Lagrangian
and determine the Lagrangians of the Painlevé equations. Indeed this method yields the
Lagrangians of many of the equations of the Painlevé–Gambier classification. Using the
standard Legendre transformation we deduce the corresponding Hamiltonian functions.
While such Hamiltonians are generally of non-standard form, they are found to be
constants of motion. On the other hand for second-order equations of the Liénard class we
employ a novel transformation to deduce their corresponding Lagrangians. We illustrate
some particular cases and determine the conserved quantity (first integral) resulting
from the associated Noetherian symmetry. Finally we consider a few systems of second-
order ordinary differential equations and deduce their Lagrangians by exploiting again the
relation between the Jacobi Last Multiplier and the Lagrangian.

© 2009 Published by Elsevier Inc.

1. Introduction

The study of nonlinear ordinary differential equations (ODEs) has been an ongoing endeavor for well over two centuries
now with significant contributions by many of the greatest mathematicians of all times, such as Euler, Lie, Painlevé and
Poincaré to mention just a few. Their contributions have ranged from finding explicit solutions of ODEs, to developing
general methods of classifications, to the qualitative analysis of their solutions etc. These in turn have often led to the
opening of entirely new branches of study in algebra, topology, geometry and have shed new light on several physical
phenomena.

Over the years many techniques have been developed to obtain closed-form solutions of various kinds of ODEs. However,
there does not exist any single common method for obtaining their solutions. Nevertheless the apparently different tech-
niques share one common feature: they somehow tend to exploit the symmetries of ODEs. Consequently symmetry analysis
of ODEs has become one of the most powerful tools for analyzing them. The foundations of this method are contained in
the works of Sophus Lie [1,2].
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It is also well known that the existence of a sufficient number of first integrals greatly simplifies the process of solving
any ODE. Having said so, it is not always quite obvious what these first integrals are. Indeed their determination is, in
general, a nontrivial task. In the case of conservative mechanical systems, one often has just a single first integral – the
energy. In this context the semialgorithmic procedure developed by Prelle and Singer deserves mention [6]. In its original
version it applied to first-order ODEs involving rational functions with coefficients belonging to the field of complex num-
bers C. Subsequently their method, which involved the use of Darboux polynomials, was extended by Duarte et al. [7,8]
and Chandrasekhar et al. in a series of papers [3–5].

As is often the case in a field which has been so thoroughly investigated over the years, some aspects often tend to
fade out only to resurface after many years when new results point to a mysterious link with those of the past. One such
result, which has appeared in the recent literature on differential equations, concerns the Jacobi Last Multiplier. The credit
for resurrecting this has to go to Nucci and Leach, who have shown how it may be used to determine the first integrals
and also Lagrangians of a wide variety of nonlinear differential equations. It appears that the connection of the Jacobi Last
Multiplier to the existence of Lagrangian functions was the subject of investigation by a few authors in the early 1900s.
However, the precise nature of their interrelation was brought out by Rao in [9] in the 1940s. Thereafter this did not attract
much attention among researchers in the field of differential equations.

Recently there has been a renewal of interest in this area and it appears that Jacobi’s Last Multiplier can be incorporated
in the formalism initiated by Lie for the study of differential equations.

1.1. Motivation and plan

It is clear that Rao’s formula can be used to deduce the Lagrangian of a second-order ODE or even a system of such ODEs
once the last multiplier is known. Unlike the Hamiltonian structure of the six Painlevé equations, which have received much
attention [17], the Lagrangian formulation has not been sufficiently nurtured. In a recent paper Wolf and Brand [18] pro-
posed a Lagrangian for Painlevé VI. In this paper we investigate the Lagrangians for the majority of the Painlevé equations,
using Rao’s formula and also indicate its applicability to other equations of the Painlevé–Gambier classification.

The organization of the paper is as follows. In Section 2 we introduce the basic ideas underlying the Jacobi Last Multiplier
and state its defining equation for an nth-order ODE or an equivalent system of first-order ODEs. The connection between
the last multiplier and symmetries is also mentioned. It also contains a discussion of certain geometrical aspects underlying
Jacobi’s Last Multiplier. Section 3 constitutes the main body of this paper and explains the relationship between the Jacobi
Last Multiplier and the Lagrangian description of second-order ODEs. It includes a deduction of the Lagrangians for four
of the six Painlevé equations and also their corresponding Hamiltonians. It also briefly outlines the procedure for other
equations of the Painlevé–Gambier classification. In Section 4 we analyze in this context second-order equations of the
Liénard type. It contains a specific example of a generic equation of nonlinear oscillator type. Finally in Section 5 we apply
the technique to a coupled system of second-order ODEs, which has not been very extensively studied, and also summarize
the results for a couple of other more well-known systems.

2. The Jacobi Last Multiplier

Consider the nth-order ODE in the normal form

y(n) = w
(
x, y, y′, . . . , y(n−1)

)
. (2.1)

Corresponding to this ODE there exists an equivalent first-order partial differential equation (PDE) in (n + 1) variables,

D̃ f = (∂x + y′∂y + y′′∂y′ + · · · + w∂y(n−1) ) f = 0, (2.2)

in which the quantities y′, y′′ . . . are treated as independent variables at par with x and y.
Their equivalence is provided by the first integrals of (2.1). By definition a first integral is a global function, I =

I(x, y, y′, . . . , y(n−1)), that is constant along the solutions of (2.1), i.e.,

dI

dx
= D̃ I = Ix + y′ I y + y′′ I y′ + · · · + w I y(n−1) = 0. (2.3)

Having determined a first integral, say I = I(x, y, y′, . . . , y(n−1)) = I0, one can invert it to obtain

y(n−1) = w1
(
x, y, y′, . . . , y(n−2); I0

)
provided I y(n−1) �= 0. This shows that the existence of a first integral allows for the reduction in the order of the differential
equation by one. Furthermore it is evident that every first integral is a solution of the linear PDE (2.2) and conversely.

Assume that φα , α = 1, . . . ,n denote a set of n functionally independent solutions of (2.2). As each φα is a first integral,
one has

φα
(
x, y, y′, . . . , y(n−1)

) = Iα0 , α = 1,2, . . . ,n. (2.4)
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Consequently by eliminating all derivatives from (2.4) one arrives at the general solution of (2.1) in the form

y = y
(
x; I1

0, . . . , In
0

)
,

the Iα0 ’s being essentially constants of integration.
As we mentioned above, the determination of even a single first integral is in most cases a nontrivial task. Hence, while

in principle the above procedure is fine, its practical application is often a daunting task, to say the least.
Nevertheless, assuming we have at our disposal (n − 1) solutions φα of the linear PDE D̃ f = 0, by means of the Jacobi

Last Multiplier the nth solution can be obtained by a quadrature. The formal definition of the Jacobi Last Multiplier is as
follows.

Definition 2.1. Given an nth-order ODE or its equivalent linear PDE in (n + 1) variables

D̃ f = (∂x + y′∂y + y′′∂y′ + · · · + w∂y(n−1) ) f = 0,

the Jacobi Last Multiplier M is defined by

M D̃ f := ∂( f , φ1, φ2...φn−1)

∂(x, y, y′, . . . , y(n−1))
= det

⎛⎜⎜⎜⎜⎝
fx f y . . . f y(n−1)

φ1
x φ1

y . . . φ1
y(n−1)

...
... . . .

...

φ
(n−1)
x φ

(n−1)
y . . . φ

(n−1)

y(n−1)

⎞⎟⎟⎟⎟⎠ = 0. (2.5)

From the above definition it follows that the Jacobi Last Multiplier (JLM) can be varied by selecting a different set of
(n − 1) independent solutions ψ1,ψ2, . . . ,ψn−1 of (2.2). If the corresponding JLM be M̃ , then

M̃ D̃ f = ∂( f ,ψ1,ψ2, . . . ,ψn−1)

∂(x, y, y′, . . . , y(n−1))
= ∂( f , φ1, φ2, . . . , φn−1)

∂(x, y, y′, . . . , y(n−1))

∂(ψ1,ψ2, . . . ,ψn−1)

∂(φ1, φ2, . . . , φn−1)
= M

∂(ψ1,ψ2, . . . ,ψn−1)

∂(φ1, φ2, . . . , φn−1)
.

Indeed each JLM, as defined above, turns out to be a solution of the following linear PDE

∂M

∂x
+

n∑
k=1

∂
(

y(k)M
)

∂ y(k−1)
= 0 on y(n) = w

(
x, y, y′, . . . , y(n−1)

)
(2.6)

or, if the ODE be expressed as a system of first-order ODEs of the form

ẋk = Wk(t, x1, . . . , xn), k = 1,2, . . . ,n, (2.7)

as a solution of the equation

d

dt
log M +

n∑
i=1

∂W i

∂xi
= 0. (2.8)

It is evident that the classical definition of the JLM is overly restrictive, requiring as it does almost complete knowledge of
the system. However, being dependent on first integrals, it is natural to expect that it should bear some connection to the
symmetries of the equation under investigation. This connection was unravelled by Lie and its formulation in terms of the
generators of the Lie symmetry algebra is outlined below.

For the ODE in Eq. (2.1) or its equivalent PDE given by (2.2) let Xi = ξi∂x + ηi∂y denote n Lie point symmetry generators
of the equation. The vector field associated with D̃ f = 0 has (n +1) components (1, y′, . . . , w) on y(n) = w(x, y, . . . , y(n−1)).
Using standard methods for constructing the prolongations of these generators Xi up to the (n − 1)th-order, viz.

X (n−1)
i = ξi∂x + ηi∂y + η

(1)
i ∂y′ + · · · + η

(n−1)
i ∂y(n−1) , i = 1,2, . . . ,n,

consider the determinant

� = det

⎛⎜⎜⎜⎝
1 y′ y′′ . . . f y(n−1) w

ξ1 η1 η
(1)
1 . . . η

(n−2)
1 η

(n−1)
1

...
...

... . . .
...

...

ξn ηn η
(1)
n . . . η

(n−2)
n η

(n−1)
n

⎞⎟⎟⎟⎠ . (2.9)

If � �= 0, then the JLM is given by M = �−1.
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Similarly for a system of n first-order ODEs given by (2.7) the associated vector field has components (1, W1, . . . , Wn). If
we can find n symmetry generators of the form Xi = ∑n

j=0 aij
∂

∂x j
, i = 1, . . . ,n, with x0 = t , then the last multiplier is given

by

M−1 = � = det

⎛⎜⎜⎜⎝
1 W1 · · · Wn

a10 a11 . . . a1n
...

... . . .
...

an0 an1 . . . ann

⎞⎟⎟⎟⎠ . (2.10)

Since M satisfies (2.8), it follows that the ratio of two last multipliers is a first integral, i.e.,

d

dt

(
M1

M2

)
= 0.

In other words the ratios of the �i ’s (i � 2) provide us first integrals for the system of equations (2.7).

2.1. Geometric description of Jacobi’s Last Multiplier

Let M = M(x) be a non-negative C1 function non-identically vanishing on some open subset of R
n . Then Jacobi’s Last

Multiplier is a solution of the linear partial differential equation
n∑

i=1

∂(MW i)

∂xi
= 0, (2.11)

where W = ∑n
i=1 W i∂xi is the vector field of the system of first-order ODEs. Essentially, if a Jacobi multiplier is known

together with (n − 2) first integrals, then we can reduce locally to a 2D vector field on the intersection of the (n − 2) level
sets formed by first integrals.

Let Ω = dx1 ∧ · · · ∧ dxn be a volume form on R
n . Define an inner product, 〈·,·〉, between 1-forms and (n − 1)-forms on

R
n as

ω1 ∧ ω2 = 〈ω1,ω2〉Ω.

So both the space of vectors and the space of (n − 1)-forms are dual to the space of 1-forms. Hence there is a natural
isomorphism between the space of vectors and the space of (n − 1)-forms. Let W be a vector field. Then W corresponds to
(n − 1) form ωW under isomorphism

iWΩ = ωW =
n∑

i=1

(−1)(i−1)W i dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (2.12)

Thus the condition for Jacobi’s Last Multiplier can be manifested as [11,12]

0 = d(MωW) =
(

n∑
i=1

∂(MW i)

∂xi

)
Ω.

Therefore an element, M , is called a Jacobi’s Last Multiplier for an ODE if

d(MωW) = dM ∧ ωW + MdωW = 0. (2.13)

Using

LWωW = (divΩ W)ωW (2.14)

and (dg) ∧ ωW = (Wg)Ω (∀g ∈ C∞(Rn)) we can show that the Jacobi Last Multiplier M satisfies

WM + M divΩ W = 0. (2.15)

This equation reveals that M is a last multiplier for the divergence-free vector field W if and only if M is a first integral
of W. In general the vector field W is not divergence-free and in this situation the theory of multipliers, namely, the ratio
of two multipliers is a first integral etc., holds good. In fact the set of last multipliers measures how far away W is from the
divergence-free condition.

The theory of the Jacobi Last Multiplier is also connected to another important method namely adjoint symmetry equa-
tion in determining explicit integrating factors and first integrals of nonlinear ODEs. One can define the action of the adjoint
vector field W∗ corresponding to W on functions [13] as

W∗(M) = −W(M) − M divΩ W = 0. (2.16)

Thus solving the adjoint equation one can obtain Jacobi’s Last Multiplier. This is the essential feature of adjoint method.
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We state another geometrical idea related to the last multiplier. Characterization of Jacobi’s Last Multiplier can be ob-
tained in terms of the Marsden differential [14]. Let m ∈ C∞(M). Then the Marsden differential,

dm : Λ∗(M) → Λ∗+1(M)

is given by

dm(η) = 1

m
d(mη). (2.17)

Thus M is a Jacobi Last Multiplier if and only if ωW is dM -closed.
A vector field, S, is called a symmetry of an ODE given by a vector field, W, if

LSW = [W,S] = λW, λ ∈ C∞. (2.18)

Let S1, . . . ,Sn−1 be (n − 1) symmetries. Define

h = i Sn−1 · · · i2i1ωW. (2.19)

Then M = h−1 is a last multiplier for ωW , i.e., d(MωW) = 0. This can be proved using the symmetry condition.

LWh = LWi Sn−1 · · · i2i1ωW = (i[W,Sn−1] + i Sn−1 LW)i Sn−2 · · · i S2 i S1 W.

The first term in the expression above vanishes. Thus recursively one can prove that

LWh = h divΩ W, (2.20)

where the function M = h−1 is called an inverse multiplier.
At last we wish to outline a connection between last multiplier and Nambu mechanics. Consider a special case of (2.14),

a divergence-free condition

divΩ W =
n∑

i=1

∂W i

∂xi
= 0. (2.21)

In this situation Eq. (2.7) can be mapped to Nambu dynamical systems, i.e. systems of time-autonomous ODEs of the
form [15], with a special value of W i

ẋi = W i(x) = ε j1,..., jnδ
i
j1

∂ H2

∂x j2
· · · ∂ Hn

∂x jn
. (2.22)

In other words a system obeying Nambu mechanics automatically satisfies the Liouville condition. In fact by duality the
vector field W = W i(x)∂/∂xi maps to an (n − 1)-differential form given by

ωW = 1

(n − 1)!ε j1,..., jn W j1 dx j2 ∧ · · · ∧ dx jn

= 1

(n − 1)!εk1,...,knε j1,..., jnδk1 j1

[
∂ H2

∂x j2

dx j2

]
∧ · · · ∧

[
∂ Hn

∂x jn

dx jn

]
= dH2 ∧ · · · ∧ dHn.

Thus ωW is a decomposable and closed (n − 1)-form and the set of (n − 1) independent functions, H2, . . . , Hn , are such
that every integral curve is given by an equation of the form H2(x) = C2, . . . , Hn(x) = Cn .

3. Lagrangians and the last multiplier

In a series of recent papers Leach, Nucci and Tamizhmani (for example, [16,19–21] and references therein) have investi-
gated the relation between integrating factors and the Hessian. It appears that this connection has a long history, which can
be traced to Jacobi’s attempts to obtain the last multiplier [23,24]. In 1874 Lie [1,2] showed that point symmetries could
be used to determine Jacobi’s Last Multiplier (JLM). The explicit nature of the relation between the JLM and Hessian was
clarified by Rao in a article [9] and is also mentioned in Whittaker’s book on analytical dynamics [10].

3.1. Second order equations

For a second-order ODE y′′ = w(x, y, y′) which admits a Lagrangian function L(x, y, y′) the Jacobi Last Multiplier, M , is
given by

M = ∂2L
′2

. (3.1)

∂ y
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On the other hand, given a system of first order equations

y′
k = fk(x, y), y = (y1, y2, . . . , yn),

the JLM is a solution of the equation

d log M

dx
+

n∑
k=1

∂ fk

∂ yk
= 0.

It follows that, if a solution of this equation is obtained, then from a knowledge of the JLM one can construct the Lagrangian
function as

L(x, y, y′) =
∫ (∫

M dy′
)

+ f1(x, y)y′ + f2(x, y). (3.2)

3.2. Lagrangians for the Painlevé equations

A large number of second-order ODEs in the Painlevé–Gambier classification system belong to the following class of
equations, namely

ẍ + 1

2
φxẋ2 + φt ẋ + B(t, x) = 0. (3.3)

Writing this equation in the form

ẍ = F (t, x, ẋ) = −
[

1

2
φxẋ2 + φt ẋ + B(t, x)

]
,

the Jacobi Last Multiplier M for (3.3) is given by the solution of

d

dt
log M = −∂F

∂ ẋ
. (3.4)

In the present case we have

M = ∂2L

∂ ẋ2
= exp

[
φ(t, x)

]
. (3.5)

By (3.2) we then obtain the Lagrangian as

L(t, x, ẋ) = 1

2
eφ(t,x) ẋ2 + f1(t, x)ẋ + f2(t, x). (3.6)

To determine the unknown functions, f1 and f2, we substitute this Lagrangian into the Euler–Lagrange equation of motion

d

dt

(
∂L

∂ ẋ

)
= ∂L

∂x
(3.7)

and use (3.3) to get

f1t − f2x = eφ B(t, x).

The making of a gauge transformation f1 = Gx and f2 = Gt + f3(t, x) allows us to satisfy the last equation when

f3(t, x) = −
∫

eφ B(t, x)dx. (3.8)

Consequently the final Lagrangian for (3.3) becomes

L(t, x, ẋ) = eφ(t,x) ẋ2

2
−

∫
eφ B(t, x)dx + dG

dt
. (3.9)

The total derivative term obviously is of little consequence. Hence we may safely discard it.
The conjugate momentum may be defined by

p = ∂L = eφ ẋ which implies ẋ = e−φ p

∂ ẋ
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and leads to the Hamiltonian

H = e−φ p2

2
+

∫
eφ B(t, x)dx

by the usual Legendre transformation. It is clear that the Lagrangian obtained in the above manner is a non-standard one.
One can attempt to bring it closer to the standard form by means of the transformation

ẏ = eφ/2ẋ or y(t, x) =
∫

eφ(t,x)/2 dx. (3.10)

We illustrate this by a specific example in the sequel.

3.2.1. The Painlevé III equation
The PIII equation may be written as

ẍ − 1

x
ẋ2 + 1

t
ẋ + B(t, x) = 0, (3.11)

where B(t, x) = −[ 1
t (αx2 + β) + γ x3 + δ

x ]. Comparison with (3.3) shows that φx = −2/x and φt = 1/t which yields for the
last multiplier M = expφ = t/x2. Then from (3.9) we obtain

LIII = t

x2

ẋ2

2
+ αx − β

x
+ t

(
γ x2

2
− δ

2x2

)
(3.12)

and the Hamiltonian as

HIII = x2

t

p2

2
+

(
β

x2
− αx

)
+ t

2

(
δ

x2
− γ x2

)
. (3.13)

3.2.2. The Painlevé V equation
The P V equation may be written as

ẍ −
(

1

2x
+ 1

x − 1

)
ẋ2 + 1

t
ẋ + B(t, x) = 0, (3.14)

where

B(t, x) = −
[

(x − 1)2

t2
(αx + β

x
) + γ x

t
+ δx(x + 1)

x − 1

]
.

Following the same procedure as before we obtain for the Jacobi Last Multiplier

M = t

x(x − 1)2

and the Lagrangian

LV = t

x(x − 1)2

ẋ2

2
+ 1

t

(
αx − β

x

)
− γ

x − 1
− δ

tx

(x − 1)2
. (3.15)

The corresponding Hamiltonian is

H V = x(x − 1)2

t

p2

2
− 1

t

(
αx − β

x

)
+ γ

x − 1
+ δ

tx

(x − 1)2
. (3.16)

3.2.3. The Painlevé IV equation
The PIV equation may be written as

ẍ − 1

2x
ẋ2 + B(t, x) = 0, (3.17)

where

B(t, x) = −
[

3

2
x3 + 4tx2 + 2(t2 − α)x + β

x

]
.

Unlike the previous two Painlevé equations, here we have φt = 0 so that the last multiplier is now time independent. Indeed
for the PIV equation we have M = 1/x while the corresponding Lagrangian is

LIV = 1 ẋ2

+
[
β ln |x| + (

t2 − α
)
x2 + 4

tx3 + 3
x4

]
. (3.18)
x 2 3 8
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The associated Hamiltonian is

HIV = xp2

2
−

[
β ln |x| + (

t2 − α
)
x2 + 4

3
tx3 + 3

8
x4

]
. (3.19)

3.2.4. The Painlevé VI equation
The PVI equation is perhaps one of the most well-studied equations of the Painlevé class. It may be written as

ẍ − 1

2

(
1

x
+ 1

x − 1
+ 1

x − t

)
ẋ2 +

(
1

t
+ 1

t − 1
+ 1

x − t

)
ẋ + B(t, x) = 0, (3.20)

where

−B(t, x) = (x − 1)(x − 1)(x − t)

t2(t − 1)2

[
α + βt

x2
+ γ (t − 1)

(x − 1)2
+ δt(t − 1)

(x − t)2

]
.

In this case we have

φx = −
(

1

x
+ 1

x − 1
+ 1

x − t

)
and φt =

(
1

t
+ 1

t − 1
+ 1

x − t

)
so that the last multiplier is given by

M = eφ = t(t − 1)

x(x − 1)(x − t)
. (3.21)

The Lagrangian for the PVI equation is found to be

LVI(t, x, ẋ) = t(t − 1)

x(x − 1)(x − t)

ẋ2

2
+

∫
t(t − 1)

x(x − 1)(x − t)

(−B(t, x)
)

dx + dG

dt
,

LVI(t, x, ẋ) = t(t − 1)

x(x − 1)(x − t)

ẋ2

2
+ αx

t(t − 1)
− β

x(t − 1)
− γ

t(x − 1)
− δ

x − t
+ dG

dt
. (3.22)

Let p be the conjugate momentum. With

p = ∂L

∂ ẋ
= t(t − 1)

x(x − 1)(x − t)
ẋ

the corresponding Hamiltonian is

HVI = t(t − 1)

x(x − 1)(x − t)

p2

2
− αx

t(t − 1)
+ β

x(t − 1)
+ γ

t(x − 1)
+ δ

x − t
. (3.23)

Besides the Painlevé equations many other equations of the Painlevé–Gambier classification may also be treated in a
similar manner. We illustrate this below.

3.2.5. The Painlevé–Gambier equations XXI
This equation is of the form

ẍ − 3

4x
ẋ2 − 3x2 = 0. (3.24)

The Jacobi Last Multiplier is given by M = x−3/2 and the corresponding Lagrangian is

L21 = x−3/2 ẋ2

2
+ 2x3/2. (3.25)

The associated Hamiltonian H21 provides a first integral (i.e., dH21
dt = 0), namely

H21 = x−3/2 ẋ2

2
− 2x3/2. (3.26)

It is interesting to note that L21 and H21 both have a ‘wrong relative sign’. Consider the transformation

x �→ y = 4x1/4 so that ẏ = x−3/4ẋ. (3.27)

Under this transformation the Lagrangian L21 assumes the more familiar form

L21(t, y, ẏ) =
[

1

2
ẏ2 + (

2(y/4)6)].
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4. Equations of the Liénard type

In a series of interesting papers Chandrasekhar et al. have made a thorough study of many nonlinear equations of the
oscillator type, using an extension of the Prelle–Singer method [3–5]. We investigate below one such generic equation of
the Liénard type,

ẍ + f (x)ẋ + g(x) = 0 (4.1)

from the perspective of the Jacobi Last Multiplier.

4.1. Lagrangian for second-order Liénard type of equations

From (3.4) the last multiplier for Eq. (4.1) is given by M = exp(
∫

f (x)dt). Following [20] we introduce a new variable v
by setting∫

f (x)dt = log
(

v−α−1)
(4.2)

which implies

v̇ + α f (x)v = 0, (4.3)

with α being a nonzero scalar to be determined. As a result we have

M = v−α−1
. (4.4)

Indeed, if we can map the original equation, (4.1), to the first-order Eq. (4.3) in terms of the variable v , then a suitable
Lagrangian can be easily deduced. It is obvious that v must be linear in ẋ. In fact it is shown in [20] that such a map exists
and is given by

v = ẋ + g

α f
(4.5)

provided f and g satisfy the condition

d

dx

(
g

f

)
= α(1 − α) f . (4.6)

From (4.4), since M = ∂2L/∂ ẋ2, we find that

L = 1

(2 − α−1)(1 − α−1)
v2−α−1 + f1 v + f2. (4.7)

Now we substitute this into the Euler–Lagrange equation leads to the condition

f1t − f2x = d

dx

(
f1

g

α f

)
,

which may be satisfied by setting f1 = Gx and f2 = Gt + f3 yielding

f3x = − d

dx

(
Gx

g

α f

)
⇒ f3 = −Gx

g

α f
.

The simple choice Gx = 0, i.e., f1 = 0 gives, f3 = 0 and f2 = dG/dt . Thus

L = 1

(2 − α−1)(1 − α−1)

(
ẋ + g

α f

)2−1/α

+ dG

dt
, α �= 0,

1

2
,1. (4.8)

We can rescale the Lagrangian to get rid of the inconsequential scalar factors and also drop the total time derivative to get
it into the neater form

L =
(

ẋ + g

α f

)2−1/α

. (4.9)

This Lagrangian, being invariant under time translation, admits a Noether symmetry with corresponding conserved quantity
or first integral (disregarding overall scalar factors)

I =
(

ẋ + g

α f

)1−1/α
(α − 1) f ẋ − g

f
. (4.10)
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4.2. Example: A generic equation of nonlinear oscillator type

Consider the following equation

ẍ + (
k1xq + k2

)
ẋ + (

k3x2q+1 + k4xq+1 + k5x
) = 0. (4.11)

This is a generic equation of nonlinear oscillator type, which includes many subcases depending upon the choice of the ki ,
which are parameters. The case q = 0 corresponds to a damped harmonic oscillator, while q = 1 corresponds to the force-
free Helmholtz oscillator. Substituting f and g from (4.11) into the condition (4.6), we obtain the following equations from
the different coefficients of x.

α(1 − α) = (q + 1)
k3

k2
1

, (4.12)

α(1 − α) = k5

k2
2

, (4.13)

k1k4 + k2k3(2q + 1) = α(1 − α)k2
1k2, (4.14)

k1k5(1 − q) + k2k4(1 + q) = 3α(1 − α)k1k2
2. (4.15)

Equating (4.12) and (4.13) we find that

q + 1 = k2
1k5

k2
2k3

. (4.16)

Using this value of q in the remaining Eqs. (4.14) and (4.15) while eliminating α by means of (4.13), we get

k5 = k2

k2
1

(k1k4 − k2k3). (4.17)

The constant α is determined from the quadratic equation (4.13) and is

α = 1

2

(
1 ±

√
1 − 4k5

k2
2

)
, (4.18)

where k5 is given by (4.17). Given q there exists another relation between the ki (i = 1, . . . ,5) derivable from (4.16) and
(4.17), viz.

k1k4

k2k3
= q + 2. (4.19)

Thus of the five parameters ki (i = 1, . . . ,5) only three are independent and to summarize we have the following relations:

k4 = k2k3

k1
(q + 2),

k5 = k2
2k3

k1
(q + 1),

α = 1

2

(
1 ±

√
1 − 4k3

k2
1

(q + 1)

)
.

4.2.1. Special cases

When q = 0, we have k1k4 = 2k2k3 and k5 = k2
2k3/k2

1. Consequently α = 1
2 (1 ±

√
1 − 4k3

k2
1

) and the equation

ẍ + (k1 + k2)ẋ + (k3 + k4 + k5)x = 0, which is simply the damped harmonic oscillator, has Lagrangian

L =
(

ẋ + (k3 + k4 + k5)x

α(k1 + k2)

)2−1/α

.

When q = 1, we have k1k4 = 3k2k3 and k5 = 2k2
2k3/k2

1 while α = 1
2 (1 ±

√
1 − 8k3/k2

1). The Lagrangian for the equation,

ẍ + (k1x + k2)ẋ + k3(x3 + 3k2/k1x2 + 2k2
2/k2

1x) = 0 is

L =
{

ẋ + k3

αk1

(
x2 + 2k2/k1x

)}2−1/α

.

From this Lagrangian one can easily compute the conjugate momentum to obtain the corresponding Hamiltonian.
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5. A system of second-order coupled equations

The extension of the above technique to a system of second-order ODEs is also possible under certain conditions. We
describe below the formulation as presented in [22]. In the case of a system of n degrees of freedom the Lagrangian
L = L(t,q, q̇), where q = {q1, . . . ,qn} and q̇ = {q̇1, . . . , q̇n} define the generalized coordinates and corresponding velocities,
we may define the i jth Jacobi Last Multiplier by

Mij = ∂2L

∂q̇i∂q̇ j
, i, j = 1, . . . ,n. (5.1)

It is assumed that the equations of motion:

q̈k = wk(t,q, q̇), k = 1, . . . ,n, (5.2)

are derivable from the Euler–Lagrange equations

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= 0, j = 1, . . . ,n. (5.3)

It is evident that the conjugate momenta are

p j = ∂L

∂q̇ j
= p j(t,q, q̇), j = 1, . . . ,n,

which implies

dp j

dt
= ∂ p j

∂t
+

n∑
k=1

(
q̇k

∂ p j

∂qk
+ wk

∂ p j

∂q̇k

)
= ∂L

∂q j
.

This means

∂

∂t

(
∂L

∂q̇ j

)
+

n∑
k=1

(
q̇k

∂2L

∂qk∂q̇ j
+ wk

∂ p j

∂q̇k∂q̇ j

)
− ∂L

∂q j
, j = 1, . . . ,n. (5.4)

Differentiating (5.4) with respect to q̇i and using the definition of the last multiplier given in (5.1) we find

∂Mij

∂t
+

n∑
k=1

(
∂

∂qk
(q̇k Mij) + ∂

∂q̇k
(wk Mij)

)
+

n∑
k=1

(
∂ wk

∂q̇i
Mkj − ∂ wk

∂q̇k
Mij

)
+ ∂2L

∂qi∂q̇ j
− ∂2L

∂q̇i∂q j
= 0. (5.5)

Interchanging i and j in (5.5) we get

∂M ji

∂t
+

n∑
k=1

(
∂

∂qk
(q̇k M ji) + ∂

∂q̇k
(wk M ji)

)
+

n∑
k=1

(
∂ wk

∂q̇ j
Mki − ∂ wk

∂q̇k
M ji

)
+ ∂2L

∂q j∂q̇i
− ∂2L

∂q̇ j∂qi
= 0. (5.6)

Adding (5.5) and (5.6) and making use of the fact that Mij = M ji we have

∂Mij

∂t
+

n∑
k=1

(
∂

∂qk
(q̇k Mij) + ∂

∂q̇k
(wk Mij)

)
+

n∑
k=1

(
1

2

(
∂ wk

∂q̇i
Mkj + ∂ wk

∂q̇ j
Mki

)
− ∂ wk

∂q̇k
Mij

)
= 0. (5.7)

It is evident that Mij satisfies the defining relation (2.6) for the JLM whenever

n∑
k=1

(
∂ wk

∂q̇i
Mkj + ∂ wk

∂q̇ j
Mki

)
= 2

n∑
k=1

∂ wk

∂q̇k
Mij for each k = 1, . . . ,n. (5.8)

A trivial way to ensure this condition is satisfied is to assume the wk ’s to be velocity independent,

∂ wk

∂q̇l
= 0 for all k, l = 1, . . . ,n.

On the other hand, when i = j, the last two terms in (5.5) cancel leaving

∂Mii

∂t
+

n∑(
∂

∂qk
(q̇k Mii) + ∂

∂q̇k
(wk Mii)

)
+

n∑(
∂ wk

∂q̇i
Mki − ∂ wk

∂q̇k
Mii

)
= 0. (5.9)
k=1 k=1
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Here also Mii satisfies (2.6) when the last sum of (5.9) vanishes, which may be ensured by choosing the wk ’s to be velocity
independent. Under these circumstances all the Mij ’s satisfy the equation

∂Mii

∂t
+

n∑
k=1

(
∂

∂qk
(q̇k Mii) + ∂

∂q̇k
(wk Mii)

)
= 0, (5.10)

as they should, provided ∂ wk/∂q̇ j = 0 for all k, j = 1, . . . ,n. With this assumption equations (5.7) and 5.10) always admit the
solution Mij = constant. The following examples illustrate how simple choices of Mij can be made to obtain the Lagrangians
of second-order ODEs satisfying the above velocity-independent criterion.

Example 1. Consider the system

ẍ + α

x2
g(y/x) − λ

x3
= 0,

ÿ + β

x2
f (y/x) − μ

y3
= 0.

Here w1(x, y) = −αg(y/x)/x2 + λ/x3 and w2(x, y) = −β f (y/x)/x2 + μ/y3 respectively. On the other hand α,β,λ and μ
are arbitrary parameters while g and f are functions with argument u = y/x. Notice that w1 and w2 are independent of
the velocities. The Jacobi Last Multiplier for this system is therefore a solution of the equation,

∂M

∂t
+ ∂(Mẋ)

∂x
+ ∂(M ẏ)

∂ y
+ ∂(M w1)

∂ ẋ
+ ∂(M w2)

∂ ẏ
= 0,

and admits constant solutions. We choose them as follows:

Mxy = M yx = 0 and Mxx = M yy = 1.

These yield the Lagrangian

L = 1

2

(
ẋ2 + ẏ2) + h1(t, x, y)ẋ + h2(t, x, y) ẏ + h3(t, x, y).

Substitution of this into the Euler–Lagrange equations for x and y gives, upon using the original equations of motion,

h1t − h3x + w1 + (h1y − h2x) ẏ = 0, (5.11)

h2t − h3y + w2 + (h2x − h1y)ẋ = 0. (5.12)

Equating the coefficients of ẋ and ẏ respectively we get the following set of equations:

h1y − h2x = 0 which implies h1 = Gx, h2 = G y and (5.13)

h1t − h3x + w1 = 0, (5.14)

h2t − h3y + w2 = 0. (5.15)

These in turn give

h3x = Gxt + w1 or h3 = Gt +
∫

w1 dx + r(y), (5.16)

h3y = G yt + w2 or h3 = Gt +
∫

w2 dy + s(x). (5.17)

Consistency for h3 requires that

h3xy = h3yx

and translates into the requirement that w1y = w2x . This imposes the following condition on the functions f and g which
define the second-order system:

α

β
g′(u) + u f ′(u) + 2 f (u) = 0, where u = y

x
.

One can rewrite this as

α
ug′(u) + d (

u2 f (u)
) = 0. (5.18)
β du
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When we use the explicit forms of w1 and w2 and make use of the last condition, the form of the functions r(y) and s(x)
occurring in (5.16) and (5.17) may be fixed and the functional form of h3 is found to be

h3(t, x, y) = Gt −
[

α

2x2
+ μ

2y2
− 1

x

(
αg(y/x) + β

y

x
f (y/x)

)]
.

Therefore the Lagrangian is given by

L = 1

2

(
ẋ2 + ẏ2) −

[
α

2x2
+ μ

2y2
− 1

x

(
αg(y/x) + β

y

x
f (y/x)

)]
+ dG

dt
. (5.19)

Again the total derivative term, being of little physical significance in the classical case, may be safely discarded. It is
interesting to note that the above second-order system, though similar in some respects to equations of the Ermakov
system, is not merely a mathematical artifact. It is similar in structure to the system studied in [25] in the context of the
dynamics of stellar systems.

A similar exercise may be carried out for the following:

Example: Generalized Van der Waals Potential

ẍ = −
(

2γ x + x

r3

)
= w1(x, y),

ÿ = −
(

2γ β2 y + y

r3

)
= w2(x, y) where r =

√
x2 + y2,

and γ ,β are parameters. In this case the Lagrangian is given by

L = 1

2

(
ẋ2 + ẏ2) −

[
γ

(
x2 + β2 y2) − 1

r

]
+ dG

dt
. (5.20)

Similarly for the

Example: Henon–Heiles system,

ẍ = −(Ax + 2αxy),

ÿ = −(
B y + αx2 − β y2), (5.21)

the Lagrangian is given by

L(t, x, ẋ) = 1

2

(
ẋ2 + ẏ2) −

(
A

x2

2
+ B

y2

2
+ αx2 y − β

y3

3

)
+ dG

dt
. (5.22)

6. Outlook

In this paper we have discussed applications of the Jacobi Last Multiplier for the deduction of Lagrangian functions
for the second-order ODEs of the Painlevé–Gambier classification. We have specifically deduced the Lagrangians for the
majority of the six Painlevé equations as also other prototype equations of the Painlevé–Gambier classification. We have
also dwelt on the geometrical background involving the last multiplier. This is an on-going endeavour and we propose to
perform further investigations in our future works. In addition we have used the above technique to analyse a particular
class of coupled second-order equations. Besides the well-known Henon–Heiles system we have obtained the Lagrangian for
a relatively less studied systems occurring in the context of stellar dynamics. The Lagrangians discussed here are found to
admit a Noetherian symmetry, with an associated first integral, which are the Hamiltonians of the equations concerned.
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