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Abstract

Here we examine the partial regularity of minimizers of a functional used for image restoration in BV space. This functional is
a combination of a regularized p-Laplacian for the part of the image with small gradient and a total variation functional for the part
with large gradient. This model was originally introduced in Chambolle and Lions using the Laplacian. Due to the singular nature
of the p-Laplacian we study a regularized p-Laplacian. We show that where the gradient is small, the regularized p-Laplacian
smooths the image u, in the sense that u ∈ C1,α for some 0 < α < 1. This functional thus anisotropically smooths the image where
the gradient is small and preserves edges via total variation where the gradient is large.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, PDE and variational method based diffusion models have grown significantly to tackle
problems of image restoration and reconstruction. The challenge of these problems is to construct a model that can
effectively remove unwanted noise while at the same time retaining significant features of the image. Thus we want
to recover an image u from given noisy image I, where I = u + noise.

Total variation (TV) based regularization was first proposed by Rudin, Osher, and Fatemi in [21] in order to remove
noise while retain important features, such as edges. This has been studied extensively in [1,2,5,6,20,24,25] and [11].
The definition of the total variation of a function u ∈ L1(Ω), Ω ⊂ R

n open, is

TV(u) = sup

{∫
Ω

udiv(ϕ) dx: ϕ ∈ C1
0

(
Ω,R

n
)
, |ϕ| � 1

}
,

and is denoted by
∫ |Du|. Differentiability, or even continuity, of u is not required for TV(u) to be finite. Thus images

with discontinuities (i.e. edges) are allowed as solutions in the space of functions of bounded variation (BV) on Ω,
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which is the space of functions u ∈ L1(Ω) with TV(u) < ∞. In addition, the diffusion resulting from minimizing the
TV norm is strictly orthogonal to the gradient of the image, and tangental to the edges. This is important for preserving
edges while smoothing the image. However, TV-based regularization sometimes causes a staircasing effect [7,11,12].
Consequently, the restored image can be blocky and even contain artifacts, such a false edges.

A number of alternative total variation techniques have been proposed, such as adaptive total variation (see [23])
where minimizing

∫ |Du| is replaced by

min
∫

α(x)|Du|.
The control function α is used to reduce the diffusion where there is likely an edge.

Another model was proposed by Chambolle and Lions [11], which uses a combination of TV diffusion where
there are likely edges (where |∇u| > ε) and isotropic diffusion in more homogeneous regions (where |∇u| � ε). This
minimization problem is

min
u∈BV(Ω)

1

2ε

∫
|∇u|�ε

|∇u|2 +
∫

|∇u|>ε

|∇u| − ε

2
+ λ

2

∫
Ω

(u − I ),

where I is the noise image and λ > 0 is a parameter.
A partial regularity result was obtained in [13] for this model which shows that if Ln({|∇u| < ε}) > 0, then there

exists a nonempty open set Ω̃ ⊂ Ω on which u is C1,α and |∇u| < ε. Thus we do have smoothing where |∇u| < ε. In
this paper we consider the problem where we replace the isotropic part in the above problem with an anisotropic term∫
|∇u|�ε

|∇u|p for 1 < p < 2, thus resulting in a term that gives rise to anisotropic diffusion instead of isotropic in the
region where |∇u| � ε. The objective here is to discuss the partial regularity of this problem as for the isotropic case
as in [13] for the case p = 2. We refer the reader to [19] for other theoretical and numerical results regarding more
general functionals for use in image restoration, including the use of the p-Laplacian.

Improving on this, different models have been proposed using a variable exponent p(x) such as Blomgren, Chan,
Mullet, and Wong [7] where they propose the minimization problem

min
∫
Ω

|∇u|p(|∇u|) dx,

where lims→0 p(s) = 2 and lims→∞ p(s) = 1 with p monotonically decreasing; and in Chen, Levine, Rao [9] they
propose a model similar the one above by Chambolle and Lions with exponent p(x). Numerical results in [9] show
promise for this method.

2. The minimization problem

For simplicity we consider the problem with ε = 1 and λ = 1 in the above

min
u∈BV(Ω)∩L2(Ω)

{∫
Ω

ϕ0(Du) + 1

2

∫
Ω

(u − I )2 dx

}
,

where ϕ0 is the following C1 convex function defined on R
n:

ϕ0(x) =
{ 1

p
|x|p if |x| � 1,

|x| − 1
q

if |x| > 1,

for 1 < p < 2, 1/p + 1/q = 1, I ∈ L∞(Ω) ∩ BV(Ω), and Ω ⊂ R
n is a bounded domain with Lipschitz boundary. As

in [4] or [16] we may define the above functional on BV(Ω) using∫
Ω

ϕ0(Du) �
∫
Ω

ϕ0(∇u)dx +
∫
Ω

∣∣Dsu
∣∣.

However, due to the singular nature of ϕ0 we instead consider a regularized version of the above problem for proving
partial regularity, namely
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min
u∈BV(Ω)∩L2(Ω)

{∫
Ω

ϕε(Du) + 1

2

∫
Ω

(u − I )2 dx

}
(2.1)

for the C1(Rn) function ϕε , ε > 0, defined by

ϕε(x) =
{ 1

p
(|x|2 + ε)p/2 if |x| � 1,

(1 + ε)(p/2)−1|x| − 1
p
(1 + ε)(p/2)−1(p − 1 − ε) if |x| > 1,

where Ω, I, and p are as before. As above,∫
Ω

ϕε(Du) �
∫
Ω

ϕε(∇u)dx +
∫
Ω

∣∣Dsu
∣∣.

We note that for ε > 0, ϕε ∈ C1(Rn) and C2 is on the interior of the unit ball B1(0). First we show that
∫

ϕε(Du) is
lower semicontinuous in L1(Ω) for any ε � 0. The following lemma is actually a special case of Lemma 2.3 in [10],
however this proof can be generalized to any continuous function ϕ of linear growth.

Lemma 1. For any ε � 0, the functional
∫

ϕε(Du) is lower semicontinuous in L1(Ω).

Proof. Let V = {φ ∈ C1
0(Ω,R

n): |φ(x)| � 1 for all x ∈ Ω}, where | · | is the usual vector norm in R
n. Without

loss of generality we can adjust ϕε if necessary so that ϕε(0) = 0 and ϕε(x) = |x| − K where |x| � 1 for ap-
propriate constant K. From [18] we have for each x ∈ R

n, ϕε(x) = sup{|y|�1}{x · y − ϕ∗
ε (y)} where ϕ∗

ε is the

convex conjugate of ϕε defined by ϕ∗
ε (y) = supx∈Rn{x · y − ϕε(x)}. For the special case of ε = 0 we in fact

have ϕ0(x) = sup{|y|�1}{x · y − |y|p/q}. The linear growth property of ϕε actually gives finite values for ϕ∗
ε (y)

only when |y| � 1. In addition we see that ϕ∗
ε (y) = sup{x∈Rn, |x|�1}{x · y − ϕε(x)}. We also note that for ε > 0,

ϕ∗
ε (y) = x∗(y) · y − ϕε(x

∗(y)) where x∗(y) is a continuous function of y. From [8] we have for any g ∈ L1(Ω)n,∫
Ω

ϕε(g) dx = sup
φ∈V

{∫
Ω

g · φ − ϕ∗
ε (φ) dx

}
. (2.2)

Now define the following functional on BV(Ω):

J (u) = sup
φ∈V

{
−

∫
Ω

udivφ + ϕ∗
ε (φ) dx

}

= sup
φ∈V

{∫
Ω

∇u · φ − ϕ∗
ε (φ) dx +

∫
Ω

φ · Dsu

}
where the last equality follows from integration by parts. From the above discussion we easily see that for every φ ∈ V ,∫

Ω

∇u · φ − ϕ∗
ε (φ) dx +

∫
Ω

φ · Dsu �
∫
Ω

ϕε(Du),

giving J (u) �
∫
Ω

ϕε(Du).

For the reverse inequality we follow, for example, [10], noting the continuity of ϕ∗
ε . Fix ε > 0. For any u ∈ BV(Ω)

there exists an open set Oε such that support (Dsu) ⊂ Oε and |Oε | � ε. We can also find φε ∈ C0
1(Ω,R

n) with
|φ1| � 1 and∫

Ω

Dsu · φ1 �
∫
Ω

∣∣Dsu
∣∣ − ε

from the definition of the TV norm. By (2.2) there exists φ2 ∈ C0
1(Ω,R

n) with |φ2| � 1 such that∫
∇u · φ2 − ϕ∗

ε (φ2) dx �
∫

ϕε(∇u)dx − ε.
Ω Ω
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Now define

φ =
{

φ1 on Oε,

φ2 on Ω \Oε.

Let ηα be the standard mollifier on R
n and let φα = ηα ∗ φ. Note that φα has compact support for sufficiently small α.

Then

J (u) �
∫
Ω

∇u · φα − ϕ∗
ε (φα) dx +

∫
Ω

φα · Dsu.

Letting α → 0 in the above inequality we then have

J (u) �
∫
Ω

∇u · φ − ϕ∗
ε (φ) dx +

∫
Ω

φ · Dsu

�
∫
Ω

∇u · φ2 − ϕ∗
ε (φ2) dx +

∫
Ω

φ1 · Dsu − μ(ε)

�
∫
Ω

ϕε(∇u)dx +
∫
Ω

∣∣Dsu
∣∣ − μ(ε) − 2ε

where

μ(ε) =
∫
Oε

|∇u|dx + ∥∥ϕ∗
ε

∥∥
L∞(B1(0))

Ln(Oε)

and Ln denotes Lebesgue on R
n. Clearly μ(ε) → 0 as ε → 0. The reverse inequality is now proved and so

J (u) =
∫
Ω

ϕε(Du).

Lower semicontinuity now easily follows as in Giusti [15]. �
We also have the following approximation lemma:

Lemma 2. Let u∈ BV(Ω) ∩ L2(Ω). Then for any ε � 0 there is a sequence of functions {un} ⊂ BV(Ω) ∩ L2(Ω) ∩
C∞(Ω) such that

un → u in L2(Ω) and∫
Ω

ϕε(Dun)dx →
∫
Ω

ϕε(Du).

Proof. Fix ε � 0 and for simplicity write ϕε as ϕ. Consider the function ϕn(x) � ϕ(x) + |x|/n. Then from [4] there
exists un ∈ BV(Ω) ∩ C∞(Ω) such that

(1) ‖un − u‖L2(Ω) � 1/n.

(2) | ∫
Ω

√
1 + (Dun)2 dx − ∫

Ω

√
1 + (Du)2| � 1/n.

(3) | ∫
Ω

ϕn(Dun)dx − ∫
Ω

ϕn(Du)| � 1/n. �
Proof. The proposition there is actually stated for functions in BV, but an adjustment of the proof on which this
proposition is based [3] gives us estimate 1 for u ∈ BV(Ω) ∩ L2(Ω). We then have
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∣∣∣∣ ∫
Ω

ϕ(Dun)dx −
∫
Ω

ϕ(Du)

∣∣∣∣ �
∣∣∣∣ ∫
Ω

ϕn(Dun)dx −
∫
Ω

ϕn(Du)

∣∣∣∣ + 1/n

(∫
Ω

|Dun|dx +
∫
Ω

|Du|
)

� 1/n + 1/n

(∫
Ω

|Dun|dx +
∫
Ω

|Du|
)

.

From (2),
∫
Ω

|Dun|dx is bounded. Letting n → 0 proves the theorem. �
These lemmas now imply

Theorem 1. For any ε � 0, there exists a solution u ∈ L∞(Ω) to problem (2.1). In fact, we have
‖u‖L∞(Ω) � ‖I‖L∞(Ω).

Proof. The proof of existence and uniqueness is standard using lower semicontinuity and strict convexity. The L∞
bound follows as in Lemma 2.1 in [13] using both of the above lemmas and by considering the approximating func-
tional

min
u∈W 1,1+δ(Ω)∩L2(Ω)

{∫
Ω

ϕδ
ε (Du) + 1

2

∫
Ω

(u − I )2 dx

}
where

ϕδ
ε (x) =

⎧⎨⎩
1
p
(|x|2 + ε)p/2 if |x| � 1,

(1+ε)(p/2)−1

1+δ
|x|1+δ + 1

p
(1 + ε)p/2 − (1+ε)(p/2)−1

1+δ
if |x| > 1

is in C1(Rn) and ϕε(x) � ϕδ
ε (x) for all x ∈ R

n. �
3. Main theorem

Now we state the main theorem of this paper.

Theorem 2. If u solves (2.1) for ε > 0 and Ln({|∇u| < 1}) > 0, then there exists a nonempty open region Ω̃ on which
u is C1,α, |∇u| < 1, and u solves

−div
(
ϕP (∇u)

) = I − u on Ω̃,

in addition, we have |∇u| � 1 a.e. on Ω \ Ω̃.

Without loss of generality we consider the case where ε = 1 and we let ϕ = ϕ1. To prove the above theorems, we
follow the general procedure to that in [17] for proving partial regularity for weak solutions u ∈ L2([0,∞],BV(Ω))

to the time evolution problem

∂u

∂t
= divx

(
ϕP (∇u)

)
on Ω ⊂ R

1 or R
2 where ϕ is a convex linear growth function satisfying local ellipticity and continuity assumptions.

The essential part of this theorem will be a decay result. There is, however, no restriction on n for this result.

4. Proof of the main theorem

First we prove some lemmas. We have from [17]

Lemma 3. Let u ∈ BV(E) for open region E � Ω with smooth boundary. Then there exist constants c1, c2 < 1/2 such
that if p ∈ B1(0) and h ∈ C1(E) with supE |∇h − p| � c1σ, then for any vector p1 ∈ Bc σ (p) we have
1
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∫
E

ϕ(Du) −
∫
E

ϕ(∇h)dx −
∫
E

ϕll(p1) · ∇h · D(u − h)

+
∫
E

(
ϕll(p1) · p1 − ϕl(p1)

) · D(u − h) + sup
E

ω
(|∇h − p1|2

)∫
E

|∇h − p1|2 dx

� c2

( ∫
E∩{Du/∈Bσ (p)}

|Du − p| +
∫

E∩{Du∈Bσ (p)}

∣∣D(u − h)
∣∣2

)
,

where ω : R → R is a nondecreasing, nonnegative function with limt→0 ω(t) = 0.

Recall that∫
E∩{Du/∈Bσ (p)}

|Du − p| +
∫

E∩{Du∈Bσ (p)}

∣∣D(u − h)
∣∣2

means ∫
E∩{∇u/∈Bσ (p)}

|∇u − p| +
∫
E

∣∣Dsu
∣∣ +

∫
E∩{∇u∈Bσ (p)}

∣∣∇(u − h)
∣∣2

.

Throughout the rest of the paper, u will be the solution to (2.1).

Lemma 4. Let E � Ω be an open elliptical region. Now suppose h ∈ C1(E) satisfies supE |∇h − p| � c1σ and

−ϕli lj (p1)
∂2h

∂xi∂xj

= I − h on E (4.1)

for some p1 ∈ Bc1σ (p) and smooth vβ . Then we have∫
E∩{Du/∈Bσ (p)}

|Du − p| +
∫

E∩{Du∈Bσ (p)}

∣∣D(u − h)
∣∣2

� c3

( ∫
∂E

|u − vβ |dHn−1 + sup
E

ω
(|∇h − p1|2

)∫
E

|∇h − p1|2 dx

)
.

Proof. Such a solution h exists by the linear theory. From Lemma 2.5 in [13] we have∫
E

ϕ(Du) −
∫
E

ϕ(∇h) � 1/2
∫
E

(h − I )2 dx − 1/2
∫
E

(u − I )2 dx +
∫
∂E

|h − u|dHn−1

where h,u are understood in the sense of trace in BV on ∂E for the last integral. Using this, integrating by parts, and
using Young’s inequality for (u − h)(I − h) = −(u − I )(h − I ) + (I − h)2 the lemma is proved. �

Now we define the “energy” by

Φ(r,p, a) � 1

|Br |
( ∫

Br(a)∩{Du/∈Bσ (p)}
|Du − p| +

∫
Br(a)∩{Du∈Bσ (p)}

|Du − p1|2
)

.

Our next goal is to prove

Theorem 3. There exist constants ε1,ε2 depending on ϕ and p such that if

Φ(r0,p1, x0) � ε1

for some r0, x0 ∈ Ω and some p1 ∈ Bε2(p), then there exists p ∈ Bσ (p) such that limr→∞ Φ(r,p1, x0) = 0. Further-
more, p = Du(x0).
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From now on, we drop the “a” in Br(a) and Φ unless noted otherwise. In order to prove Theorem 3, we will obtain
estimates for

∫
∂E

|u − vβ |dHn−1, |∇h − p1|, and
∫
E

|∇h − p1|2 dx for a suitable Lipschitz function v. These will
then be used to prove a decay estimate for Φ on a smaller ball and different p, whose difference can be estimated.
This decay estimate will be used to prove the theorem.

Now fix a. From the proof of Theorem 2.8 in [13] we have

Lemma 5. If Br/2 � Ω and for suitable Lipschitz function v, we have

sup
Br/2

|∇v − p1| � Φ(r,p1)
2δ

with δ such that (1 − 4δ)n+1
n

= 1 + 1
2n

, that is, δ = 1
8(n+1)

. Additionally,

Ln
(
Br/2 ∩ {u 
= v}) � c4r

nΦ(r,p1)
1−4δ.

Using this lemma obtain an L∞ estimate for u − v.

Lemma 6. If |p1 − p| � c1σ , then there exists ε > 0 such that Φ(r,p1) < ε implies supBr/2
|∇v − p1| � Φ(r,p1)

2δ ,

the v from the previous lemma with δ = 1
8(n+1)

and with the following estimate for r sufficiently small:

‖u − v‖L∞(Br/4) � c5
(
Ln

(
Br/2 ∩ {u 
= v}))1/n

.

Proof. This follows from the previous lemma and Lemma 2.7 in [13] where we use the bound supBr/2
|∇v| � |p| +

c1σ + Φ(r,p1)
2δ in that proof instead of supBr/2

|∇v| � 1 used there. �
We can now estimate |∇h−p1| on E for any r̃ � r/2 for the solution h to (4.1). Let vβ be a smoothing of v defined

by vβ = ηrβ ∗v where ηε is the standard mollifier on R
n. Then from the linear theory [13,14], taking β = Φ(r,p1),we

have ‖h‖L∞(E) � c6 and

sup
E

|∇h − p1| � c7
(
Φ(r,p1)

δ + r‖h − I‖L∞(E)

)
� c8

(
Φ(r,p1)

δ + r
)
.

Let T be an appropriate transformation such that if h̃ = h ◦ T −1, ũ = u ◦ T −1, ṽβ = vβ ◦ T −1, Ĩ = I ◦ T −1, E is an
ellipsoid centered at a, T (E) = B ′ is a ball of radius r̃ centered at T (a), and

−�h̃ = Ĩ − h̃ on B ′,
h̃ = ṽβ on ∂B ′.

We note that the Jacobian of T , which depends only on the eigenvalues of the matrix [ϕli lj (p)] for p = p1 is bounded
from above and away from 0. Furthermore these bounds can be made independent of a and p due the uniform
ellipticity. We also have from [13],

sup
B̃

|∇h̃(x) − ∇h̃(y)|
|x − y|1/2

� c9

r̃n+1/2

∫
∂B ′

|ṽβ |dHn−1 + r̃‖Ĩ − h̃‖L∞

where B̃ ⊂ B ′ is concentric with B ′ and with radius r̃/2. Now choose E ⊂ Br/4 centered at a with diam(E) = r/8
and such that both∫

∂E

|u − v|dHn−1 � c10

r

∫
Br/4

|u − v|dx (4.2)

and ∫
∂E

∣∣u − uBr/4 − p1 · (x − a)
∣∣dHn−1 � c10

r

∫
Br/4

∣∣u − uBr/4 − p1 · (x − a)
∣∣dx (4.3)

hold, where uB denotes the average of u over Br/4.
r/4
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Lemma 7. Let v, vβ be as above. Then∫
∂E

|u − vβ |dHn−1 � c11r
n
(
Φ(r,p1)

1+2δ + Φ(r,p1)
1+1/(2n)

)
.

Proof. By the properties of vβ we have supE |vβ − v| � rΦ(r,p1)
1+2δ, and combining the results of the last two

lemmas with estimate (4.2) we obtain∫
∂E

|u − v|dHn−1 � c11r
nΦ(r,p1)

1+1/(2n).

From these two estimates the lemma follows. �
Lemma 8. If h solves (4.1) and |p1 − p| < c1σ , then∫

E

|∇h − p1|2 dx � c20
(
rn+1‖h − I‖L∞(E) + rnΦ(r,p1)

)
.

Proof. Multiply (4.1) by h−vβ , integrate by parts, use the fact that (4.1) is a linear equation with constant coefficients,
and then use Young’s inequality to arrive at∫

E

|∇h − p1|2 dx � c12

∫
E

(h − I )(h − vβ) dx + c13

∫
E

|∇vβ − p1|2 dx.

By the uniform bounds of ∇h and ∇vβ we see that ‖h − vβ‖
L∞(E)

� c14(diam(E)) � c15r. For the other part of the
estimate we use from [22]∫

Br/4

|∇vβ − p1|dx � c16

∫
Br/2

|∇v − p1|dx.

Finally, to estimate
∫
Br/2

|∇v − p1|dx the construction of v gives∫
Br/2

|∇v − p1|dx � c17

∫
Br/2∩{Du∈Bσ (p)}

|Du − p1|2 + c18Φ(r,p1) � c19Φ(r,p1).

By combining the above two estimates, the lemma is proved. �
We now arrive at our decay estimate.

Theorem 4. There exist positive constants ε, c20, κ depending only on n,Ω,u such that if Φ(r,p1) � ε and r � c20,

then there exists p2 ∈ R
n such that Φ(κr,p2) � 1

2Φ(r,p1) + c31r and |p2 − p2| � c35Φ(r,p1)
1/2 + c34r.

Proof. Using Lemma 4 and the estimates obtained in Lemmas 7 and 8 we have∫
E∩{Du/∈Bσ (p)}

|Du − p| +
∫

E∩{Du∈Bσ (p)}

∣∣D(u − h)
∣∣2

� c21
(
rnΦ(r,p1)

1+1/(2n) + ω
(
c8Φ(r,p1)

δ + r
))2(

rn+1‖h − I‖L∞(E) + rnΦ(r,p1)
)
.

Letting p2 = ∇h(a), we now estimate sup|∇h(x) − ∇h(a)| over a ball Bκr ⊂ Ẽ ⊂ E. Since h̃ − uBr/4 − p1 · (x − a)

also satisfies (4.1) we see that

sup
B̃

|∇h̃(x) − ∇h̃(y)|
|x − y|1/2

� c22

r̃n+1/2

∫
′

∣∣ṽβ − uBr/4 − p1 · (x − a)
∣∣dHn−1 + r̃1/2‖Ĩ − h̃‖L∞(B ′). (4.4)
∂B
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Recall the ball B̃ is concentric with B ′ and has radius r̃/2 and center T (a). Changing back to the original variables,
using (4.3), and Poincaré’s inequality, the right side of (4.4) is estimated as

� c23

rn+1/2

∫
∂E

∣∣vβ − uBr/4 − p1 · (x − a)
∣∣dHn−1 + c23r

1/2‖h − I‖L∞(E)

� c24

rn+1/2

∫
∂E

|vβ − u|dHn−1 + c24

rn+3/2

∫
Br/4

∣∣u − uBr/4 − p1 · (x − a)
∣∣dHn−1 + c23r

1/2‖h − I‖L∞(E)

� c25

rn+1/2

∫
∂E

|vβ − u|dHn−1 + c25

rn+1/2

∫
Br/4

|Du − p1| + c25r
1/2‖h − I‖L∞(E).

Now let Ẽ = T −1(B̃) and restrict κ as necessary so that Bκr ⊂ Ẽ ⊂ E. Then we can see that after changing variables
in the left side of (4.4) and using Lemma 7 we obtain

sup
Bκr

∣∣∇h(x) − ∇h(y)
∣∣ � c26

(
κ1/2

rn

∫
∂E

|vβ − u|dHn−1 + κ1/2

rn

∫
Br/4

|Du − p1| + κ1/2r‖h − I‖L∞(E)

)

� c27κ
1/2

(
Φ(r,p1)

1+2δ + Φ(r,p1)
1+1/(2n) + 1

rn

∫
Br/4

|Du − p1| + r‖h − I‖L∞(E)

)
.

We thus obtain

sup
Bκr

∣∣∇h(x) − ∇h(y)
∣∣ � c28κ

1/2(Φ(r,p1)
1+2δ + Φ(r,p1)

1+1/(2n) + Φ(r,p1)
1/2 + r‖h − I‖L∞(E)

)
.

This is our desired estimate for supBκr
|∇h(x) − ∇h(y)|.

Now using the inequality |∇u − ∇h|2 � 1/2|∇u − p1|2 − |∇h − p2|2 we arrive at∫
E∩{Du/∈Bσ (p)}

|Du − p| +
∫

E∩{Du∈Bσ (p)}
|Du − p2|2

� c29
(
rnΦ(r,p1)

1+1/(2n) + ω
(
c8

(
Φ(r,p1)

δ + r
))2

rn+1‖h − I‖L∞(E)

)
+ c29

(
ω

(
c8

(
Φ(r,p1)

δ + r
))2

rnΦ(r,p1) +
∫

Bκr

|∇h − p2|2 dx

)
. (4.5)

For the rest of the proof we denote Φ(r,p1) by Φ. Using the estimate for |∇h(x) − ∇h(y)|, recalling that
p2 = ∇h(a), and dividing the above inequality (4.5) by κnrn we have

Φ(κr,p2) � c30κ
−nΦ1+1/(2n) + c30κ

−nω
(
c8

(
Φδ + r

))2 + c30κΦ

+ c30
(
ω

(
c8

(
Φδ + r

))2
κ−n + κr

)
r‖h − I‖L∞(E).

Now restrict κ again so that κ � 1
4c30

. Then restrict Φ and r so that c30κ
−nΦ1/(2n) + c30κ

−nω(c8(Φ
δ + r))2 � 1/4.

This proves the decay estimate for Φ. Finally, we derive the estimate for |p2 − p1|. From the linear theory [14] as
applied to h̃ we have

|p2 − p1| =
∣∣∇h(a) − p1

∣∣ � c32
1

|E|
∫
∂E

∣∣vβ − uB ′ − p1 · (x − a)
∣∣dHn−1 + c33r̃‖Ĩ − h̃‖L∞(B ′)

� c32
1

|E|
∫
∂E

|vβ − u|dHn−1 + c32
1

|E|
∫
∂E

∣∣u − uE − p1 · (x − a)
∣∣dHn−1 + c34r‖h − I‖L∞(E).

Then using the boundary estimates, Poincaré’s inequality, and Hölder’s inequality, we get |p2 −p1| � c35Φ(r,p1)
1/2 +

c34r‖h − I‖L∞(E). �
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By using this decay estimate iteratively, we then have Theorem 3. We actually have Theorem 3 holding for all
x ∈ Br/2(x0) if Φ(r0,p1,x0) is sufficiently small by noting that Φ(r/2,p1,x) � 2nΦ(r,p1,x0) for all x ∈ Br/2(x0).

Theorem 2 then follows [4,13,17].

5. Questions for further study

In addition to the above result on partial regularity and the more difficult problem of the p-Laplacian, one may also
hope to show that the above open set Ω̃ where the solution is smooth is also dense in Ω , or even that its complement
has dimension n − 1. For the case of n = 2 in image restoration, this last case would correspond to 1-dimensional
edges of objects.
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