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PERSPECTIVES IN RENAL MEDICINE

The tubulointerstitium in progressive diabetic kidney disease:
More than an aftermath of glomerular injury?
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The tubulointerstitium in progressive diabetic kidney disease: ARCHITECTURE OF THE INTERSTITIUM
More than an aftermath of glomerular injury?

The tubulointerstitium encompasses the tubular epi-Although the glomerulus, particularly the mesangium, has
thelium, vascular structures, and interstitium, togetherbeen the focus of intense investigation in diabetes, tubulointer-

stitial injury is also a major feature of diabetic nephropathy and accounting for more than 90% of the kidney volume [3].
an important predictor of renal dysfunction. The renal tubule The availability of antibodies that are relatively specific
in diabetes is subject to both direct and indirect pathogenetic for different cell types in combination with electron mi-
influences as a consequence of its position in the nephron and

croscopy has led to a more precise identification of resi-its resorptive function. On exposure to glucose, proximal tubular
dent cell populations in the interstitium of the healthycells elaborate vasoactive hormones, including angiotensin II

and injurious cytokines such as transforming growth factor-b kidney [4, 5]. Fibroblasts are distinguished from other
(TGF-b), as well as extracellular matrix proteins. In turn, angio- interstitial cells types by the presence of ecto-59-nucleotid-
tensin II may further increase TGF-b expression in both proxi- ase, junctional complexes, and prominent subplasmalem-
mal tubular and interstitial cells, thus amplifying the stimulus

mal actin filaments. Fibroblasts constitute the major cellto fibrogenesis in the renal tubulointerstitium. In addition to
type in the interstitium, where they interconnect withthese mostly direct influences, the renal tubule, particularly its
tubules, vessels, and each other to provide a scaffold-proximal segment, is exposed to glomerular effluent. In the

diabetic state, this includes large quantities of advanced glyca- like structure. The remaining interstitial cells—dendritic
tion end products and glucose and, at later stages in the evolu- cells, lymphocytes, and macrophages—are related to the
tion of diabetic nephropathy, protein, all of which are factors immune system. Antigen-presenting dendritic cells arethat may induce TGF-b expression and fibrosis. Diabetic ne-

present in the peritubular space and are particularlyphropathy should therefore be viewed as a disease affecting the
abundant in the inner stripe of the outer medulla. Macro-entire nephron. Continued exploration into tubulointerstitial

disease in addition to glomerular injury in diabetes may help phages are mostly confined to the adventitia of large
provide further insights into the pathogenesis of diabetic ne- blood vessels, whereas lymphocytes are rarely present
phropathy and additional targets for therapeutic intervention. in normal kidney. Although incompletely defined, partic-

ularly in the diabetic context, the kidney’s fibrogenic
response to other types of nonimmune-related injury

The tubulointerstitium of the diabetic kidney has be- such as renal mass reduction involve major changes in
come a major focus of study, with considerable advances two interstitial cell populations: fibroblasts and macro-
having been made in the understanding of its role in phages. The appearance of active fibroblasts, which ex-
the pathogenesis of diabetic nephropathy over the last press a-smooth muscle actin (myofibroblasts), is associ-
decade [1, 2]. In particular, recent in vivo studies have ated with the production of fibrillar collagens [6]. These
confirmed the observations originally made in cell cul- activated interstitial fibroblasts may then interact with
ture, highlighted the complexities of cell interactions tubular epithelial cells in bidirectional “cross-talk” [7]
within the tubulointerstitial compartment, and shown and may also undergo a process referred to as “transdif-
it to be an important site of action for renoprotective ferentiation” to also become fibroblastic-like [8]. How-
therapies in diabetic kidney disease. ever, it remains unclear whether or not these changes

indicate a complete change in cell phenotype or rather
an alteration in the level of expression of only certainKey words: tubule, interstitium, transforming growth factor b, extra-

cellular matrix. proteins. The response of the kidney to non-immune–
mediated injury also includes an increase in macrophagesReceived for publication January 11, 1999
providing a rich source of various cytokines, includingand in revised form March 30, 1999

Accepted for publication April 19, 1999 the profibrotic transforming growth factor-b (TGF-b)
[9]. Although a contribution from circulating cells cannot 1999 by the International Society of Nephrology
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Fig. 2. Correlation between indices of mesangial expansion and inter-
stitial fibrosis in patients with type I diabetes (r 5 0.80, P , 0.0005).
(Reprinted with permission from the Journal of Clinical Investigation
74:1143–1155, 1984 [18].)

Fig. 1. Relationship between serum creatinine concentration (vertical
axis) at the time of biopsy and relative interstitial volume (horizontal
axis) in diabetic nephropathy. The normal (nl) range is indicated by
the square. (Reprinted with permission from the International Society both type I (insulin-dependent) (Fig. 2) [18] and type II
of Nephrology [1] and Pathology Research and Practice 167:204–216, (non-insulin–dependent) diabetes [19]. Moreover, al-1980 [16].)

though a close correlation between various structural
parameters was noted in a study of 84 patients with type
I diabetes, stepwise multiple regression analysis found
that the impact of interstitial volume was additive tobe excluded, recent studies indicate that local prolifera-

tion of both macrophages and myofibroblasts is a promi- that of mesangial expansion in its relationship to renal
function, suggesting an independent effect [17]. Further-nent feature of progressive renal injury [10].

Recent insights into the mechanisms of progressive more, in a four-year longitudinal study in patients with
overt nephropathy in which structural injury was as-renal dysfunction have indicated that tubulointerstitial

pathology is not simply an aftermath of glomerular in- sessed histomorphometrically at both study entry and
completion, interstitial fibrosis rather than glomerularjury, but that tubular cells may be primary targets for

various pathophysiological influences [11, 12]. Indeed, in injury correlated most closely with declining creatinine
clearance (Fig. 3) [20].diabetes, perturbations in glucose-dependent metabolic

pathways and vasoactive hormone systems may directly In contrast to these interstitial changes, the relation-
ship between TBM width and kidney function is uncer-influence both tubular and interstitial cell behavior and

ultimately lead to interstitial fibrosis and renal dysfunc- tain, although its correlation with glomerular basement
membrane (GBM) thickening (Fig. 4), itself not a goodtion caused by nonglomerular mechanisms [13, 14].
predictor of renal impairment [18], suggests that changes
in TBM may reflect glycemic exposure rather than evolv-

PATHOLOGICAL CHANGES
ing nephropathy [21].

The extent of tubulointerstitial injury correlates closely
with long-term renal function in a variety of primary

LINK BETWEEN GLOMERULAR ANDglomerular diseases [15]. Pathological changes that have
TUBULOINTERSTITIAL INJURYbeen described in association with diabetic nephropathy

include thickening of the tubular basement membrane The mechanisms whereby tubulointerstitial fibrosis de-
velops in association with glomerular injury have been the(TBM), tubular atrophy, interstitial fibrosis, and arterio-

sclerosis. In particular, interstitial expansion correlates subject of vigorous speculation following the appreciation
of the role of the tubulointerstitium in disease progres-closely with the magnitude of renal dysfunction, albu-

minuria [16, 17] (Fig. 1), and mesangial enlargement in sion. Kriz et al have categorized the proposed mechanisms
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Fig. 3. Association between the fall in creatinine clearance and rise in
renal cortical interstitial fibrosis in hypertensive diabetic subjects who
underwent renal biopsies at the commencement and completion of the
four-year study (r 5 20.591, P 5 0.008). (Reprinted with permission
from Diabetes 43:1046–1051, 1994 [20].)

Fig. 4. Relationship between tubular basement membrane (TBM)
width and glomerular basement membrane (GBM) width in normoten-
sive (d) and hypertensive (s) patients with type I diabetes (r 5 0.67,
P , 0.001). (Reprinted with permission from the International Societyinto three nonmutually exclusive groups: (a) self-sustain-
of Nephrology [21].)ing prosclerotic cytokine production in both the glomeru-

lus and tubulointerstitium; (b) excessive protein load to
the proximal tubule, ultimately leading to peritubular
inflammation and fibrosis; and (c) postglomerular vaso- lesions develop in diabetes is not unexpected given the

exposure of both regions to similar factors in the diabeticconstriction with peritubular capillary rarefaction, tubu-
lar ischemia, and atrophy [22]. As detailed in this review, milieu. However, there are some important differences

in the extent to which both sites are exposed to variousevidence of all three mechanisms has been documented
in diabetic nephropathy. More recently, on the basis of biochemical and hemodynamic factors. These differ-

ences may explain the findings of Bader et al, who in asequential structural studies a fourth mechanism has also
been proposed as a pathogenetic link between glomeru- study of 103 patients with varying degrees of glomerulo-

sclerosis reported that in addition to a significant rela-lar and tubulointerstitial injury: the interstitial spread of
glomerular filtrate [22]. In a rat model of focal segmental tionship between cortical interstitial volume and serum

creatinine, there was a dissociation between glomerularglomerulosclerosis, glomerular injury was associated with
misdirection of filtrate in to the periglomerular and peritu- injury and renal dysfunction in a number of patients [16].

In these cases, severe glomerular lesions were accompa-bular space leading to the development of periglomeru-
lar and peritubular fibrosis. A final degeneration of the nied by a normal serum creatinine if the interstitium

showed no fibrotic change, and conversely, mild glomer-nephron with the loss of filtration may then occur not
only as a consequence of concurrent glomerular and tubu- ular lesions accompanied by interstitial fibrosis always

had elevated serum creatinine concentrations. More re-lointerstitial injury, but also when tubular degeneration
progresses more rapidly than glomerular fibrosis, leading cently, in a study of microalbuminuric type II diabetic

patients, Fioretto et al reported that a pattern of predom-to the development of atubular glomeruli with open cap-
illary loops. Thus, in progressive renal disease, GFR may inant tubulointerstitial disease was the most common

histological type, being present in 41.2% of patients stud-fall as a result of glomerular fibrosis or as a consequence
of disconnection of the glomerulus from normal proxi- ied, whereas parallel glomerular and tubulointerstitial

changes were found in 29% [26]. However, how suchmal tubules [23]. In diabetic nephropathy, the presence
of such atubular glomeruli has been well documented differences in histopathology relate to the finding that a

subgroup of diabetic patients may show a decline in[22, 24], although their proportion in relationship to glob-
ally sclerotic glomeruli has not yet been determined. renal function without increasing albuminuria remains

uncertain [27, 28].However, in the remnant kidney, a model of glomerular
hemodynamically-mediated renal injury with functional Like the human, tubulointerstitial pathology is also a

feature of experimental diabetes where changes includesimilarities to diabetes [25], atubular rather than globally
sclerotic glomeruli predominate [23]. tubular dilation and expansion of the interstitial space

[1, 29]. Similar to the findings in the diabetic glomerulusThe finding that both tubulointerstitial and glomerular
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[30], the prosclerotic cytokine TGF-b has been impli-
cated in the development of tubulointerstitial pathology,
as indicated by increased expression of its mRNA, pro-
tein, and biological activity at this site [29, 31, 32].

RENAL ENLARGEMENT

An increased kidney size was first described in diabe-
tes more than a century ago [33]. The nature of this
nephromegaly has been characterized in detail in elegant
studies using stereological techniques [34, 35]. Because
glomeruli account for only a small fraction (less than
10%) of kidney mass, renal enlargement in diabetes pre-
dominantly reflects tubulointerstitial changes. In the
streptozotocin diabetic rat, the first seven weeks follow- Fig. 5. A schema suggesting a complex series of interactions between
ing the induction of experimental diabetes are accompa- interstitial and proximal tubular cells involving vasoactive hormones,

glucose-dependent pathways such as polyols and advanced glycationnied by a 37% increase in proximal tubular length, a
end products (AGEs), and cytokines such as transforming growthdoubling of wall volume and luminal diameter, and an factor-b (TGF-b), leading to tubular basement membrane thickening,

increase in cell height [36], reflecting both hypertrophy macrophage infiltration, and tubulointerstitial fibrosis.
and hyperplasia [37]. This renal enlargement is associ-
ated with an increase in glomerular filtration rate (GFR).
However, the finding that good glycemic control amelio-

and the overexpression of matrix protein mRNA in therates glomerular hyperfiltration but not nephromegaly
in patients with type I diabetes suggests a dissociation kidney cortex [51], the bulk of which consists of proximal
between glomerular and tubular components [38]. Other tubules. These findings suggest that TGF-b may be an
investigators have reported partial reduction in kidney important growth factor in tubular as well as glomerular
size in diabetic patients after improved glycemic control growth in diabetes, in addition to its role in the later
with intensified insulin therapy [39]. Like hyperfiltration development of glomerulosclerosis and tubulointerstitial
[40], the significance of nephromegaly as a predictor of fibrosis [52].
subsequent nephropathy is uncertain, although recent

Pathogenesis of tubulointerstitial changesdata suggest that renal enlargement may portend a poor
prognosis in patients with type I [41] as well as type II The finding that cultured tubular [53] and interstitial
[42] diabetes. cells [54] respond to glucose suggests that these cells

In animal studies examining extracellular matrix ex- contribute directly to the pathological changes of dia-
pression in the four weeks following the induction of betic nephropathy rather than as a consequence of glo-
experimental diabetes, basement membrane type colla- merular injury. Moreover, the recognition of bidirec-
gen a1 (IV) gene expression was noted in the proximal tional communication between these two cell types [7]
tubule [32, 43]. Changes in glomerular collagen expres- along with the potential fibroblastic transformation of
sion were also noted at this time in some, but not all

tubular epithelial cells [8] and the infiltration of mononu-
studies, in early experimental diabetes [32, 43, 44]. In

clear cells [55] together highlight the complexity of localaddition to quantitative changes in type IV collagen ex-
fibrogenic pathways in the tubulointerstitium. Thus, al-pression in the diabetic kidney, qualitative changes have
though the tubular epithelial cell synthesizes TBM andalso been observed in both experimental and human
the interstitial fibroblast may be largely responsible fordiabetes with the appearance of nonclassic a chains in
interstitial fibrosis, the interaction between the cellularaddition to the usual chains 1 and 2 [45, 46].
components of the tubulointerstitium is likely to be anA number of cytokine systems in which both ligand
important determinant of the pathology observed. Fur-and receptor are present in tubules have been implicated
thermore, the pathophysiological changes that developin the pathogenesis of renal enlargement in diabetes [47].
in the setting of diabetes are not confined to hyperglyce-These include insulin-like growth factor-I (IGF-I) [48],
mia, but include alterations in vasoactive hormones, for-epidermal growth factor (EGF) [49], and TGF-b [32]. In
mation of advanced glycation end products (AGEs), he-the BB rat and NOD mouse, increased TGF-b immuno-
modynamic changes, and activation of various secondarystaining was noted as early as three days following the
metabolic pathways [14] leading to oxidative stress, pro-onset of diabetes, where it was localized predominantly
tein kinase C activation, and increased polyol productionto renal tubular cells [50]. Furthermore, neutralizing

anti–TGF-b antibodies ameliorated renal hypertrophy (Fig. 5) [56].
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GLUCOSE pathogenesis of diabetic nephropathy [66]. Recently, it
has been demonstrated that AGEs can activate a rangeProximal tubular cells, similar to cells at other sites of
of intracellular second messengers, including mitogen-diabetic complications, do not have an absolute require-
activated protein kinase in a renal tubular cell line [67],ment for insulin for glucose uptake [57], so that the
thereby leading to the induction of expression of variousintracellular glucose level is directly related to its plasma
cytokines including TGF-b [68]. Glycated proteins areconcentration. Elegant studies by Ziyadeh et al have
preferentially excreted in the urine from both controldemonstrated increased steady-state levels of mRNA for
and diabetic rodents [69], although the relative roles ofcollagen types IV and I in cultured proximal tubular
glomerular filtration and proximal tubular resorption oncells exposed to high glucose concentrations, possibly
this phenomenon have not been elucidated. Studies inreflecting activation of an enhancer sequence within the
experimental diabetes have shown AGE accumulationprocollagen gene [53]. In addition to increased glucose
in renal tubules and its amelioration by treatment within plasma and interstitial fluid, excess glucose in the
the inhibitor of advanced glycation, aminoguanidine [70].glomerular filtrate in diabetes leads to enhanced proxi-
As with other long-lived protein structures, the TBM un-mal tubule glucose resorption, further augmenting the
dergoes advanced glycation in diabetes [71], but in addi-effects of hyperglycemia on intracellular glucose flux
tion, the proximal tubule is also a site of catabolism ofwithin the proximal tubule [58]. However, despite the
the increased circulating AGEs found in diabetes [72,increased activity of the brush border glucose trans-
73], presumably reflecting their filtration and absorptionporter, GLUT-5 in diabetes [59], the synthesis and secre-
at this site [72]. Indeed, it has recently been demon-tion of TGF-b is mostly dependent on basolateral glu-
strated that AGE binding to proximal tubules is in-cose exposure [60], suggesting that it is the interstitial
creased in diabetes [74]. Furthermore, concomitant as-rather than the urinary glucose concentration that modu-
sessment of renal AGE levels suggested that their locallates the expression of this profibrotic cytokine.
concentration regulated their own binding to proximal
tubules with aminoguanidine, attenuating the increasedPOLYOL PATHWAY
AGE binding in diabetes (Fig. 6) [74].

A role for the hyperglycemia-induced acceleration of Whether or not Amadori products, which are interme-
polyol pathway metabolism in mediating the develop- diates in the formation of AGEs that have also been
ment of diabetic nephropathy has been suggested by implicated in the pathogenesis of diabetic nephropathy
some investigators [61]. The increased formation and [75], are taken up by the proximal tubular epithelium or
accumulation of sorbitol occurs via metabolism of glu- influence tubulointerstitial injury has not been delineated.
cose by the nicotinamide adenine dinucleotide phosphate
(NADPH)-dependent enzyme aldose reductase. Sorbitol

VASOACTIVE HORMONESaccumulation may, in turn, lead to depletion of free myo-
inositol, loss of Na1,K1-ATPase activity, and increased Despite suppression of the systemic renin-angiotensin
consumption of the enzyme cofactors NADPH and NAD1, system in diabetes, the ability of angiotensin-converting
leading to changes in cellular redox potential and cellular enzyme (ACE) inhibition and angiotensin II type 1 re-
dysfunction [61]. In cultured proximal tubular cells, incu- ceptor (AT1) antagonism [76] to ameliorate renal injury
bation in a high-glucose medium results in increased sorbi- in both experimental and human diabetes has implicated
tol [56]. Glucose-induced stimulation of extracellular ma- the local intrarenal renin-angiotensin system in the
trix expression in proximal tubular cells in vitro could pathogenesis of diabetic nephropathy [77]. Quantitation
be abrogated by both myoinositol supplementation and of the various components of the renin-angiotensin sys-
aldose reductase inhibition [56, 62]. However, despite the tem (RAS) in kidneys of experimental animals has
beneficial effects of aldose reductase inhibition in both yielded conflicting results, possibly reflecting the low lev-
proximal tubular [56] and mesangial cells [63] in culture, els of expression outside the juxtaglomerular apparatus
long-term experimental studies have been conflicting [77]. However, with the use of ultrasensitive techniques
with respect to effects on structural and functional indi- such as reverse transcription-polymerase chain reaction
ces of injury in diabetic nephropathy [64, 65], possibly

(RT-PCR), low levels of renin mRNA have been de-
reflecting the incomplete blockade of aldose reductase

tected in the microdissected tubules of normal rats [78],activity with the drugs used. The effects of aldose reduc-
and in addition, modulation of renin expression in re-tase inhibition on tubulointerstitial injury in experimen-
sponse to uninephrectomy [78], salt depletion [79], andtal diabetes have not been specifically examined.
ACE inhibition [80] has also been noted. Furthermore,
in a recent study of patients with diabetic nephropathy,

ADVANCED GLYCATION END PRODUCTS increased expression of renin, ACE, and angiotensino-
gen were noted in the proximal tubule [81]. In vitro studiesEvidence has accumulated over the last decade impli-

cating the formation of AGEs as a major factor in the have shown that angiotensin II may act synergistically
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with glucose [82] and EGF [83] to induce hypertrophy. pressure may be transmitted to the peritubular capillary
network that, being devoid of pericytes and smooth mus-More recently, in vivo studies in the renin-overexpress-

ing Ren2 rat have shown that an induction of diabetes cle, is less well adapted than the glomerulus to deal with
the increased pressure [96]. In experimental studies inleads to severe tubulointerstitial fibrosis, as well as glo-

merulosclerosis, pathological changes that are both which systemic blood pressure is increased by angioten-
sin II infusion, interstitial myofibroblasts, a source ofameliorated by ACE inhibitor therapy [84].

Angiotensin II, in addition to its hemodynamic effects, various cytokines including TGF-b [9], encircle peritubu-
lar capillaries [97]. It has been suggested that the accrualmay also act as a growth factor [85], potently inducing

the expression of TGF-b in a variety of cell types, including of these smooth muscle-like cells might lead to a damp-
both proximal tubule epithelial cells [86] and renal intersti- ening in pressure transmission along the peritubular
tial fibroblasts [87]. Both glucose and angiotensin II pro- capillary network, resulting in a reduction in pressure
mote TGF-b1 expression in a range of cells types, includ- natriuresis and salt-dependent hypertension [97]. These
ing those of the proximal tubule. Recent studies suggest tubulointerstitial changes may in part explain the in-
an interaction between these two stimuli, with in vitro crease in exchangeable sodium and extracellular volume
studies indicating that glucose promotes expression of that develops in association with diabetes [98]. Indeed,
the precursor of angiotensin II, angiotensinogen [88], as salt, per se, in the absence of hypertension, may lead to
well as the AT1 [89]. This provides an additional mecha- fibrotic change by TGF-b–dependent mechanisms [99].
nism whereby the effects of chronic hyperglycemia on
proximal tubular cytokine production and extracellular

PROTEIN TRAFFICmatrix accumulation are amplified. In long-term diabetic
As a consequence of the abnormal glomerular perme-rats, ACE inhibition was associated with a reduction in

ability that develops in diabetic nephropathy, increasedtubular injury and a diminution in TGF-b1 and type
quantities of filtered plasma proteins reach the proximalIV collagen overexpression, particularly in the proximal
tubule. These proteins include albumin and potentiallytubule (Fig. 7) [29]. Furthermore, in a study performed
more toxic proteins such as IgG, transferrin, lipoproteins,in uninephrectomized, alloxan-induced diabetic (DM)
and complement components that are then endocytosedbeagle dogs, a protective effect on tubulointerstitial in-
by the tubular epithelium and degraded in lysosomes.jury was similarly observed with the ACE inhibitor lisi-
With heavy proteinuria, lysosomal capacity is exceeded,nopril [90]. More recently, in a study of patients with
leading to lysosomal rupture and phenotypic changes intype 2 diabetes and nephropathy, sequential biopsies
the tubular epithelium that include the expression andrevealed a 30% increase in cortical interstitial volume
basolateral release of the potent vasoconstrictor endo-over a two-year period [91]. In contrast, no change in
thelin and the mononuclear cell chemotactic proteins:cortical interstitial volume was noted in patients treated
macrophage chemotactic protein-1 (MCP-1) and osteo-with the ACE inhibitor perindopril. Although mesangial
pontin [100]. These vasoactive and chemotactic factors,volume also changed in the same direction as the cortical
in turn, may lead to ischemia, overexpression of proin-interstitium, it did not reach statistical significance.
flammatory and fibrotic cytokines, and infiltration of mo-Another vasoconstrictor and trophic hormone, endo-
nonuclear cells [101]. The contribution of protein over-thelin, also has potent actions within the kidney. Endo-
load to interstitial pathology in diabetes may explainthelin expression has been reported to be up-regulated
why fibrosis in this region is a prominent feature of pro-in glomeruli [92] and whole kidney extracts [93] in dia-
gressive disease in late [20] but not early disease [102].betic rats. More recently, endothelin receptor antago-
In addition, the tubular toxicity of protein raises thenism was reported to not only influence glomerular in-
possibility that the beneficial effects of ACE inhibitorsjury in experimental diabetes, but also to attenuate
in diabetic renal disease [103] may reflect their potentendothelin overexpression in renal tubules [94].
antiproteinuric action [104] in addition to the reduction
of angiotensin II-mediated effects on growth factor acti-

SALT AND HYPERTENSION vation and glomerular hemodynamics.
In addition to the well-described association between

overt nephropathy and hypertension, type 1 diabetic pa-
ISCHEMIAtients with incipient nephropathy have higher blood pres-

sure over a 24-hour period compared with normoalbumi- The role of ischemia in the pathogenesis of tubuloin-
terstitial injury in diabetic nephropathy has not beennuric patients [95]. The development of elevated blood

pressure in association with such early kidney disease examined in detail, despite the recognition of arteriolar
pathology as a characteristic feature of the disease and itssignifies the intimate relationship between blood pres-

sure and the evolution of diabetic nephropathy. association with both glomerular and tubulointerstitial
injury [16, 26]. Tubulointerstitial ischemia in diabetes mayHydrostatic forces associated with elevated blood
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Fig. 6. Bright field in vivo emulsion autoradio-
graph with lectin counterstain showing 125I-AGE-
BSA binding to proximal tubules but not glo-
meruli or distal tubules. (Reprinted with per-
mission from the International Society of
Nephrology [74]; magnification 3400).

Fig. 7. Immunohistochemistry of type IV collagen in tubulointerstitium
of control (A), diabetic (B) and ramipril-treated diabetic rats (C). In-
creased immunostaining is present in kidneys from diabetic rats com-
pared with control and ramipril-treated diabetic animals. (Reprinted
with permission from Diabetes 47:414–422, 1998 [29]; magnification
3400.)

develop as a result of increased metabolic demands of tion following tubulointerstitial expansion. The pars recta
or S3 segment of the proximal tubule may be particularlysurviving tubules [105] or as a consequence of reduced

peritubular flow in the setting of postglomerular vasocon- vulnerable to nephrotoxic and ischemic injury as a conse-
quence of tubular concentration, interstitial hypertonicity,striction, glomerular nonperfusion, or capillary oblitera-
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Fig. 8. In situ hybridization for big-h3 mRNA,
a marker of TGF-b biological activity, in lon-
gitudinal sections of control (left panel) and
diabetic (right panel) rat kidney localizing
gene expression to the inner cortex and outer
stripe of outer medulla. (Reprinted with per-
mission from the International Society of Ne-
phrology [31].)

and low oxygen tension in this region [106]. This has led fibrosis and damage to the peritubular capillary network
with the tubule and in particular the pars recta of theto the suggestion that ischemic peritubular microangio-
proximal tubule being especially vulnerable. Thus, ratherpathy in diabetes may preferentially affect this region
than a solely glomerular disease, diabetic nephropathyof the nephron [107]. Indeed, the pars recta was the
develops as a consequence of complex interactions be-predominant site of collagen overexpression [43] and a
tween the glomerulus, tubule, interstitium, and vascularmajor site of TGF-b biological activity in the diabetic
components of the kidney. Continued exploration intorat (Fig. 8) [31]. Furthermore, in a study of patients with
the pathogenesis of nonglomerular as well as glomerularincipient diabetic nephropathy, Nuyts et al reported a
disease may help provide additional targets for therapeu-significant correlation between glycated hemoglobin, a
tic intervention in diabetic nephropathy.marker of the rate of progression of early nephropathy

[108], and urinary excretion of the intestinal alkaline
phosphatase (hIAP), the isoenzyme expressed exclu- ACKNOWLEDGMENTS
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