On a Certain Class of Multiplicative Functions

D. Wolke
Mathematisches Institut, Albert-Ludwigs Universität, Albertstrasse 23b, D-7800 Freiburg, Germany
Communicated by E. Bombieri
Received Match 6, 1989; revised November 2, 1989

$$
\begin{aligned}
& \text { Let } \chi_{0}, \chi_{1}, \chi_{2}, \ldots \text { be the sequence of all Dirichlet characters (in which the } \\
& \text { principal character } \chi_{0} \text { occurs only once), ordered with increasing moduli. Define, } \\
& \text { for a sequence }\left(\alpha_{k}\right)_{k \in N} \text { of real numbers }\left(\alpha_{k} \rightarrow 0 \text { for } j \rightarrow \infty\right. \text {, sufficiently quickly), the } \\
& \text { multiplicative function } f \text { by } \\
& \qquad \sum_{n} \frac{f(n)}{n^{s}}=\zeta^{-1}(s) \prod_{k-1}^{\infty}\left(L\left(s, \chi_{k}\right)\right)^{\alpha_{k}} \text {. } \\
& \text { It is the aim of the paper to construct sequences }\left(\alpha_{k}\right) \text { such that the following } \\
& \text { statements are equivalent } \\
& \text { (i) } \sum_{n \leqslant x} f(n)=O\left(x^{1 / 2+\varepsilon}\right) \text { for every } \varepsilon>0 \text {, } \\
& \text { (ii) the Riemann hypothesis is true for all functions } L(s, \chi) \text {. © } 1991 \text { Academic } \\
& \text { Press, Inc. }
\end{aligned}
$$

1. Introduction

The Möbius function μ is an example of a multiplicative function which may give information on the zeros of the Riemann zeta-function.

If

$$
\begin{aligned}
& \sigma_{0, \zeta}=\sup _{\sigma}(\sigma \text { is the real part of zero of the } \zeta \text {-function }), \\
& \sigma_{1, \zeta}=\varlimsup_{x \rightarrow \infty} \frac{1}{\ln x} \ln \left(\left|\sum_{n \leqslant x} \mu(n)\right|+1\right)
\end{aligned}
$$

then

$$
\begin{equation*}
\sigma_{0, \zeta}=\sigma_{1, \zeta} \tag{1.1}
\end{equation*}
$$

This principle can easily be extended to finitely many L-series. If $\chi^{(1)}, \ldots, \chi^{(l)}$ are Dirichlet characters, and $f: \mathbb{N} \rightarrow C$ is defined by

$$
F(s)=\sum_{n} \frac{f(n)}{n^{s}}=L^{-1}\left(s, \chi^{(1)}\right) \cdots \cdot L^{-1}\left(s, \chi^{(l)}\right) \quad(\sigma=\operatorname{Re} s>1)
$$

then the analogue of (1.1) is true for the zeros of $L\left(s, \chi^{(1)}\right), \ldots, L\left(s, \chi^{(1)}\right)$ and f instead of μ.

If one wants to deal with all L-functions at once, one is led to functions f given by

$$
\begin{equation*}
F(s)=\sum_{n} \frac{f(n)}{n^{s}}=\zeta^{-1}(s) \prod_{\chi}(L(s, \chi))^{\alpha_{\chi}} \tag{1.2}
\end{equation*}
$$

where $\left(\alpha_{\chi}\right)$ is an appropriate sequence of real or complex numbers. It is the purpose of this paper to describe such sequences.

Arrange the non-principal characters χ to a sequence

$$
\chi_{1}, \chi_{2}, \ldots, \chi_{k} \quad \bmod q_{k}, \quad q_{k} \geqslant 2
$$

with increasing moduli q_{k}. Obviously,

$$
\begin{equation*}
q_{k} \leqslant k \quad \text { for } \quad q \geqslant 5 \tag{1.3}
\end{equation*}
$$

The first lemma, which will be proved in the next section, is necessary for the statement of the main result.

Lemma 1. Let $\left(\tilde{\alpha}_{j}\right)(j \in \mathbb{N})$ be a sequence of positive real numbers, tending to zero, and assume

$$
\begin{equation*}
r_{k}=\sum_{j>k} \tilde{\alpha}_{j} \ln (j+1)=O\left((\ln (k+1))^{-2 k}\right) \quad(k \rightarrow \infty) \tag{1.4}
\end{equation*}
$$

Then there exists a $\beta \in(0,1]$ such that the numbers

$$
\begin{equation*}
\alpha_{j}=\beta \tilde{\alpha}_{j} \tag{1.5}
\end{equation*}
$$

have the following property. For all $c>0$ and all $m_{j} \in N_{0}$ with $m_{j} \leqslant c \ln (j+1)$

$$
\begin{equation*}
\sum_{j \in \mathbb{N}} m_{j} \alpha_{j} \notin \mathbb{N} \tag{1.6}
\end{equation*}
$$

We can now state the
Theorem. Let $\left(\alpha_{k}\right)(k \in N)$ be a sequence as in Lemma 1 which, in addition, satisfies the condition

$$
\begin{equation*}
\sum_{k \in \mathbb{N}} \alpha_{k} \ln (k+1)\left|\ln \alpha_{k}\right|<\infty \tag{1.7}
\end{equation*}
$$

Define the multiplicative function $f: \mathbb{N} \rightarrow C$ by

$$
\begin{equation*}
F(s)=\sum_{n} \frac{f(n)}{n^{s}}=\zeta^{-1}(s) \prod_{k \in \mathbb{N}}\left(L\left(s, \chi_{k}\right)\right)^{\alpha_{k}} \tag{1.8}
\end{equation*}
$$

$\left(\sigma=\operatorname{Res}>1, \arg L\left(s, \chi_{k}\right)\right.$ is to be $o(1)$ for $\left.s=\sigma \rightarrow \infty\right)$. Let

$$
\begin{gathered}
\sigma_{0}=\sup _{\sigma}\left(\sigma \text { is the real part of a zero of } \zeta(s) \text { or an } L\left(s, \chi_{k}\right)\right) . \\
\qquad \sigma_{1}=\overline{\varlimsup_{x \rightarrow \infty}} \frac{1}{\ln x} \ln \left(\left|\sum_{n \leqslant x} f(n)\right|+1\right)
\end{gathered}
$$

then

$$
\begin{equation*}
\sigma_{0}=\sigma_{1} \tag{1.9}
\end{equation*}
$$

In particular, the generalized Riemann hypothesis is true iff

$$
\sum_{n \leqslant x} f(n)=O\left(x^{1 / 2+\varepsilon}\right) \quad \text { for all } \varepsilon>0 .
$$

Remarks. (A) The definition (1.8) gives

$$
\begin{equation*}
f(p)=-1+\sum_{k} \alpha_{k} \chi_{k}(p) \quad \text { for primes } p \tag{1.10}
\end{equation*}
$$

If $0<\delta \leqslant 1$ and the numbers α_{k} are chosen such that

$$
\sum_{k} \alpha_{k} \leqslant \delta
$$

then

$$
\begin{equation*}
|f(p)| \leqslant 1+\delta \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(p^{l}\right)\right| \leqslant 2 \delta \quad(l \geqslant 2) \tag{1.12}
\end{equation*}
$$

(this will be shown in Section 3).
(B) It will be clear from the proof that one yields the following, slightly stronger

Theorem'. Let X be any set, finite or infinite, of non-principal Dirichlet characters, there exists a complex-valued multiplicative function f, satisfying $|f(n)| \leqslant 1$ everywhere, such that if ϑ_{0} is the least upper bound of ϑ 's such that

$$
\sum_{n \leqslant x} f(n)=O\left(x^{\vartheta}\right)
$$

then ϑ_{0} is the supremum of the real parts of the zeros of all $L(s, \chi), \chi \in X$.

A similar results holds if X is allowed to contain principal Dirichlet characters, except now that the bound $|f(n)| \leqslant 1$ must be replaced by $\mid f(n) \leqslant 1 \leqslant(1+\delta)^{\omega(n)}(0<\delta<1$ any fixed constant $)$.

If χ does not contain principal characters, the bound can be refined to $|f(n)| \leqslant \delta^{\Omega(n)}$.

The function f can be defined independent of deeper knowledge about the zeros of the L-functions.

The problem of getting an f with $|f(n)| \leqslant 1$ in case that principal characters occur seems to be of some interest.
(C) Lemma 1 and the Theorem can be generalized as follows.

Let $\tilde{\alpha}_{j} \in C \backslash\{0\}$, let (1.4) be fulfilled with $\left|\tilde{\alpha}_{j}\right|$, and assume

$$
\sum_{j \in \mathbb{N}} m_{j} \tilde{\alpha}_{j}=0 \quad\left(m_{j} \in \mathbb{N}_{0}\right) \text { only if } m_{1}=m_{2}=\cdots=0
$$

Then, with an appropriate $\beta \in(0,1]$, (1.6) holds for $\alpha_{j}=\beta \tilde{\alpha}_{j}$. Such a sequence can be used in (1.8).

2. Proof of Lemma 1

Put, for $N \in \mathbb{N}$,

$$
B_{N}=\left\{\eta \in \mathbb{R}, \eta=\sum_{j \in N} m_{j} \tilde{\alpha}_{j}\left(m_{j} \in \mathbb{N}_{0}\right), m_{j} \leqslant N \ln (j+1)\right\} .
$$

For $\eta \in B_{N}$ and $k \in \mathbb{N}$ one has

$$
\left|\sum_{j>k} m_{j} \tilde{\alpha}_{j}\right| \leqslant N r_{k} .
$$

The numbers $\sum_{j=1}^{k} m_{j} \tilde{\alpha}_{j}$ attain at most $(N \ln (k+1)+1)^{k}$ values. B_{N} can therefore be covered by an open set of measure

$$
\leqslant 2 r_{k} N(N \ln (k+1)+1)^{k}
$$

Because of (1.4) this is $o(1)(k \rightarrow \infty)$. Hence, B_{N} and

$$
\begin{equation*}
B\left(\tilde{\alpha}_{j}\right)=\left\{\eta \in \mathbb{R}, \eta=\sum_{j} m_{j} \tilde{\alpha}_{j}\left(m_{j} \in N_{0}\right), \exists C \forall j: m_{j} \leqslant C \ln (j+1)\right\} \tag{2.1}
\end{equation*}
$$

are sets of measure zero.
For all $\xi \in(0,1]$ the same arguments apply to the sequence $\left(\xi \tilde{\alpha}_{j}\right)$.

$$
\begin{equation*}
\mu\left(B\left(\xi \tilde{\alpha}_{j}\right)\right)=0 \quad \text { for } \quad 0<\xi \leqslant 1 \tag{2.2}
\end{equation*}
$$

Consider a $\xi \in(0,1]$ for which there is a

$$
\begin{equation*}
g \in B\left(\xi \tilde{\alpha}_{j}\right) \cap \mathbb{N} \tag{2.3}
\end{equation*}
$$

Then, $g=\xi \eta$ with $\eta \in B\left(\tilde{\alpha}_{j}\right)$, or $\left(1 / \xi \in B\left((1 / g) \tilde{\alpha}_{j}\right)\right.$. Owing to (2.2), $\bigcup_{g \in \mathbb{N}} B\left((1 / g) \tilde{\alpha}_{j}\right)$ is a set of measure zero. Hence (2.3) can be true only for numbers ξ from a zero set. This gives the statement of the lemma.

3. Properties of the Function f

Because of absolute and uniform convergence in every half-plane $\sigma \geqslant 1+\varepsilon$ we have

$$
\begin{equation*}
F(s)=\prod_{p}\left(\left(1-p^{-s}\right) \prod_{k}\left(1-\chi_{k}(p) p^{-s}\right)^{-\alpha_{k}}\right) . \tag{3.1}
\end{equation*}
$$

This implies (1.10).
Proof of (1.12). For power series $A(z)=\sum a_{n} z^{n}$ and $B(z)=\sum b_{n} z^{n}$ let us say that $B(z)$ is a majorant of $A(z)$ if $\left|a_{n}\right| \leqslant b_{n}$ for every n. This relation is preserved by product. Next, note that for any complex numbers a, α the binomial series for $(1-|a| z)^{-|\alpha|}$ is a majorant of $(1-a z)^{\alpha}$, and moreover if $0<\alpha \leqslant \alpha^{\prime}$ then $(1-z)^{-\alpha^{\prime}}$ majorizes $(1-z)^{-\alpha}$. Since the nth coefficient of $(1-z)^{-\alpha}$ is $\alpha(\alpha+1) \cdots(\alpha+n-1) / n$!, it is clear that $1+\alpha z /(1-z)$ majorizes $(1-z)^{-\alpha}$ for $0<\alpha \leqslant 1$.

With $z=p^{-s}$, the Euler factor for $F(s)$ at p is $(1-z) A(z)$, with

$$
A(z)=\prod_{k}\left(1-\chi_{k}(p) z\right)^{-\alpha_{k}} .
$$

By the preceding remarks, $A(z)$ is majorized by $\prod_{k}(1-z)^{-\alpha_{k}}=(1-z)^{-\sum \alpha_{k}}$ and hence by $(1-z)^{-\delta}$ and $1+\delta z /(1-z)$ if $0<\delta \leqslant 1$. This means that if $A(z)=\sum a_{n} z^{n}$ we have $\left|a_{n}\right| \leqslant \delta$ for $n \geqslant 1$. It now follows that the l th coefficient of $(1-z) A(z)$, namely $f\left(p^{l}\right)=a_{l}-a_{l-1}$, satisfies

$$
|f(p)| \leqslant 1+\delta, \quad\left|f\left(p^{l}\right)\right| \leqslant 2 \delta \quad \text { if } \quad l \geqslant 2
$$

4. Proof of $\sigma_{1} \leqslant \sigma_{0}$

Because of $f(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)$ we may assume $\sigma_{0}<1$. With the simple inequality

$$
\begin{gathered}
L\left(\sigma+i \tau, \chi_{k}\right) \ll q_{k} \tau^{\prime} \ln \left(q_{k} \tau^{\prime}\right) \\
\left(\tau^{\prime}=|\tau|+2, \sigma \geqslant \frac{1}{2}, \ll-c o n s t a n t \text { absolute }\right)
\end{gathered}
$$

and the theorems of Borel-Caratheodory and Hadamard one sees as usual (see Titchmarsh [2, Chap. XIV]): For every $\varepsilon>0$ there exists a $T_{0} \geqslant 2$ such that for

$$
\sigma_{0}+\varepsilon \leqslant \sigma \leqslant \frac{3}{2}, \quad q_{k} \tau^{\prime} \geqslant T_{0}
$$

the inequality

$$
\left(q_{k} \tau^{\prime}\right)^{-\varepsilon} \leqslant\left|L\left(\sigma+i \tau, \chi_{k}\right)\right| \leqslant\left(q_{k} \tau^{\prime}\right)^{\varepsilon}
$$

holds. Hence, for $x \geqslant 2$ and $T=x^{1 / 2}$, on the vertical line

$$
\sigma=\sigma_{0}+\varepsilon(<1), \quad|\tau| \leqslant T
$$

and on the horizontal lines

$$
s=\sigma \pm i T, \quad \sigma_{0}+\varepsilon \leqslant \sigma \leqslant 1+\varepsilon
$$

we have the bound

$$
\begin{align*}
F(s) & =O_{\varepsilon}\left(T^{\varepsilon} \exp \left(\varepsilon \sum_{k} \alpha_{k} \ln \left(q_{k}(T+2)\right)\right)\right. \\
& =O_{\varepsilon}\left(T^{\varepsilon\left(1+c \sum \alpha_{k} \ln (k+1)\right)}\right) \tag{4.1}
\end{align*}
$$

with some absolute $c>0$. By means of (1.7) and Perron's formula one sees

$$
\sum_{n \leqslant x} f(n)=O_{\delta}\left(x^{\sigma_{0}+\delta} \quad \text { for every } \quad \delta>0\right.
$$

This implies $\sigma_{1} \leqslant \sigma_{0}$.

$$
\text { 5. Proof of } \sigma_{0} \leqslant \sigma_{1}
$$

All constants implied by the symbols \ll and O are absolute.
If we suppose $\sigma_{1}<\sigma_{0}$ then, by partial summation, F turns out to be regular in the half-plane

$$
\begin{equation*}
\sigma>\sigma_{1}=\sigma_{0}-\delta \quad(\delta>0) \tag{5.1}
\end{equation*}
$$

Let $\rho^{*}=\sigma^{*}+i \tau^{*}$ be a zero of $\zeta(s)$ or some $L\left(s, \chi_{k}\right)$ with

$$
\sigma^{*}>\sigma_{1}
$$

Put $\tau^{\prime}=\left|\tau^{*}\right|+2$,

$$
\begin{aligned}
& R_{1}=\left\{s=\sigma+i \tau, 0 \leqslant \sigma \leqslant 1, \tau^{*}-2 \leqslant \tau \leqslant \tau^{*}+2\right\} \\
& R_{2}=\left\{s, \sigma_{1}<\sigma<2, \tau^{*}-1<\tau<\tau^{*}+1\right\}
\end{aligned}
$$

Write $\zeta(s)=L\left(s, \chi_{0}\right)$ and let $\rho_{1}^{(k)}, \ldots, \rho_{l_{k}}^{(k)}\left(k \in \mathbb{N}_{0}\right)$ be the zeros of $L\left(s, \chi_{k}\right)$ in the rectangle R_{1}, counted according to their multiplicity. Then

$$
\begin{equation*}
l_{0} \ll \ln \tau^{\prime}, \quad l_{k} \ll \ln \left(k \tau^{\prime}\right) \quad(k \in \mathbb{N}) \tag{5.2}
\end{equation*}
$$

(see Prachar [1, VII, Satz 2.3]).
Let us, for simplicity, suppose that $\tau^{*}>2$. The case in which the pole of $L\left(s, \chi_{0}\right)$ has to be considered does not give any new difficulties.

For $s \in R_{2}$ and $k \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
\frac{L^{\prime}}{L}\left(s, \chi_{k}\right)=\sum_{v=1}^{l_{k}}\left(s-\rho_{v}^{(k)}\right)^{-1}+g_{k}(s) \tag{5.3}
\end{equation*}
$$

where g_{k} is regular and $\ll \ln (k+1) \tau^{\prime}$) in R_{2} (see Prachar [1, VII, Satz 4.1]).

By integration from $2+i \tau$ to $s=\sigma+i \tau \in R_{2}$ using (5.3) and (5.2), one sees

$$
\begin{equation*}
L\left(s, \chi_{k}\right)=H_{k}(s) \sum_{v=1}^{\iota_{k}}\left(s-\rho_{v}^{(k)}\right) \tag{5.4}
\end{equation*}
$$

where H_{k} is regular and $\neq 0$ on R_{2}, and satisfies the inequality

$$
\begin{equation*}
H_{k}(s)=\exp \left(O\left(\ln (\dot{k}+1) \tau^{\prime}\right)\right) \tag{5.5}
\end{equation*}
$$

One further lemma is needed.
Lemma 2. There exist numbers

$$
\bar{\sigma} \in\left(\sigma_{1}, \sigma^{*}\right), \quad \xi \in(0,1), \quad \text { and } \quad k_{0} \in \mathbb{N}
$$

with the following properties. Let W be the rectangular, closed path which connects the points

$$
\frac{3}{2}+i\left(\tau^{*}+\xi\right), \bar{\sigma}+i\left(\tau^{*}+\xi\right), \bar{\sigma}+i\left(\tau^{*}-\xi\right), \quad \text { and } \quad \frac{3}{2}+i\left(\tau^{*}+\xi\right)
$$

Then
(a) for $k \geqslant k_{0}, 1 \leqslant v \leqslant l_{k}$, and $s \in W$ we have

$$
\left|s-\rho_{v}^{(k)}\right| \geqslant \alpha_{k}
$$

(b) for $0 \leqslant k \leqslant k_{0}$ no $\rho_{v}^{(k)}$ lies on W.

Proof of Lemma 2. The points $\rho_{v}^{(k)}\left(v \leqslant l_{k}, k \geqslant k_{0}, k_{0}\right.$ to be fixed later)
are taken as centers of circles of radius α_{k}. Then, because of (5.2) and (1.7), the sum of all radii is

$$
=\sum_{k \geqslant k_{0}} l_{k} \alpha_{k} \leqslant c \sum_{k \geqslant k_{0}} \alpha_{k} \ln \left(k \tau^{\prime}\right)<\varepsilon,
$$

if $k_{0}=k_{0}\left(\varepsilon, \tau^{\prime}\right)$ is sufficiently large. By (b) only finitely many rectangles of type W are excluded. So one can find a path W as stated in the lemma.

For $k \in \mathbb{N}_{0}$, let $\rho_{1}^{(k)}, \ldots, \rho_{m_{k}}^{(k)}$ be the zeros of $L\left(s, \chi_{k}\right)$ lying inside W. There is at least one k with $m_{k}>0$. Put

$$
\begin{gather*}
F_{0,1}(s)=\prod_{v=1}^{m_{0}}\left(s-\rho_{v}^{(0)}\right)^{-1}, F_{0,2}(s)=\prod_{v=m_{0}+1}^{t_{0}}\left(s-\rho_{v}^{(0)}\right)^{-1} \tag{5.6}\\
F_{k, 1}(s)=\prod_{v=1}^{m_{k}}\left(s-\rho_{v}^{(k)}\right)^{\alpha_{k}}, F_{k, 2}(s)=\prod_{v=m_{k}+1}^{l_{k}}\left(s-\rho_{v}^{(k)}\right)^{\alpha_{k}} \quad(k \in \mathbb{N}) \tag{5.7}\\
H(s)=H_{0}^{-1}(s) \prod_{k \in \mathbb{N}} H_{k}^{\alpha_{k}}(s) \tag{5.8}\\
F_{j}(s)=F_{0, j}(s) \prod_{k \in \mathbb{N}} F_{k, j}(s) \quad(j=1,2) . \tag{5.9}
\end{gather*}
$$

All functions $F_{k, 1}$ are regular and $\neq 0$ on

$$
\begin{equation*}
G_{1}=R_{2} \backslash\left\{s, \bar{\sigma}<\sigma<1, \tau^{*}-\xi<\tau<\tau^{*}+\xi\right\} \tag{5.10}
\end{equation*}
$$

and all $F_{k, 2}$ are regular and $\neq 0$ on

$$
\begin{equation*}
G_{2}=\operatorname{Inn}(W) \cup\left\{s, 1<\sigma<2, \tau^{*}-1<\tau<\tau^{*}+1\right\} \tag{5.11}
\end{equation*}
$$

Because of (5.5) and (1.7),

$$
\begin{equation*}
H \text { is regular and } \neq 0 \text { on } R_{2} \tag{5.12}
\end{equation*}
$$

For $s \in G_{1} \cup W$ and $k \geqslant k_{0}$, Lemma 2(a) gives

$$
F_{k, 1}(s)=\exp \left(O\left(\alpha_{k} \ln \left(k \tau^{\prime}\right)\left|\ln \alpha_{k}\right|\right)\right)
$$

Lemma 2(b) and (1.7) therefore imply

$$
\begin{equation*}
F_{1} \text { is regular on } G_{1}, \text { continuous and } \neq 0 \text { on } G_{1} \cup W \tag{5.13}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& F_{2} \text { is regular on } G_{2}, \text { continous and } \neq 0 \text { on } G_{2} \cup W \tag{5.14}\\
& \qquad \prod_{k \in \mathbb{N}} \prod_{v=1}^{l_{k}}\left(s-\rho_{v}^{(k)}\right)^{\alpha_{k}} \tag{5.15}
\end{align*}
$$

is absolutely and uniformly convergent on W.

In $\left\{s, 1<\sigma<2, \tau^{*}-1<\tau<\tau^{*}+1\right\}$ we obviously have

$$
\begin{equation*}
F(s)=F_{1}(s) F_{2}(s) H(s) \tag{5.16}
\end{equation*}
$$

As F is regular on $R_{2},(5.12), \ldots,(5.16)$ yield that $F_{2}=F / F_{1} H$ and $F_{1}=F / F_{2} H$ can be extended to functions regular on R_{2}. By the continuity of F_{1} and F_{2} on W we finally get, for $s \in W$,

$$
\begin{equation*}
F(s)=H(s) \prod_{v=1}^{l_{0}}\left(s-\rho_{v}^{(0)}\right)^{-1} \cdot \prod_{k \in \mathbb{N}} \prod_{v=1}^{l_{k}}\left(s-\rho_{v}^{(k)}\right)^{\alpha_{k}} \tag{5.17}
\end{equation*}
$$

F is $\neq 0$ on W, the product converges uniformly.
Let N be the number of zeros of f inside W. Then

$$
\begin{equation*}
N=\frac{1}{2 \pi i} \int_{W} \frac{F^{\prime}}{F}(s) d s=-m_{0}+\sum_{k \in \mathbb{N}} m_{k} \alpha_{k} \tag{5.18}
\end{equation*}
$$

In the case $l_{0}>0, m_{k}=0$ for $k \in \mathbb{N},(5.18)$ is impossible. In the case $m_{k}>0$ for some $k \in \mathbb{N}$, (5.18) contradicts Lemma 1.

If W has to be chosen with $s=1$ inside one gets, with $m_{0}=0$,

$$
N=1+\sum_{k \in \mathbb{N}} m_{k} \alpha_{k}
$$

with at least one $m_{k}>0$. This gives again a contradiction to Lemma 1.
By this the desired inequality is proved.

Acknowledgment

The author is grateful to the referee for several helpful remarks. In particular the proof of (1.12) is due to the referee.

References

1. K. Prachar, "Primzahlverteilung," Berlin, 1957.
2. E. C. Titchmarch, "The Theory of the Riemann Zeta-Function," Oxford, 1951.
