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Let X0, ~1, X2, " - "  be the sequence of all Dirichlet characters (in which the 
principal character )~o occurs only once), ordered with increasing moduli. Define, 
for a sequence (Ctk)k~ N of real numbers (ctk ~ 0 f o r j ~  oo, sufficiently quickly), the 
multiplicative function f by 

~f(n.__._)) _ ~ l(s) 1-1 (L(s, Xk)) "k. 
n S  - -  

n k - I  

It is the aim of the paper to construct sequences (~k) such that the following 
statements are equivalent 

(i) ~n,~xf(n)=O(x t/2+s) for every e > 0 ,  

(ii) the Riemann hypothesis is true for all functions L(s, )0. �9 1991 Academic 
Press, Inc. 

1. INTRODUCTION 

The M6bius  function/~ is an example of  a multiplicative function which 
may give information on the zeros of the Riemann zeta-function. 

If 

tro, ~ = sup (a is the real part of zero of the (-function), 
~7 

then 

crl,~=lim l~xln  / ~ / ~ ( n ) + 1 ) ,  
\ l n < ~ x  I 

0"0,~" : O" 1, ( �9 (1.1) 

This principle can easily be extended to finitely many L-series. If Z ~1) ..... Z ~t) 
are Dirichlet characters, and f :  t~ --} C is defined by 

F ( s ) = S ' f ( n ) = L - l ( s , x  (l)) . . . . .  L X(s,x~l)) (~ r=Res>l ) ,  
~ n ~ 
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then the analogue of (1.1) is true for the zeros of L(s, Z ~1~) ..... L(s, Z ~i) and 
f instead of kt. 

If one wants to deal with all L-functions at once, one is led to functions 
f given by 

f (n )  
r (s)  = ~ ~ = ( ~ ( s )  H (L(s, Z))% (1.2) 

n z 

where (~x) is an appropriate sequence of real or complex numbers. It is the 
purpose of this paper to describe such sequences. 

Arrange the non-principal characters ~ to a sequence 

~1, g2, ..., )~k mod qk, qk~>2 

with increasing moduli qk. Obviously, 

qk<<,k for q~>5. (1.3) 

The first lemma, which will be proved in the next section, is necessary for 
the statement of the main result. 

LE~MA 1. Let (~j) ( j ~ )  be a sequence of positive real numbers, 
tending to zero, and assume 

rk = ~ ( 9 1 n ( j + l ) = O ( ( l n ( k + l ) )  2k) ( k ~ ) .  (1.4) 
j > k  

Then there exists a fl ~ (0, 1 ] such that the numbers 

~j = fl~j (1.5) 

have the following property. For all c > 0 and all mj ~ No with mj <~ c ln(j  4- 1 ) 

mjc~jr ~. (1.6) 

We can now state the 

THEOREM. Let (~k) ( k e N )  be a sequence as in Lemmal  which, in 
addition, satisfies the condition 

~k ln(k + 1 ) [ln ~kl < ~ .  (1.7) 
k ~  

Define the multiplicative function f :  ~ ~ C by 

f (n)  
F ( s ) = ~ - - ~ - = ~  ~(s) H (L(s,)~k)) ~k (1.8) 

n k ~ l  
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(tr = Res > 1, arg L(s, X,) is to be o(1 ) for s = tr ~ oo ). Let 

tro = sup (tr is the real part of a zero of~(s) or an L(s, Zk)). 
tr 

then 

a o = a l .  (1.9) 

In particular, the generalized Riemann hypothes& & true iff 

f ( n ) =  O(x l/z+~) for all e>0 .  
n ~ x  

Remarks. (A) The definition (1.8) gives 

f ( p )  = - 1  + ~ ~tkXg(p) for primes p. (1.10) 
k 

If 0 < 6 ~< 1 and the numbers ~ are chosen such that 

~k~6, 
k 

then 

and 

If(P)l ~< 1 + 6  (1.11) 

[f(P')l ~<26 (l~>2) (1.12) 

(this will be shown in Section 3). 

(B) It will be clear from the proof that one yields the following, 
slightly stronger 

THEOREM'. Let X be any set, finite or infinite, of non-principal Dirichlet 
characters, there exists a complex-valued multiplicative function f ,  satisfying 
If(n)l ~< 1 everywhere, such that if  ~ o is the least upper bound of ~'s such that 

f (n )  = O(xU), 
n < ~ x  

then ~o is the supremum of the real parts of the zeros of all L(s, X), Z e X. 
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A similar results holds if X is allowed to contain principal Dirichlet 
characters, except now that the bound 4f(n)d ~<1 must be replaced by 
[f(n)~< 1 ~<(1 +6)  ~~ ( 0 < 6 <  1 any fixed constant). 

If Z does not contain principal characters, the bound can be refined to 
If(n)[ ~< 6 a~"~. 

The function f can be defined independent of deeper knowledge about 
the zeros of the L-functions. 

The problem of getting an f w i t h  If(n)[ ~< 1 in case that principal charac- 
ters occur seems to be of some interest. 

(C) Lemma 1 and the Theorem can be generalized as follows. 

Let ~jE C\{O}, let (1.4) be fulfilled with [~jl, and assume 

mj~j=O (mj~No) only if ml=m2 . . . . .  O. 
j ~: IN 

Then, with an appropriate //~(0, 1], (1.6) holds for otj=~j. Such a 
sequence can be used in (1.8). 

Put, for N~ N, 

B N = {~] 

2. PROOF OF LEMMA 1 

ER, ~= ~ mjf~j(mjeNo),mj<~Nln(j+ 1)}. 
j 6 N  

For r/e BN and k ~ N one has 

j~>k mj~j <,% Nrk. 

The numbers Z~= l mj~j attain at most (Nln(k + 1)+ 1)k values. O N c a n  

therefore be covered by an open set of measure 

<~2rkN(Nln(k+ 1)+ 1) k. 

Because of (1.4) this is o(1) (k ~ ~) .  Hence, O N and 

B(~j)= {r/~ R, r/= 2 mj~j(mjENo), 3C-'Vj:mj<~CIn(j+ 1)} (2.1) 
J 

are sets of measure zero. 
For all r (0, 1] the same arguments apply to the sequence (r 

#(B(r = 0 for 0<r (2.2) 
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Consider a ~ ~ (0, 1 ] for which there is a 

g ~ B(~ j )  c~ r~. (2.3) 

Then, g = r  with r/~B(~Yj), or (1/~EB((1/g)~j).  Owing to (2.2), 
Ugr ~ B(( l /g)~j)  is a set of measure zero. Hence (2.3) can be true only for 
numbers ~ from a zero set. This gives the statement of the lemma. 

3. P R O P E R T I E S  OF THE F U N C T I O N  f 

Because of absolute and uniform convergence in every half-plane 
a~> 1 + s  we have 

F(s) = I-[ ((1 - p ~) 1-[ (1 - Zk(P) p-S)- ,k) .  (3.1) 
p k 

This implies (1.10). 

Proof of  (1.12). For  power series A(z) = 52 a,z" and B(z) = 52 b,z" let 
us say that  B(z) is a majorant  of A(z)  if la, I ~< b,  for every n. This relation 
is preserved by product.  Next,  note that for any complex numbers a, a the 
binomial series for (1 - t a l z )  I,l is a majorant  of (1 - a z )  ~, and moreover  
if 0<ct~<ct'  then ( 1 - z )  ~' majorizes ( 1 - z ) - L  Since the n th  coefficient 
of ( l - z )  -~ is ~ ( c t + l ) . . . ( a + n - 1 ) / n ! ,  it is clear that l + a z / ( 1 - z )  
majorizes (1 - z )  " for 0 < a ~ <  1. 

With z = p  -s, the Euler factor for F(s) at p is (1 - z ) A ( z ) ,  with 

A(z) = [I (I - z ~ ( p ) z )  ,k. 
k 

By the preceding remarks, A (z) is majorized by I l k  (1 --Z) ~k = (1 - - Z ) -  yak 
and hence by ( l - z )  a and 1 + & / ( l - z )  if 0<6~<  1. This means that  if 
A(z)  = Z a,z" we have ]a,I ~< 6 for n >/1. It now follows that t h e / t h  coef- 
ficient of (1 - z) A(z), namely f ( p l )  = a l_  at 1, satisfies 

I f ( p ) [ ~ l + 6 ,  If(pZ)l ~< 26 if l~>2. 

4. PROOF OF O" 1 ~ O" 0 

Because of f ( n ) = O ~ ( n  ~) we may assume a o < l .  With the simple 
inequality 

L(a + iz, Xk) ~ qk Z' ln(qkZ') 

(z '  = I~l + 2, ~ / >  �89 ~ - c o n s t a n t  absolute) 

641;37 L3 
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and the theorems of Borel-Carath6odory and Hadamard  one sees as usual 
(see Titchmarsh [2, Chap. XIV]):  For every e > 0 there exists a T 0 >~ 2 such 
that for 

the inequality 

a o + e ~ < a ~  <3 ,  qkr'>~To 

(q~r') ' ~< IZ(o § it, Xk)l ~ (qkr')" 

holds. Hence, for x/> 2 and T =  X 1/2, o n  the vertical line 

a = a o + ~ ( < l ) ,  IvI~<T 

and on the horizontal lines 

s=a+_iT,  ao+e<~rr<~l+e 

we have the bound 

F( s ) = O ~( T~ exp ( e ~ ~ k ln( q k( T + 2)))  

= O,(T,r + cY,k ln(k + 1))) (4.1) 

with some absolute c > 0. By means of (1.7) and Perron's formula one sees 

f ( n ) = O ~ ( x  "~ for every 6 > 0 .  
n~<x 

This implies a 1 ~< ao. 

5. PROOF OF rro ~< al 

All constants implied by the symbols ,~ and O are absolute. 
If we suppose al < ao then, by partial summation, F turns out to be 

regular in the half-plane 

a > a l = a o - 6  (6>0) .  (5.1) 

Let p* = a* + i~* be a zero of ~(s) or some L(s, Xk) with 

0"* ~ 0" 1 . 

Put r '  = Ir*l + 2, 

Rl = { s = a  + iz, O<~ a<~ l, z * -  2 <~ z<~ z* + 2}, 

R2= {s, al  < a < 2 ,  z*- -  1 < z < z *  + 1}. 
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Write if(s) = L(s, Xo) and let pike, ..., Ptk-~k) (k ~ ~o) be the zeros of L(s, Z~) in 
the rectangle R~, counted according to their multiplicity. Then 

lo '~ In T', lk "~ ln(kz') (k E t~ ) (5.2) 

(see Prachar [1, VII, Satz 2.3]). 
Let us, for simplicity, suppose that T* > 2. The case in which the pole of 

L(s, Zo) has to be considered does not give any new difficulties. 
For sER2 and k e  ~o we have 

Z '  tk 
~-(s,  zk)= ~ (s--p~ k~) l+gk(s) ,  (5.3) 

v = l  

where gk is regular and ,~ ln (k+ l ) z ' )  in R2 (see Prachar[1,  VII, 
Satz 4.1]). 

By integration from 2 + iT to s=  a +  iT ~R2 using (5.3) and (5.2), one 
sees 

tk 

L(s, Zk) = Hk(s) ~ _~k)~ (s-- Pv ,, (5.4) 
v = l  

where H k is regular and # 0  on R 2 , and satisfies the inequality 

Hk(S) = exp(O(ln(k + 1)T')). (5.5) 

One further lemma is needed. 

LEMMA 2. There exist numbers 

6 ~ ( a l , a * ) ,  r (0, 1), and k o ~  

with the following properties. Let W be the rectangular, closed path which 
connects the points 

3+i(z* +~),  f f+i(z* + ~), 6 + i ( z * - ~ ) ,  and 3 + i ( z * +  ~). 

Then 

(a) for k >>-ko, 1 ~V~lk, and s e  W we have 

I s -  Pv~k~ >>. ~ ,  

(b) for 0 <<. k <~ ko no p~k) lies on W. 

Proof of  Lemma 2. The points p~k~ (v ~< lk, k >1 ko, ko to be fixed later) 
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are taken as centers of circles of radius ~k. Then, because of (5.2) and (1.7), 
the sum of all radii is 

= 2 lkO~k~C 2 Ctkln(kr ' )<& 
k >/k 0 k/> kit 

if ko = ko(e, r ' )  is sufficiently large. By (b) only finitely m a n y  rectangles of 
type W are excluded. So one can find a path  W as stated in the lemma. 

For  k ~ N o, let p]k), -lk~ be the zeros of L(s, Xk) lying inside W. There �9 " ,  p i n k  

is at least one k with mk > 0. Put  
mo /o 

Fo,,(s)= l-I ( s - P 7  ~) ',Fo,2(s)= 1-I ( s -p l?  I) ', (5.6) 
v = l  v = m 0 + l  

m k  lk 

Fk, l ( s )=  U (s--PT))~k, Fk,2( S)= H (s--PT)) ak (k~N) (5.7) 
v = l  v - - m k + l  

H(s)=Ho'(S) [~ H2k(s), (5.8) 
ken 

Fj(s)=Fo, j(s) [~ Fk./(s) ( j = l , 2 ) .  (5.9) 
k e n  

All functions Fk. 1 are regular and # 0 on 

GI = R2\{s, f f < t r <  1, r * -  ~ < r  < z* + ~}, (5.10) 

and all Fk, 2 are regular and r  on 

G2=Inn(W)w{s , l<cr<2,  z * - l < z < r * + l } .  (5.11) 

Because of (5.5) and (1.7), 

H is regular and ~ 0  on R2. (5.12) 

For  s s G~ w W and k/> k o, L e m m a  2(a) gives 

Fk, l(S ) = exp(O(~ k ln(kr ' )  [In ek] )). 

L e m m a  2(b) and (1.7) therefore imply 

F~ is regular on G1, cont inuous and 4:0 on G~ o W. (5.13) 

Similarly, 

F 2 is regular on G2, cont inous and 4:0 on G2w W, (5.14) 

lk 
H H (S {k) ~k -p~  ) (5.15) 

k ~ N  v = l  

is absolutely and uniformly convergent  on W. 
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In {s, 1 < a < 2 ,  r * -  1 < z < z *  + 1} we obviously have 

F(s) = Fl(s ) F2(s) H(s). (5.16) 

As F is regular o n  R2,  (5.12) ..... (5.16) yield that F2=F/F1H and 
F1 = F/F2 H can be extended to functions regular on R2. By the continuity 
of F~ and F: on W we finally ge t ,  for s ~ W, 

Io lk 

F(s)=H(s) H (s -P~~ - '  1-I 1-] ( s -  [k)~k �9 Pv 1 .  (5.17) 
v=l  kel~ v : l  

F is :~0 on W, the product converges uniformly. 
Let N be the number of zeros o f f  inside W. Then 

N= 1---I w F(S) d s = - m  o + k ~  ~ mkctk" (5.18) 

In the case lo>0,  m k = 0  for k e N ,  (5.18) is impossible. In the c a s e  m k > O  

for some k e  ~, (5.18) contradicts Lemma 1. 
If W has to be chosen with s = 1 inside one gets, with m 0 = 0, 

N = I +  ~ mk~ k 
kEl~ 

with at least one m, > 0. This gives again a contradiction to Lemma 1. 
By this the desired inequality is proved. 
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