
Journal of Multivariate Analysis 96 (2005) 172–189

www.elsevier.com/locate/jmva

Measurement errors in multivariate measurement
scales

L. Tarkkonen, K. Vehkalahti∗
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 54, FI-00014, Finland

Received 25 October 2003
Available online 11 November 2004

Abstract

Our aim is to construct a general measurement framework for analyzing the effects of measurement
errors in multivariate measurement scales. We define a measurement model, which forms the core
of the framework. The measurement scales in turn are often produced by methods of multivariate
statistical analysis. As a central element of the framework, we introduce a new, general method of
estimating the reliability of measurement scales. It is more appropriate than the classical procedures,
especially in the context of multivariate analyses. The framework provides methods for various topics
related to the quality of measurement, such as assessing the structural validity of the measurement
model, estimating the standard errors of measurement, and correcting the predictive validity of a
measurement scale for attenuation. A proper estimate of reliability is a requisite in each task. We
illustrate the idea of the measurement framework with an example based on real data.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In statistical research, we are often interested in estimating some population parameters
based on a random sample. The uncertainty then comes from the sampling. Sometimes,
however, our data include all records under study, and no sampling is then needed. It is also
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possible to work in the individual level, without a need to consider how the results would
be generalized to a population level. In some circumstances, it might even be difficult to
define the population.

The other source of uncertainty comes from the measurement, which is an essential
concept in science. Measurement is needed regardless of the sampling procedure. As the
conclusions of empirical studies are based on values measured on research objects, it is
crucial to assess the quality of the measurements.

The most important property of measurement isvalidity. Broadly stated, validity is con-
cerned with whether a measuring instrument measures what it is supposed to measure in
the context in which it is to be applied. In addition, the measurements should be reliable,
in the sense that the researchers can rely on the precision of the measuring instrument.
The precision is stated byreliability, the ratio of the true variance to the total variance of
the measurement. The true variance excludes the variance caused by the randommeasure-
ment error. Reliability defines the resolution of the measurement, and tells us how small
differences we can talk about.

Traditional statistical models concentrate on the sampling variation, and often treat the
measurement errors with neglect, e.g., by including them in the sampling variation, or
simply by assuming that the subjects are measured without error. This is rather vague
because sampling and measurement are clearly different procedures. In a given study, it
might be useful to find out, which one is the main source of uncertainty. If the measurement
is inaccurate, increasing the sample size will not improve it. Instead, the measurement errors
should be taken into account by using suitable approaches of modeling.

In this paper, we construct a general framework for analyzing the effects of measurement
errors in multivariate measurement scales. The central concepts of the framework aremea-
surement modelandmeasurement scale. The measurement model relates our framework
to the factor analysis model[20] and its generalizations[6,10,18], but it is also a multidi-
mensional generalization of the classical, one-dimensional true score model[22, Chapter
3]. Throughout this paper, we assume that the subjects are random but the items are fixed,
i.e. we do not consider random sampling of items (see[21]).

In many application areas it is typical to create one-dimensional scales, e.g., preference
scales or predictive regression scales. Nevertheless, the scales are constructed from measure-
ments of several multidimensional attributes. Therefore, we term these scalesmultivariate
measurement scales. They connect our measurement framework with various methods of
multivariate statistical analysis, such as regression analysis, canonical correlations, or dis-
criminant analysis.

It is essential to ensure that the scales are reliable, i.e. the variation caused by the mea-
surement error is minimized. Therefore, as a central element of the framework, we introduce
a new, general method of estimating the reliability of multivariate measurement scales. We
establish our method on the classical definition of reliability, and show that the well-known
Cronbach’s� [12] is a restricted special case of our method.

1.1. Historical background

The concept of reliability is due to Charles Spearman already at the turn of the 20th cen-
tury. In 1904, Spearman[27] proposed a formula for correcting the effects of
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measurement errors in order to find the true relation between two variables. This idea,
together with his famous application, measuring the general intelligence[28], marks the
introduction of factor analysis. Spearman’s original theory of the general factor and the
specific factor corresponds to the one-factor case in the modern terminology. Spearman
[29] also introduced the term‘reliability coefficient’, when developing an enhanced form of
his correction formula. The formula, derived independently by Brown[11], and thus called
the Spearman–Brown formula, became a classical research method in behavioral and social
sciences.

Factor analysis was generalized to its modern, multidimensional form in the 1930s by
Thurstone[32], but the lack of adequate computing facilities restricted its usage for decades.
As Bartholomew[4, pp. 216–217]writes, factor analysis was born before its time, and it
had to mark time until the technology caught up.

Meanwhile, a variety of reliability coefficients were developed, most of them following
the Spearman–Brown tradition. Especially the work of Kuder and Richardson[19] at the
end of the 1930s had an impact on later studies. In 1951, theirformula 20 was extended
and renamed tocoefficient� by Cronbach[12]. Since then, Cronbach’s� has been used
and studied extensively (see, e.g.,[14,16,25,2,26,7,15,34,3,8]). It has become a universal
procedure of estimating the reliability[9, p. 182], although it is only a lower bound[25,7],
and may give negative estimates[13]. However, alternative approaches (see, e.g.,[17,33])
have not been adopted as common methods.

For historical reasons, the research on reliability and factor analysis has been focused
on the fields of psychology and the social sciences. A common view is that measure-
ment error is more of a problem there than in the natural sciences. However, this is only
partially true, since examples from unreliable measurements could be drawn from all of
science.

1.2. Basic concepts

Methods for assessing the quality of measurements have been developed especially in
the area ofclassical test theoryof psychometrics. From the point of view of this study, the
concept of reliability is central. In order to formally define reliability, we establish some
notation for the basic concepts.

Let x be the observed variable and� the latent true score[22, p.56]. Let ε be the random
measurement error. The fundamental equation of the classical true score model is

x = � + ε, (1.1)

with E(ε) = 0 and��ε = 0, whereE denotes the expectation and� denotes the correlation
[22, p. 56]. This allows separating the true score variance from the measurement error
variance. Thus the variance ofx can be written as

�2
x = �2

� + �2
ε (1.2)

[22, p. 57]. Based on the concepts above, we can define reliability.
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Definition 1. (Lord and Novick[22, p. 61]) Reliability of x under the true score model
(1.1) is the squared correlation betweenx and�, denoted by

�2
x� = �2

�

�2
x

= 1 − �2
ε

�2
x

= 1

1 + �2
ε

�2
�

.

The definition gives three equivalent forms of reliability, expressed with the components
of Eq. (1.2). The first form says that reliability is the ratio of the true score variance�2

� to
the total variance�2

x . The second one expresses this using the measurement error variance
�2

ε . The last form of the definition, which does not contain�2
x explicitly, follows by dividing

one by the inverse of the first form. The last form is also related to thesignal-to-noise ratio
of the measurement[22, p. 119].

In order to estimate the reliability, some further assumptions are needed, sincex is the
only observable quantity in Eq. (1.1). The classical approach is based on the principle of
parallel measurements[22, p. 48]. Two measurementsx1 = � + ε1 andx2 = � + ε2 are
said to be parallel if we assume that�2

ε1
= �2

ε2
and�ε1ε2

= 0. From the assumptions it
then follows that�2

x1
= �2

x2
= �2

x . Omitting the subscripts fromx1 andx2 we obtain their
correlation, denoted by

�xx = �2
�

�2
x

= �2
x�

[22, p. 61]. Hence, the correlation between the parallel measurements is a way to estimate
the reliability, but it requires quite rigorous assumptions on the measurement errors. In
addition, the true score is assumed to be strictly one dimensional.

Most reliability estimators in the classical test theory are based on the parallel model
and its variants. However, it is important that reliability may be defined without using the
concept of parallel measurements[22, p. 61].Yet notations of type�xx are commonly used
for reliability estimators.

Using the above definition, the measurement error variance can be given in the form

�2
ε = �2

x(1 − �xx).

By taking square roots, we obtain

�ε = �x

√
1 − �xx, (1.3)

which is known as thestandard error of measurement[22, p. 67]. It indicates the accuracy
of discriminating between the observations. The standard error of measurement is useful
because it is expressed in the units of the measurement.

The measurement framework we are constructing provides a method for estimating and
using the reliability in more general circumstances, without serious restrictions. Neverthe-
less, our method is established on the same definition of reliability.
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2. Measurement framework

In order to assess the quality of measurements in multidimensional situations, it is es-
sential to distinguish between two central concepts: (1) the measurement model, which
specifies the structure of the measurement, and discriminates it from the use of the items,
and (2) the measurement scale, which is a combination of the measured items, and repre-
sents a realization of the theoretical notions. In this paper, we focus on linear measurement
scales.

2.1. Measurement model

The structure of the measurement is a relationship between the observed variable and the
true score. In the general case, we havepobserved variables or measured itemsx1, x2, . . . , xp,
andk true scores�1, �2, . . . , �k (k < p). To analyze their relationship we define a measure-
ment model

x = � + B� + �, (2.1)

where� = (�1, . . . ,�p)′ is defined as the expectation ofx = (x1, . . . , xp)′,� = (�1, . . . , �k)
′

is the true score,� = (ε1, . . . , εp)′ is the measurement error, and the pattern matrixB ∈
Rp×k specifies the relationship betweenx and�.

The basic assumptions of model (2.1) areE(�) = 0 andCov(�, �) = 0. From (2.1), the
definitionE(x) = �, and the assumptions it follows thatE(�) = 0. We also assume that
Cov(�) = � andCov(�) = �. Under these assumptions we can present the covariance
matrix� between the measured itemsx1, x2, . . . , xp in a form

� = E[(x − �)(x − �)′] = E[(B� + �)(B� + �)′] = B�B′ + �, (2.2)

where the true score variation is separated from the measurement error variation, as in (1.2).
In addition to the above assumptions, we assume thatB has full column rank, denoted by
r(B) = k, and that the covariance matrices� and� are positive definite.

The measurement model (2.1) is related to several different approaches of modeling: the
classical true score model (1.1), the approach of the generalizability theory[14], and the
factor analysis model[20].

The essential difference between the measurement model (2.1) and the classical true
score model (1.1) is the dimensionality of the true score. In (2.1) the true score is truly
multidimensional, while in (1.1) it is strictly one dimensional.

In generalizability theory[14], which is based on procedures from analysis of variance,
number of specific variance components, associated with different features of the measure-
ment process, are included in the model as sources of errors. However, according to the
fundamental equation (1.1), measurement error is purely random noise. Thus any specific
sources of variation related to the measurement process should be modeled rather as true
scores, but this is not possible in generalizability theory because the true score remains
one-dimensional.

In factor analysis model[20, p. 6], the dimensionality is not a problem, although the
original model[27] was one dimensional in the modern terminology. However, the concept
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of specific factor has often been unclear. It is typical to interpret the specific factors as
measurement errors[1, p. 570], but it is also possible to interpret them as true scores,
assuming that we can identify them. Hence, the measurement model (2.1) corresponds
to the factor analysis model, when the common factors are seen as true scores, and the
specific factors are either interpreted as measurement errors or true scores, depending on
the identification.

When multinormality is assumed, the parameters of the measurement model (2.1) can be
estimated from a sample covariance matrix by the maximum likelihood method. However,
in the general form of the model, there are too many parameters to be estimated. Since not
all of them can be identified at the same time, it is necessary to impose some restrictions.
In this sense, the model is analogous to various generalizations of the factor analysis model
[6,10,18].

Model (2.1) conforms to the orthogonal factor analysis model, if we assume that the
measurement errors do not correlate with each other, i.e.� is diagonal, and the true scores are
uncorrelated and standardized, i.e.� = I k, an identity matrix of orderk. In an exploratory
approach, this model, with an appropriate factor rotation, is often sufficient to specify
the structure of the measurement. It is also useful to examine the residuals of the model,
i.e. the estimated variances and covariances of the measurement errors. Fine-tuning the
assumptions, by estimating some of the covariances of the measurement errors, or fixing
some elements of the pattern matrixB, takes the approach to a more confirmatory direction.

2.2. Measurement scale

Multivariate measurement scales are constructed from measurements of several multi-
dimensional attributes. The most common way is to compute linear combinations of the
measured itemsx1, x2, . . . , xp. In general, we havemscalesu = (u1, . . . , um)′ as

u = A′x = A′� + A′B� + A′�, (2.3)

whereA ∈ Rp×m is the matrix of the weights. We assume thatr(A) = m andB′ai 
=
0, i = 1, . . . , m, whereai is theith column vector ofA. The case of one scale is denoted
by u = a′x.

Using (2.3) and the properties of the measurement model (2.1), we can write the expec-
tation

E(u) = E(A′� + A′B� + A′�) = A′� (2.4)

and by (2.2) we obtain the covariance matrix

Cov(u) = A′�A = A′B�B′A + A′�A, (2.5)

where the total variation ofu is split in two parts: (1) the variation generated by the true
scores and (2) the variation generated by the measurement errors. This will be needed for
the reliability ofu.

The matrixA can be completely given by operational definitions. The scale could be a
known test or an index, where the weights are predetermined, possibly based on a certain
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theory or previous experience and knowledge. A simple example is the unweighted sum,
where all items are equally weighted.

Another possibility is that the correlation between the scale and an external criterion
variable should be maximized. In that case, the scale would be the regression estimate,
the weights being the regression coefficients. If the criterion is multidimensional, the scale
could be, e.g., a vector of canonical variables or discriminant functions.

The matrixA could also be chosen freely, e.g., to maximize the reliability of the mea-
surement scale by proper and optimal use of the items. The idea of maximizing reliability
has been discussed by many authors (see, e.g.,[6,31,29]).

Other typical measurement scales include, e.g., psychological test scales and factor scores.
As a new construction, we introducefactor images, which will be needed in assessing the
structural validity of the measurement model. For the sake of clarity, we here prefer the
term “factor” to “true score”.

Let us denote the factor images byf = (f1, . . . , fm)′ and the factor scores bys =
(s1, . . . , sm)′. In both scales it is assumed thatm = k, i.e. the number of scales equals the
number of factors in the measurement model.

Definition 2. Factor imagesf = A′x, whereA = B�, are measurement scales correspond-
ing to the factors� in the measurement model.

Factor images could be illustrated as distorted mirror images of the factors, where the
distortions are caused by the measurement errors in the observed variables. The matrix
B� = Cov(x, �) is usually called the structure matrix. In the case of uncorrelated and
standardized factors (� = I k), the structure matrix is equal to the pattern matrixB.

Definition 3. Factor scores (by regression method[30]) s = A′x, whereA = �−1B�, are
measurement scales which give the optimal predictors for the factors� in the least squares
sense[20, p. 107].

The expectations of factor images and factor scores follow immediately from (2.4):
E(f) = �B′� andE(s) = �B′�−1�. Similarly, the covariance matrices areCov(f) =
�B′�B� andCov(s) = �B′�−1B�. However, for the reliabilities of the scales we need
the explicit separation of the variation as in (2.5). Thus, the covariance matrices of factor
images and factor scores become

Cov(f) = �B′B�B′B� + �B′�B� (2.6)

and

Cov(s) = �B′�−1B�B′�−1B� + �B′�−1��−1B�. (2.7)

All measurement scales mentioned above could be calledfirst-order scales. They are typ-
ically produced by various methods of multivariate statistical analysis. Sometimes it is
useful to create linear combinations of the first-order scales for further analysis. These
second-order scalesz = (z1, . . . , zs)

′ would then be

z = W′u = W′A′x = W′A′� +W′A′B� +W′A′�, (2.8)
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whereW ∈ Rm×s is the matrix of the second-order weights. Equivalently with (2.4), we
haveE(z) = W′A′�, and by (2.5) we obtain

Cov(z) = W′A′B�B′A W +W′A′�A W. (2.9)

The idea of the second-order scales is to take advantage of the original measurement model
and other information on the structure of the measurement, when creating additional scales,
e.g., for prediction, or classification of observations.

For example, we could first perform a factor analysis of, say, fifty items and five factors,
based on a measurement model with appropriate assumptions. As a result, we would save
the factor scores as new variables in the data. Next, we could perform a regression analysis,
using the factor scores as explanatory variables.The regression coefficients would then be the
weights of the second-order scale. In each scale, the variation generated by the measurement
errors is separated from the variation generated by the factors, which facilitates assessing
reliability and validity of the scales.

2.3. Reliability

As a central element of our measurement framework, we introduce a new, general method
of estimating the reliability of multivariate measurement scales. We establish our method
on the classical definition of reliability, given in Section1.2 as Definition1. The building
blocks of the method are the central concepts of the framework, namely measurement model
and measurement scale.

The true score variance and the measurement error variance of the classical definition
need to be generalized to the variance generated by the true scores, and the variance gener-
ated by the measurement errors, respectively. This was already completed in (2.5), where the
total variation of the measurement scaleu was split in two parts according to the measure-
ment model (2.1). Now, it is sufficient to consider the variances, i.e. the diagonal elements
diag(A′�A) = diag(a′

1�a1, . . . , a′
m�am). Dealing similarly withA′B�B′A andA′�A,

we have, in accordance with (2.5), a separation of the variances

diag(A′�A) = diag(A′B�B′A) + diag(A′�A). (2.10)

The method of estimating the reliability then follows, simply by dividing the proper vari-
ance expressions by another. In the classical notation,�uu stands for the reliability ofu.
Analogously, we denote the reliability ofu by �u, which is a diagonal matrix of orderm.
Proceeding from (2.10), we obtain

�u = diag(A′B�B′A) × [diag(A′�A)]−1 (2.11)

or in alternative forms (see Definition1)

�u = Im − diag(A′�A) × [diag(A′�A)]−1 (2.12)

or

�u = {Im + diag(A′�A) × [diag(A′B�B′A)]−1}−1, (2.13)
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where Im is an identity matrix of orderm. In the case of one scale,u = a′x,
Eqs. (2.11)–(2.13) reduce to

�uu = a′B�B′a
a′�a

, (2.14)

�uu = 1 − a′�a
a′�a

(2.15)

and

�uu = 1

1 + a′�a
a′B�B′a

, (2.16)

respectively.
Obviously, 0��uu �1, but since our assumptions related to the matricesB, A, �, and

� imply that the variances of the scales are positive, we can infer that 0< �uu �1. The
same applies to the diagonal elements of�u. The reliability of 1 is reached only if the
measurement errors do not generate any variance to the corresponding scale. It is unlikely,
however, since measurements practically always contain measurement errors.

Multiplying Eq. (2.12) from right bydiag(A′�A) and rearranging the terms gives

diag(A′�A) = (Im − �u) × diag(A′�A), (2.17)

which emphasizes the role of�u. The scales with a high reliability contain less variation
generated by the measurement errors, and vice versa. The square root of (2.17) is the
standard error of measurement, a generalization of Eq. (1.3). It indicates the accuracy of
discriminating between the observations by different measurement scales. Since the standard
error of measurement is expressed in the units of the measurement, it often provides a
concrete picture of the measurement accuracy.

In Section2.2, we presented three special measurement scales, namely the factor images
f, the factor scoress, and the second-order scalesz. The reliabilities of these scales are
denoted by�f , �s, and�z, and they follow immediately by substituting the covariance
matrices of (2.6), (2.7), and (2.9) in (2.11). Hence, we have

�f = diag(�B′B�B′B�) × [diag(�B′�B�)]−1, (2.18)

�s = diag(�B′�−1B�B′�−1B�) × [diag(�B′�−1B�)]−1 (2.19)

and

�z = diag(W′A′B�B′A W) × [diag(W′A′�A W)]−1, (2.20)

which may be written in any of the alternative forms given above.
Finally, we briefly examine the relationship between our measurement framework and

the classical approach, especially concerning the way of estimating the reliability. Indeed,
special cases of our method include some well-known procedures, in particular Cronbach’s
� [12], which “has been derived dozens of times from different theoretical starting points”
[9, p. 182]. To show how Cronbach’s� relates to our method, we derive it once more,
applying the concepts of our measurement framework.
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We begin from the measurement model (2.1). The first assumption behind Cronbach’s�
concerns the true score: it is assumed to be one dimensional. Hence, the model becomes

x = � + b� + �,

whereb = (b1, . . . , bp)′ and� is the true score. In addition, the items are assumed to be
equally good indicators of the same true score, and thus we can writeb = 1= (1, . . . , 1)′,
which leads to a simpler model

x = � + 1� + �.

The basic assumptions of the model are identical with (2.1). In addition, the measurement
errors are assumed to be uncorrelated with each other. Denoting�2

� by � and following
(2.2), we have a matrix of equal covariances

� = 1�1′ + diag(�).

The traditional measurement scale is the unweighted sum of the items, denoted here by
u = 1′x. Its variance is obtained by applying (2.5):

�2
u = 1′�1= 1′1�1′1+ 1′diag(�)1= p2� + tr(�),

where tr denotes the trace. Thus, by (2.14), the reliability ofu becomes

�uu = p2�
1′�1

= p

p − 1

(
p(p − 1)�

1′�1

)
= p

p − 1

(
p2� − p�

1′�1

)
,

but sincep2� = 1′�1− tr(�) and tr(�) + p� = tr(�), we end up with

�uu = p

p − 1

(
1 − tr(�)

1′�1

)
= p

p − 1

(
1 −

∑p
i=1 �2

xi

�2
u

)
,

which is the original form of Cronbach’s� [12, p. 299].
Hence, Cronbach’s� is a special case of�u (2.11), but only when the assumptions on

both the measurement model and the measurement scale are extremely strict: the true score
is one dimensional, the items have equal covariances, and the scale is an unweighted sum.
It is notable that these assumptions are not visible in the appearances of Cronbach’s�. It
seems that all that is needed is the covariance matrix of the items. However, the assumptions
affect the conclusions nevertheless. Biased or even meaningless values are obtained, if the
assumptions are not valid. A common problem is to obtain negative values with Cronbach’s
�, although it is essentially a ratio of two variances, i.e. nonnegative parameters.

Most empirical problems are multidimensional. It is difficult to develop items that mea-
sure only one true score. However, the strict assumption of the one-dimensional true score
is the essence in Cronbach’s�, or likewise in the classical true score model (1.1) and in the
generalizability theory[14].

In our general approach, we have multiple true scores, which may be correlated if desired.
Even the measurement errors may correlate with each other, if the other parts of the model are
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acceptably specified. The measurement model and measurement scale are defined without
any serious restrictions. The assumptions related to the matricesB, A, �, and� are merely
technical. They ensure that the scales have positive variances, i.e. they are not constants.
Our method of estimating the reliability of measurement scales is a general method, as it
does not suffer from any strict assumptions.

2.4. Validity

The concept of validity includes several aspects that have been analyzed in the literature
of psychological measurement (see, e.g.,[5, p. 20]). Within our framework, two aspects
can be addressed, namelystructural validityandpredictive validity. The structural validity
is a property of the measurement model, and the predictive validity is a property of the
measurement scale. In addition to the statistical approach, the knowledge of the theory and
practice of the application is necessary.

Since the measurement model forms the core of the measurement framework, and affects
the quality of the measurement scales, the question of structural validity is essential. It
should be examined based on the estimation of the measurement model (2.1). A definite
hypothesis on the dimension of the true score and the effects of the true scores on the
observed variables may then be tested, and the lack of structural validity revealed. The true
score or factor images and the residuals of the model are useful in this task. An appropriate
factor rotation also contributes to the structural validity of the measurement model.

If an external criterion variabley is available, the predictive validity of a measurement
scaleucan be assessed by�uy , the correlation between the scale and the criterion. However,
this correlation is attenuated by the measurement errors in the original measurements[22,
p. 71]. A correction for attenuation, introduced already by Spearman[27], takes advantage
of the reliabilities ofuandy to provide an estimate of the correlation between the true value
of the scale and the criterion.

Using the measurement model (2.1), we denote the true value of the scaleu = a′x by

� = u − a′� = a′(� + B�). (2.21)

Then, we can correct the predictive validity�uy for attenuation by

��y = �uy√�uu�yy

, (2.22)

where�uu and �yy are the reliabilities ofu and y, respectively. If there is no specific
information on the precision of the criterion, we must assume that�yy = 1.

The attenuation formula (2.22) stresses the importance of the reliability in assessing the
predictive validity. Underestimation of�uu, which is a commonly known weakness of the
classical procedures, leads to overestimation of��y [22, p. 138]. Serious underestimation of
reliability will simply explode the estimate of��y and make it useless. Therefore, a proper
estimate of reliability is a requisite in assessing both the precision and the predictive validity
of measurement scales.
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3. Example of application

In the following, we consider predicting the performance in mathematics by a psycho-
logical test. Our data originate from a study conducted for 115 pupils of secondary school
in Finland[23]. We note that more than a psychological data analysis, our example serves
as a technical demonstration of the measurement framework.

The central question is the dimensionality of the problem. It should be answered primarily
based on the theory of the application. Here we follow the researcher’s conception and
assume that the true score is two dimensional, and consists of verbal ability and deductive
ability. The abilities are measured with a psychological test constructed of nine items,
which are described in Table1. The mathematical performance is assessed by two separate
criteria: (1) the result in a national mathematical examination and (2) the school grade in
mathematics.

3.1. Measurement model

The assessment of the quality of the measurement begins by the specification and esti-
mation of the measurement model. Our approach of the study is exploratory. We assume
the measurement errors uncorrelated with each other, and the true scores uncorrelated and
standardized. This leads to a measurement model, which conforms to the orthogonal factor
analysis model. In practice, that model is often sufficient to specify the structure of the
measurement, although the framework also allows making more general assumptions.

Hence, the model is written as

x = � + B� + �, (3.1)

which is equal to model (2.1) and its assumptions, except that we now assume thatCov(�) =
I2, andCov(�) = diag(�). Under these assumptions the covariance structure becomes

� = B B′ + diag(�), (3.2)

but, since the items may have different scales of measurement, it is preferable to standardize
them, i.e. use correlations instead of covariances. Then,� denotes the correlation matrix
given in Table2. The highest correlation is 0.708 between the verbal items V13 and V5.

The elements of the matrixB, which are now the factor loadings, can be estimated by any
factor analysis method. Similarly, we could apply confirmatory factor analysis, if we had
more support from the psychological theory. According to our assumption of the dimen-
sionality,k = 2, and hence we extract a two-factor solution using the maximum likelihood
(ML) method, and apply varimax rotation for an easier interpretation. The loadings are
presented in Table3, together with the communalities.

3.2. Structural validity

Let us first consider different aspects of the structural validity of the measurement model.
An important part of the structure is an appropriate factor rotation. Here, we accept the
varimax rotation without discussing it in detail, and in the sequel, we simply denote the
rotated factor matrix byB.
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Table 1
Descriptions of the observed variables

Psychological test items:
V13 Verbal fluency, completion of a sentence
R4/0 Deduction, continuing a list of numbers
D Deductive reasoning
V5 Verbal problem, finding synonyms
S1 Spatial comprehension, unfolded figures
I Inductive reasoning, series of numbers
Vz Visual problem, inverted figures
N3 Numerical ability, arithmetics
P1 Perceptual recognition, numbers and letters
Criterion variables:
Exam National mathematical examination
Grade School grade in mathematics

Table 2
Correlations of the psychological test items

Item V13 R4/0 D V5 S1 I Vz N3 P1
V13 1.000
R4/0 0.349 1.000
D 0.394 0.597 1.000
V5 0.708 0.404 0.410 1.000
S1 −0.108 0.274 0.050 0.077 1.000
I 0.406 0.671 0.576 0.476 0.205 1.000
Vz −0.016 0.275 0.261 −0.049 0.390 0.296 1.000
N3 0.411 0.572 0.520 0.368 0.112 0.641 0.253 1.000
P1 0.542 0.508 0.426 0.371 0.128 0.508 0.018 0.427 1.000

Table 3
Factor loadings and communalities, two factors

Item ML solution Varimax rotation Communality

Factor 1 Factor 2 Factor 1 Factor 2

V13 0.997 −0.017 0.991 −0.110 0.995
R4/0 0.363 0.736 0.430 0.699 0.673
D 0.406 0.575 0.457 0.535 0.495
V5 0.713 0.187 0.727 0.120 0.543
S1 −0.102 0.369 −0.067 0.377 0.146
I 0.420 0.730 0.486 0.688 0.709
Vz −0.010 0.404 0.027 0.404 0.164
N3 0.422 0.592 0.475 0.550 0.529
P1 0.550 0.366 0.581 0.313 0.436

The columns of the matrixB given in Table3 are the factor imagesf (see Definition
2). They seem to support our assumption of the dimensionality: the first factor image cor-
responds to the verbal ability, the highest loadings being on items V13 and V5, while the
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Table 4
Factor loadings and communalities, three factors

Item ML solution Varimax rotation Communality

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

V13 0.641 −0.017 0.764 0.964 0.219 0.131 0.995
R4/0 0.479 0.658 0.070 0.226 0.745 −0.246 0.667
D 0.338 0.596 0.246 0.258 0.680 −0.023 0.529
V5 0.577 0.136 0.445 0.671 0.311 −0.056 0.550
S1 0.690 −0.009 −0.720 0.015 0.034 −0.997 0.995
I 0.468 0.682 0.155 0.268 0.778 −0.175 0.709
Vz 0.294 0.268 −0.263 −0.030 0.284 −0.382 0.228
N3 0.398 0.581 0.217 0.285 0.674 −0.085 0.543
P1 0.499 0.316 0.297 0.474 0.449 −0.105 0.438

second factor image corresponds to the deductive ability, with the highest loadings on items
R4/0 and I.

The reliabilities of the factor images are obtained by applying Eq. (2.18). Since now
� = I2, we have

�f = diag[(B′B)2] × [diag(B′�B)]−1,

which gives a reliability of 0.920 for the verbal ability factor image, and 0.861 for the
deductive ability factor image. It is not uncommon that in a multidimensional context,
some dimensions are measured with greater precision than others. Here, the verbal ability
seems to be slightly better measured.

Table 3 indicates that the items S1 and Vz have very low communalities. Instead of
rejecting the items, we could consider the option that we are missing one dimension. In
some circumstances, a new common factor may clear the structure, at least if there is
something in common with the weak items. We could think that the items S1 and Vz
were representing some sort of a spatial concept. We remind that this example is mainly a
technical demonstration of the measurement framework. To show how a new factor affects
the estimates and the structural validity, we extract a three-factor solution similarly as above,
and examine its properties.

The rotated three-factor solution in Table4 is consistent with the two-factor solution, but
it also reveals the weakness of the spatial concept. The only item that has a considerable
loading on the third factor is S1, the spatial comprehension. Adding an extra dimension will
increase the estimates of the reliabilities, since the measurement errors are estimated based
on the residuals of the model, and increasing the number of factors decreases the residuals.
Here, the reliabilities of the first two factor images are 0.925 and 0.894. The reliability
of the new spatial concept factor image is also 0.925. However, the dimensionality of the
measurement model should be primarily decided according to the theory of the application.

We decide to keep all items and continue with two factors, according to the original
assumption of the researcher. Two factors are enough to make the point in this technical
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Table 5
Estimated error variances and covariances from two-factor solution

Item V13 R4/0 D V5 S1 I Vz N3 P1
V13 0.005
R4/0 −0.000 0.327
D −0.000 0.027 0.505
V5 0.000 0.008 0.014 0.457
S1 −0.000 0.039 −0.121 0.081 0.854
I −0.000 −0.018 −0.014 0.040 −0.021 0.291
Vz 0.002 −0.019 0.033 −0.117 0.240 0.005 0.836
N3 0.000 −0.017 0.008 −0.044 −0.063 0.032 0.018 0.471
P1 0.001 0.039 −0.007 −0.089 0.049 0.010 −0.124 −0.021 0.564

demonstration, and probably three factors of nine items would be exaggeration. Our con-
clusion is that the two-dimensional structure can be considered valid, although certain items
seem to be poor. In further studies, better items would be needed. Then it could be possible
to improve the analysis in three dimensions.

Hence, we revert to the two-factor solution of Table3. Yet another way to assess the
structural validity, especially the dimensionality, is to look at the residuals, i.e. the estimates
of the measurement error variances and covariances given in Table5. According to (3.2),
this matrix should be diagonal. Larger deviations from zero in the covariance elements
imply that we should reconsider the dimension of the true score, or perhaps the assumption
of the correlations of the measurement errors.

The residuals do not seem to indicate any hidden variation, except the largest residual
0.240, which is the estimated covariance between the measurement errors of S1 and Vz, the
spatial and visual items. Those items also have the lowest communalities in the two-factor
model. If we were creating a scale of spatial and visual skills, we would obviously need
more items to strengthen the scale. If the spatial concept was essential from the theoretical
point of view, we should perhaps make a new iteration of the analysis with better items.

3.3. Measurement scales

We now change the focus from the measurement model to the measurement scales. It is
worthwhile to note that the same items can be used to create scales according to varying
criteria by weighting them differently. As stated earlier, there are two separate criteria for
predicting the performance in mathematics: the national examination and the school grade.
We denote these criteria byy1 andy2, respectively. For both criteria, we have to find the
scales that have the highest predictive validity.

The best linear predictors fory1 andy2 are found by linear regression analyses, using the
test items as explanatory variables (see Table6). The ‘best’ items for predicting the perfor-
mance in the national examination are D and I, the deductive and inductive reasoning. The
correspondingt-values are 1.937 and 2.578, respectively. The school grade of mathematics
is ‘best’ predicted by S1 and N3, the spatial comprehension and numerical ability. Their
t-values are 2.479 and 2.126, respectively. The multicollinearity may of course affect the
interpretation of the regression coefficients.
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Table 6
Regression coefficients for criterion variables

Criterion V13 R4/0 D V5 S1 I Vz N3 P1

Exam(y1) 0.067 0.197 0.205 −0.075 0.107 0.318 −0.025 0.017 −0.046
Grade(y2) −0.029 0.125 −0.014 0.083 0.258 0.113 −0.172 0.256 −0.142

Let us denote the scales predictingy1 andy2 byu1 = a′
1x andu2 = a′

2x, wherea1 anda2
are the vectors of the regression coefficients given in Table6. The estimate of the predictive
validity is given by the correlation between the scale and the criterion. The figures are not
very high:�u1y1

= 0.623 and�u2y2
= 0.464. The effect of the measurement errors reduces

the correlations. To employ the correction for attenuation, we need the reliabilities of the
scales and the criteria. As we do not have any information on the latter, we have to assume
that�y1y1

= �y2y2
= 1. Using Eq. (2.14), we obtain the reliabilities of the scales:

�u1u1
= a′

1B B′a1

a′
1�a1

= 0.808

and

�u2u2
= a′

2B B′a2

a′
2�a2

= 0.447

and hence we can correct the estimates of the predictive validity for attenuation, by applying
the attenuation formula (2.22). Following (2.21), we denote the true values of the scales by
�1 = a′

1(� + B�) and�2 = a′
2(� + B�) to obtain

��1y1
= �u1y1√�u1u1

�y1y1

= 0.693

and

��2y2
= �u2y2√�u2u2

�y2y2

= 0.694. (3.3)

Although the figures are practically equal, it seems that the national examination might be
a simpler and more reliable indicator of the mathematical ability than the school grade.

Finally, we create scales for assessing the verbal and deductive abilities of the pupils.
The best predictive scales in the least squares sense are the factor scores (see Definition
3) s = A′x, whereA = �−1B, since now� = I2. The coefficientsA are given in Table
7. Since factor scores often represent the factors in further analyses, it is important to
carefully examine the structural validity of the measurement model before computing the
factor scores.

The reliabilities of the factor scores are obtained by applying Eq. (2.19) with � = I2:

�s = diag[(B′�−1B)2] × [diag(B′�−1B)]−1,

which gives a reliability of 0.994 for the verbal ability factor score and 0.850 for the deductive
ability factor score. The corresponding standard errors of measurement, by (2.17) and taking
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Table 7
Factor score coefficients, two factors

Factor V13 R4/0 D V5 S1 I Vz N3 P1

Verbal 0.928 0.037 0.020 0.013 0.005 0.042 0.007 0.022 0.014
Deductive −0.614 0.338 0.171 0.061 0.065 0.377 0.073 0.189 0.097

square roots, are 0.077 and 0.357, respectively. The verbal ability factor score is practically
identical to the best item V13, the verbal fluency, thus making the reliability of the scale
exceptionally high. In practice, we should have more indicators of the ability dimensions.

In conclusion, it is essential to specify the structure of the measurement and assess its
validity, but it is also important to create the proper scales. If any criteria are available,
the weights for the items can be estimated by regression method. Otherwise, it is a good
practice to compute the factor scores and weight them according to the theory. A proper
way of estimating the reliability of measurement scales is a requisite in each phase of the
analysis.

Acknowledgments

We are grateful toDr. Simo Puntanenfor his thoughtful remarks and suggestions. Com-
ments by the referees were also helpful, and improved the clarity.

References

[1] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New Jersey, 2003.
[2] D.J. Armor, Theta reliability and factor scaling, in: H.L. Costner (Ed.), Sociological Methodology, Jossey-

Bass, San Francisco, 1974, pp. 17–50.
[3] K.A. Barchard, A.R. Hakstian, The effects of sampling model on inference with coefficient alpha, Educ.

Psychol. Measure. 57 (1997) 893–905.
[4] D.J. Bartholomew, Spearman and the origin and development of factor analysis. Br. J. Math. Statist. Psychol.

48 (1995) 211–220.
[5] D.J. Bartholomew, The Statistical Approach to Social Measurement, Academic Press, London, 1996.
[6] D.J. Bartholomew, M. Knott, Latent Variable Models and Factor Analysis, Arnold, London, 1999.
[7] P.M. Bentler, J.A. Woodward, The greatest lower bound to reliability, in: H. Wainer, S. Messick (Eds.),

Principals of Modern Psychological Measurement, Erlbaum, New Jersey, 1983, pp. 237–253.
[8] J.M.F. ten Berge, W.K.B. Hofstee, Coefficient alpha and reliabilities of unrotated and rotated components,

Psychometrika 64 (1999) 83–90.
[9] S.F. Blinkhorn, Past imperfect, future conditional: fifty years of test theory, Br. J. Math. Statist. Psychol. 50

(1997) 175–185.
[10] K.A. Bollen, Structural Equations with Latent Variables, Wiley, New York, 1989.
[11] W. Brown, Some experimental results in the correlation of mental abilities, Br. J. Psychol. 3 (1910) 296–322.
[12] L.J. Cronbach, Coefficient alpha and the internal structure of tests, Psychometrika 16 (1951) 297–334.
[13] L.J. Cronbach, W. Hartmann, A note on negative reliabilities, Educ. Psychol. Measure. 14 (1954) 342–346.
[14] L.J. Cronbach, N. Rajaratnam, G.C. Gleser, Theory of generalizability: a liberalization of reliability theory,

Br. J. Statist. Psychol. 16 (1963) 137–163.
[15] L.J. Cronbach, Internal consistency of tests: analyses old and new, Psychometrika 53 (1988) 63–70.



L. Tarkkonen, K. Vehkalahti / Journal of Multivariate Analysis 96 (2005) 172–189 189

[16] L.S. Feldt, The approximate sampling distribution of Kuder-Richardson reliability coefficient twenty,
Psychometrika 30 (1965) 357–370.

[17] D.R. Heise, G.W. Bohrnstedt, Validity, invalidity and reliability. In: E.F. Borgatta, G.W. Bohrnstedt (Eds.),
Sociological Methodology, Jossey-Bass, San Francisco, 1970, pp. 104–129.

[18] K.G. Jöreskog, A general method for analysis of covariance structures, Biometrika 57 (1970) 239–251.
[19] G.F. Kuder, M.W. Richardson, The theory of the estimation of test reliability, Psychometrika 2 (1937)

151–160.
[20] D.N. Lawley, A.E. Maxwell, Factor Analysis as a Statistical Method, 2nd ed., Butterworth, London, 1971.
[21] F.M. Lord, Sampling fluctuations resulting from the sampling of test items, Psychometrika 20 (1955) 1–22.
[22] F.M. Lord, M.R. Novick, Statistical Theories of Mental Test Scores, Addison-Wesley, London, 1968.
[23] V. Malinen, Grounds for success in mathematics in secondary school, Unpublished Master’s thesis (in

Finnish), Department of Education, University of Helsinki, 1980.
[24] C.I. Mosier, On the reliability of a weighted composite, Psychometrika 8 (1943) 161–168.
[25] M.R. Novick, C. Lewis, Coefficient alpha and the reliability of composite measurements, Psychometrika 32

(1967) 1–13.
[26] N.S. Raju, A generalization of coefficient alpha, Psychometrika 42 (1977) 549–565.
[27] C. Spearman, The proof and measurement of association between two things, Am. J. Psychol. 15 (1904)

72–101.
[28] C. Spearman, General intelligence objectively determined and measured, Am. J. Psychol. 15 (1904)

201–293.
[29] C. Spearman, Correlation calculated from faulty data, Br. J. Psychol. 3 (1910) 271–295.
[30] G.H. Thomson, The Factorial Analysis of Human Ability, University of London Press, 1939.
[31] G.H. Thomson, Weighting for battery reliability and prediction, Br. J. Psychol. 30 (1940) 357–366.
[32] L.L. Thurstone, Multiple factor analysis, Psychol. Rev. 38 (1931) 406–427.
[33] C.E.Werts, R.D. Rock, R.L. Linn, K.G. Jöreskog,A general method of estimating the reliability of a composite,

Educ. Psychol. Meas. 38 (1978) 933–938.
[34] R.R. Wilcox, Robust generalizations of classical test reliability and Cronbach’s alpha, Br. J. Math. Statist.

Psychol. 45 (1992) 239–254.


	Measurement errors in multivariate measurement scales
	Introduction
	Historical background
	Basic concepts

	Measurement framework
	Measurement model
	Measurement scale
	Reliability
	Validity

	Example of application
	Measurement model
	Structural validity
	Measurement scales

	References


