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Abstract

The process of electron–positron annihilation into proton–antiproton pair is considered within the vicin-
ity of ψ(3770) resonance. The interference between the pure electromagnetic intermediate state and the 
ψ(3770) state is evaluated. It is shown that this interference is destructive and the relative phase between 
these two contributions is large (φ0 ≈ 250◦).
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Large statistics of J/ψ , ψ(2S) and ψ(3770) samples have been obtained in recent years by 
BEPCII/BESIII facility [1]. It provides the possibility to study many decay channels of J/ψ , 
ψ(2S) and ψ(3770) resonances. In a profound work, BESIII has measured the phase angle φ
between the continuum and resonant amplitudes [2] and found two possible solutions, which 
are φ = (266.9 ± 6.1 ± 0.9)◦ or φ = (255.8 ± 37.9 ± 4.8)◦. This means that the strong decay 
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Fig. 1. Feynman diagrams of processes e+ + e− → p̄ + p in Born approximation and with the quarkonium ψ(3770)

intermediate state.

amplitude and electromagnetic decay amplitude are almost orthogonal. The BESIII data were 
taken as an energy scan in the vicinity of ψ(3770). The data show some structure: clearly seen dip 
in the energy strip of size of the resonance ψ(3770) width, which had been observed previously 
by CLEO Collaboration for some mesonic decay channels [3].

In this note we try to explain this rather specific behavior of the total cross section of process 
e+e− → pp̄ in the energy range close to resonance ψ(3770) creation.

In contrast to the channel e+e− → ψ(3770) → μ+μ−, in process of hadron creation (i.e. 
e+e− → ψ(3770) → π+π−, p̄p, n̄n), a QCD gluonic state contribution to the hadron (in par-
ticular nucleon) formfactor ψ → p̄p is to be investigated. Besides the Breit–Wigner character of 
the amplitude, one must take into account the specific character of interaction of quarkonium to 
nucleon–antinucleon pair mediated through 3 gluon intermediate state and the final state interac-
tion of the created nucleon pair.

The second effect is the final state interaction phase of amplitude which arises mostly from 
large distances (or soft exchanges of final stable hadrons). It has the same form for γ ∗ → p̄p and 
for ψ → p̄p vertexes and we can safely assume its cancellation in the interference of pure QED 
and quarkonium states.

On the contrary, the phase which arises from 3 gluon state can essentially affect on the Breit–
Wigner character of pure QED final state.

It is the motivation of this paper to investigate the detailed behavior of the total cross section 
in the energy range within the mass of a narrow resonance ψ(3770).

2. Born approximation

We consider two mechanisms of creation of a pp̄ in electron–positron collisions (see Fig. 1)

e+(q+) + e−(q−) → p(p+) + p̄(p−). (1)

One proceeds through virtual photon intermediate state (see Fig. 1(a)), leading to the contribution 
to matrix element

MB = 4πα

s
G(s)J e

μJpμ, (2)

where lepton J e
μ and proton Jp

μ currents have a form:

J e
μ = v̄(q+)γμu(q−), J p

μ = ū(p+)γμv(p−),

and G(s) is the model-dependent proton formfactor.
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In the recent paper [4] the remarkable relation F1(
√

s ∼ 2 GeV) = 1, F2(
√

s ∼ 2 GeV) = 0
for proton formfactors near the threshold was obtained which meant, that proton in some envi-
ronment near the 

√
s ∼ 2–3 GeV can be considered as a point-like particle. Assuming this facts 

and keeping in mind the closeness of the considered energy range to the pp̄ threshold we put 
further G(s) = 1. The corresponding contribution to the differential cross section

dσ

dΩ
= α2β

4s

(
2 − β2 sin2 θ

)
, s = (q+ + q−)2 = 4E2, β2 = 1 − m2

E2
, (3)

where m is the proton mass, 
√

s = 2E is the total energy in center of mass reference frame (cmf), 
E is the electron beam energy and the scattering angle θ is the cmf angle between the 3-momenta 
of the initial electron q− and the created proton p+. The total cross section then

σB(s) = 2πα2β(3 − β2)

3s
. (4)

3. The quarkonium ψ(3770) contribution: three gluon vertex

The second mechanism (see Fig. 1(b)) describes the conversion of electron–positron pair to 
ψ(3770) with the subsequent conversion to the proton–antiproton pair through three gluon inter-
mediate state (see Fig. 2(a)).

For this aim we put the whole matrix element as

M =MB +M(3g)
ψ , (5)

where the contribution with ψ(3770) intermediate state is

M(3g)
ψ = ge

s − M2
ψ + iMψΓψ

J e
ν J ν

(3g). (6)

Here we assumed that vertex ψ → e+e− has the same structure as γ → e+e−, i.e.:

J
μ

ψ→e+e− = geJ
μ
e , (7)

and the constant ge is defined via ψ → e+e− decay (g2
e = 12πΓψ→e+e−/Mψ ) thus giving ge =

1.6 · 10−3 [5].
The current J ν

(3g) which describes the transition of ψ(3770) with momentum q = 2p into 
proton–antiproton pair via three gluon intermediate state (see Fig. 2(a)). The gluons in Fig. 2(a) 
interact with colour degrees of freedom in the proton block. The dynamics of this block between 
gluon interaction vertexes is complicated, but for simplicity we approximate it with effective 
fermion propagator with proton mass. That thus gives:

J ν
(3g) = R(4παs)

3gcol

∫
d4k1 d4k2 d4k3(2π)−8

k2
1k2

2k2
3((p+ − k1)2 − m2)((p− − k3)2 − m2)

× δ(q − k1 − k2 − k3)
[
ū(p+)Ôνv(p−)

]
, (8)

where αs is the strong interaction coupling which is associated with each gluon line and Ôν is

Ôν = Ôαβγ
ν γα(/p+ − /k1 + m)γβ(−/p− + /k3 + m)γγ (9)

and
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Fig. 2. Vertexes of ψ(3770) transition into proton–antiproton pair.

Ôαβγ
ν = Tr

[
Ôαβγ (/p + M)γν(/p − M)

]
,

Ôαβγ = γγ (−/p + /k3 + M)γβ(/p − /k1 + M)γα

((p − k3)2 − M2)((p − k1)2 − M2)
+ permutations, (10)

where p and M are the 4-momentum and the mass of the charmed quark (antiquark) inside 
ψ(3770) state and one must take into account the contributions from all gluon lines permutations. 
Color factor

gcol = 〈p|(3/4)dabctatbtc|p〉 = 5/6 (11)

describes the interaction of gluons with quarks of the proton. The quantity R is connected with 
wave function of ψ(3770) and is derived in Appendix A.

Thus the contribution to the total cross section arising from the interference of relevant am-
plitudes has the form

δσ3g = 1

8s
2 Re

[ ∑
spins

∫
M∗

BM
(3g)
ψ dΓ2

]
, (12)

where two-particle phase volume dΓ2 is

dΓ2 = d3p+
2E+

d3p−
2E−

1

4π2
δ4(q − p+ − p−) = β

16π
d cos θ, (13)

and θ is again the angle between the directions of initial electron q− and the produced proton p+.
To perform the summation over spin states we use the method of invariant integration [6]:

∑
spins

∫
dΓ2 Jp∗

μ J (3g)
ν = 1

3

(
gμν − qμqν

q2

)∫
dΓ2

∑
spins

J
p∗
λ J (3g)λ = −2sβ

3π
Q, (14)

where

Q = 1
Tr

[
(/p+ + m)Ôλ(/p− + m)γλ

]
. (15)
4
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Thus we get for the contribution to the total cross section

δσ3g = Re

(
S3g(s)

s − M2
ψ + iMψΓψ

)
, (16)

where

S3g(s) = − α

24
gegcolRα3

s βZ(β), (17)

Z(β) = 4

π5s

∫
d4k1 d4k2 d4k3δ(2p − k1 − k2 − k3)

k2
1k2

2k2
3((p+ − k1)2 − m2)((p−k2)2 − m2)

Q

= H(β) + iF (β), (18)

where H(β) and F(β) are correspondingly real and imaginary part of vertex ψ → 3g → pp̄, 
i.e. function Z(β). Our approach consists in calculation of the s-channel discontinuity of Z(β)

with the subsequent restoration of real part H(β) with the use of dispersion relation. For this aim 
we use the Cutkosky rule for gluon propagators

1

(k2
1 + i0)

1

(k2
2 + i0)

1

(k2
3 + i0)

→ (−2πi)3δ
(
k2

1

)
δ
(
k2

2

)
δ
(
k2

3

)
. (19)

This allows us integrate over phase volume of three gluon intermediate state as

dΦ3 = d4k1d
4k2d

4k3

(2π)5
δ
(
k2

1

)
δ
(
k2

2

)
δ
(
k2

3

)
δ4(2p − k1 − k2 − k3)

= (2π)−5 1

8
dx1dx2dΩ1dΩ2δc, (20)

where

δc = δ
(
c − p(x)

)
, p(x) = 1 − 2

x1 + x2 − 1

x1x2
,

xi ≡ ωi

E
, x1 + x2 + x3 = 2,

and c is the cosine of the angle between directions k1 and k2. It is convenient to write the phase 
volume element in form

dΦ3 = sπ2

8(2π)5
dx1 dx2 dγ θ(1 − x1)θ(1 − x2)θ(x1 + x2 − 1),

dγ = dΩ1dΩ2

4π2
δc = 1

π

dc1dc2√
D

, D = 1 − c2
1 − c2

2 − p2(x) + 2c1c2p(x), (21)

where dΩi is the phase volumes of the on mass shell gluons and c1,2 ≡ cos(p+, k1,2). So we 
obtain s-channel discontinuity of Z in the form:

i�sZ =
1∫

0

dx1

1∫
1−x1

dx2

∫
dγ

Q1

C1C2
= F(β), (22)

where C1 = x1(1 − βc1) and C2 = x2(1 + βc2) and the integration over phase volume dγ is 
performed in the kinematical region where D > 0. Explicit form of i�Z and Q1 are given in 
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Fig. 3. The numerical estimation of the quantity H(β) (see (18) and (24)) as a function of β .

Appendix B. The angular integration can be performed using the form of the phase volume given 
above and the set of integrals given in Appendix B.

As we are interested in the energy region close to the mass of resonance, we use some trick to 
restore the real part of Z by means of dispersion relations. For this aim we do a replacement

Z(s) → Ψ (s) = M2
ψ

s
Z(s), Ψ (s) = Z(s)

M2

E2
= M2

E2

(
H(β) + iF (β)

)
. (23)

We use the Cauchy theorem (un-substracted dispersion relation) to obtain the real part:

H(β) =P 1

π

1∫
0

dβ2
1

β2
1 − β2

F(β1)

= 1

π

{
F(β) ln

1 − β2

β2
+

1∫
0

2β1dβ1

β2
1 − β2

[
F(β1) − F(β)

]}
. (24)

The quantity H(β) as a function of β is shown in Fig. 3.

4. The quarkonium ψ(3770) contribution: D0 mesons loop vertex

It is known that the main contribution to the decay width of ψ(3770) arise from the OZI 
non-violating channels ψ(3770) → D̄D [5]. However the contribution of D̄D state as an inter-
mediate state converting to proton–antiproton is expected to be small. The main reason for this is 
the absence of charmed quarks inside a proton. In this section we will estimate the contribution 
of D mesons loop to the process of our interest by using only D0D̄0 loop in the vertex ψ → pp̄

(see Fig. 2(b)). The amplitude of the process (1) with the ψ intermediate state which converts 
via D0D̄0 loop into proton–antiproton we write in the form similar to (6):

MD = ge

s − M2
ψ + iMψΓψ

J e
ν J ν

D, (25)

where current Jμ has a form:
D
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J
μ
D = gψDD

16π2

∫
d4k

iπ2
gD

(
(k − p+)2)gD

(
(k + p−)2)

× [ū(p+)γ5(/k + MΛ+
c
)γ5v(p−)](2k + p− − p+)μ

(k2 − M2
Λ+

c
)((k − p+)2 − M2

D)((k + p−)2 − M2
D)

, (26)

where gψDD is the constant for vertex ψD0D̄0 which can be estimated from the decay width 
Γψ→D0D̄0 = 0.26 keV [5] which gives

gψDD =
4Mψ

√
3πΓψ→D0D̄0

(M2
ψ − 4M2

D)3/4
= 12.6. (27)

The loop integral in (26) diverges in case of point-like particles. Usually one uses some formfac-
tor to cut this divergency [7,8]. Following this tradition we use formfactors for the vertex D0pΛ+

c

in the form [9]:

gD

(
q2) = 2M2

DfD

mu + mc

gDNΛ

q2 − M2
D

, (28)

where fD ≈ 180–200 MeV and quark masses we choose as mu ≈ 280 MeV and mc = 1.27 GeV
[5]. The constant gDNΛ was estimated in [10]:

gDNΛ ≈ 6.74. (29)

Performing standard calculation of loop integral in (26) using Feynman trick to merge the de-
nominators one can write the contribution DD̄ intermediate state to the cross section in the form 
similar to (16) as:

δσD = Re

(
SD(s)

s − M2
ψ + iMψΓψ

)
, (30)

where

SD(s) = α

24π2
geg

2
DNΛgψDD

(
1 + 2m2

s

)√
1 − 4m2

s
BD(s), (31)

BD(s) =
(

2M2
DfD

mu + mc

)2 1∫
0

dx

1−x∫
0

dy xy

×
{

1

(d(s) + iε)2
+ 2mx

(d(s) + iε)3

s − 4m2

s + 2m2

(
MΛ+

c
− m(1 − x)

)}
, (32)

d(s) = M2
Λ+

c
x + M2

D(1 − x) − m2x(1 − x) − sy(1 − x − y). (33)

5. Discussion

In order to see the relative contribution of different mechanisms to the phase we will consider 
first the contribution of three gluons in the intermediate state. The total cross section then has a 
form
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Fig. 4. The numerical estimation of the quantity f (y,φ) (see (35)) as a function of β .

σ(s) = σB(s) + δσ3g(s),
δσ3g(s)

σB(s)
= B(β)f (y,φ), (34)

where

B(β) = gegcolRα3
s

32α(3 − β2)

PMψ

Γψ

,

f (y,φ) = y cosφ + sinφ

y2 + 1
, y = s − M2

ψ

MψΓψ

, (35)

and the quantities P and φ are defined as

H + iF = Peiφ, P =
√

H 2 + F 2,

R = 1

9

√
2

π
α

3/2
s , ge =

√
12πΓee

Mψ

, gcol = 5

6
. (36)

The function f (y, φ) is shown in Fig. 4. At the point of ψ(3770) resonance, β = β0 = 0.86, we 
have both quantities F and H negative and thus the phase φ is equal to

φ = arctan

(
F(β0)

H(β0)

)
+ 180◦ = 67◦ + 180◦ = 247◦. (37)

The ratio of the B(β0) to P is

B(β0) = 3 · 10−5P, P = 1396. (38)

It is known that the main contribution to the width of ψ(3770) arise from the OZI non-
violating channels ψ(3770) → D̄D [5]. However the contribution of D̄D state as an intermediate 
state converting to proton–antiproton is small. Main reason of it is the absence of charm quarks 
inside a proton. In order to demonstrate this we add the D-loop contribution δσD from (30) to 
the cross section in (34), i.e.:

σ(s) = σB(s) + δσ3g(s) + δσD(s), (39)
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and then, to calculate the phase φ, we need to use complete expressions for the amplitudes, i.e. 
S3g(s) from (17) and SD(s) from (31). This gives the following result for the phase:

φ = arctan

( Im(S3g(M
2
ψ)) + Im(SD(M2

ψ))

Re(S3g(M
2
ψ)) + Re(SD(M2

ψ))

)
+ 180◦

= 81◦ + 180◦ = 261◦, (40)

and thus we conclude that D-meson loop contribution to the phase is rather small and the main 
contribution to the phase goes from three gluon intermediate state.

We should also notice that we did not evaluate the contribution of a square of amplitude with 
ψ(3770) intermediate state. It is small compared with the contribution of interference of Born 
amplitude with the one with ψ(3770) meson and will be estimated elsewhere. It does not exceed 
ten percents.

The quantities for phase φ in (37) and in (40) are in good agreement with recent experimental 
data for phase at BESIII Collaboration [2].
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Appendix A. Vertex ψ → 3g

To restore the quantity R from (8) we calculate the width of ψ(3770) resonance decay into 
three gluons. Let us consider the conversion of the bound state with quantum numbers JPC =
1−− to three real massless vector bosons. Similar problem was solved years ago for the problem 
of ortho-positronium decay [11,12]. For the case of ortho-positronium Ops decay, we start from 
matrix element of the process:

Ops → γ (k1) + γ (k2) + γ (k3), (A.1)

which has the form:

MOps = A
1

m4
e

Oμνλ
σ eμ(k1)eν(k2)eλ(k3)εσ (q), (A.2)

with e(ki) and ε(q) are the polarization vectors of photons and the ortho-positronium respec-
tively. The quantity A includes the information on the wave function of ortho-positronium. 
Operator

Oμνλ
σ eμ(k1)eν(k2)eλ(k3) = 1

4
Tr

[
Q̂(/p + me)γσ (/p − me)

]
, (A.3)

Q̂ = 1

x1x3
/e3(−/p + /k3 + me)/e2(/p − /k1 + me)/e1 + cyclic permutations, (A.4)

describes the electron loop. Using the amplitude (A.2) we obtain for the decay width

ΓOps = 1

12me

∫ ∑
spins

|MOps|2 · m2
eπ

2

(2π)5
d2x · (4πα)3

3!

= 64
meA

2(π2 − 9
)
α3. (A.5)
9
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Fig. 5. The diagram of ψ(3770) decay into three gluons.

Comparing this value with the known result ΓOps = (2me/(9π))(π2 − 9)α6 we conclude that

A = α3/2

4
√

2π
. (A.6)

Here we used the following formulae∑
spins

1

m8
e

∣∣Oμνλ
σ eμ(k1)eν(k2)eλ(k3)

∣∣2 = 256Q(x),

Q(x) = 1

(x1x2x3)2

[
x2

1(1 − x1)
2 + x2

2(1 − x2)
2 + x2

3(1 − x3)
2],∫

d3x δ(2 − x1 − x2 − x3)Q(x) = π2 − 9.

For the case of decay of ψ(3770) to three gluons with the subsequent turning them to hadrons 
we define the amplitude in the form similar to (A.2) (see Fig. 5):

Mψ→3g = R(4παs)
3/2 1

4
dabcea

μ(k1)e
b
ν(k2)e

c
λ(k3)

1

M4
Oμνλ

σ εσ (q), (A.7)

with q = 2p and ε(q) are the momentum and the polarization vector of ψ(3770). The decay 
width then reads as:

Γψ→3g = 80

27
MψR2(π2 − 9

)
α3

s . (A.8)

And comparing this result with the known one [13,14]:

Γψ→3g = 160Mψ

2187π

(
π2 − 9

)
α6

s , (A.9)

we conclude that

R = 1

9

√
2

π
α

3/2
s ≈ 0.0146, (A.10)

if one assumes that αs ≈ 0.3. Note that both A and R are real.
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Appendix B. Angular integrals

In this section we present the angular integrals which are relevant for the integration in (22):

1

π

∫
dc1dc2

C1C2
√

D

{
1;C1;C2;C1C2;C2

1 ;C2
2 ;C3

2 ;C2
1C2;C2

2C1
}

= {J00, J10, J01, J11, J20, J02, J03, J21, J12}, (B.1)

where

J00 = 1

x1x2
I (x), J10 = 1

x2
L, J01 = 1

x1
L, J11 = 2,

J20 = x1

x2

[
L(1 + p) − 2p

]
, J02 = x2

x1

[
L(1 + p) − 2p

]
,

J21 = 2x1, J12 = 2x2,

J03 = x2
2

2x1

[(
1 + β2 + 4p + (

3 − β2)p2)L + 2
(
1 − 4p − 3p2)],

and

p = p(x) = 1 − 2

x1x2
(x1 + x2 − 1),

C1 = x1(1 − βc1), C2 = x2(1 + βc2),

I (x) = 2√
d

ln
1 + β2p(x) + √

d

1 − β2
,

d = (
1 + β2p(x)

)2 − (
1 − β2)(1 − p(x)2),

L = 1

β
ln

1 + β

1 − β
.

The explicit expression for Q1 = T
αβγ
λ R

αβγ
λ from (22) is

T
αβγ
λ = 1

4
Tr

[
Ôαβγ (/p + M)γλ(/p − M)

]
,

R
αβγ
λ = 1

4
Tr

[
(/p− − m)γλ(/p+ + m)γα(/p+ − /k1 + m)γβ(−/p− + /k2 + m)γγ

]
,

where

Ôαβγ = 1

x1

[
1

x2
γβ(−/p + /k2 + M)γγ + 1

x3
γγ (−/p + /k3 + M)γβ

]
(/p − /k1 + M)γα

+ 1

x2

[
1

x3
γγ (−/p + /k3 + M)γα + 1

x1
γα(−/p + /k1 + M)γγ

]
(/p − /k2 + M)γβ

+ 1

x3

[
1

x2
γβ(−/p + /k2 + M)γα + 1

x1
γα(−/p + /k1 + M)γβ

]
(/p − /k3 + M)γγ .

After calculation of traces and simplifications one gets

Q1 = 32

x1x2x3

{
P00 + C1P10 + C2P01 + C1C2P11 + C2

1P20

+ C2P02 + C3P03 + C2C2P21 + C1C
2P12

}
, (B.2)
2 2 1 2
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Fig. 6. The numerical estimation of the quantity F(β) (see (B.3)) as a function of β .

where coefficients Pij have a form

P00 = −4(−1 + x1)
2(−4 + x1 + b(−1 + b + x1)

)
− 4

(
17 + b2(−2 + x1) − 26x1 + 8x2

1 + b(−1 + x1)(1 + 2x1)
)
x2

− 4
(−17 + 9x1 + b(4 + b + x1)

)
x2

2 + 8(−2 + b)x3
2 ;

P10 = 4(−1 + x1)
2 − 2

(
8 + x1(−11 − 3b + 6x1)

)
x2 + 4(1 + b − 5x1)x

2
2 − 4x3

2 ,

P01 = 2
(
10 − 8x1 − 3x2

1 + 2x3
1 + 2(−2 + x1)(4 + 3x1)x2 + 2(3 + x1)x

2
2

+ b
[
x2

1 − 2(−2 + x2)(−1 + x2) + 2x1(1 + x2)
])

,

P11 = 2
(−4 + x1 + x2

1 + (5 + x1)x2 − 2b(−1 + x1 + x2)
)
,

P20 = 2x2(−2 − b + 3x1 + 3x2),

P02 = −2
(
2(−1 + x2) + x1

(
b + 2(−1 + x1 + x2)

))
,

P21 = 2(2 − x1 − x2), P12 = 2x1, P03 = 2x1,

here we use the notation that b = β2. The contribution to imaginary part F(β) then reads as

F(β) =
1∫

0

dx1

1∫
1−x1

dx2
32

x1x2x3
{P00J00 + P10J10 + P01J01

+ P11J11 + P20J20 + P02J02 + P03J03 + P21J21 + P12J12}. (B.3)

Numerically the quantity F(β) as a function of β is presented in Fig. 6.
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