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Abstract The concentration of interleukin-8 (IL-8) and 
RANTES was measured in culture supernatants of human 
EA.hy 926 endothelial cells incubated with oxidized low-density 
lipoproteins (LDL). Oxidized LDL induced a 3-fold increase in 
IL-8 production (p < 0.01), whereas RANTES was not detected. 
Native LDL did not stimulate IL-8 production. IL-8 production 
in oxidized-LDL-treated cells was mediated by reactive oxygen 
species, as it was partially inhibited by catalase and completely 
inhibited by glutathione peroxidase and N-acetylcysteine 
(p < 0.01). 
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1. Introduction 

Elevated plasma concentrations of low-density lipoproteins 
(LDL) are associated with accelerated atherogenesis [1,2]. The 
pathogenesis of an atherosclerotic plaque, first observed as a 
fatty streak, begins with the transport of lipoproteins into the 
artery wall, where oxidative modification of the LDL may 
occur due to the release of oxidative products by nearby cells 
[2-5]. Monocytes are recruited, matured in macrophages and 
then give rise to foam cells [1]. Proliferative smooth muscle 
cells, T lymphocytes and a few B lymphocytes are also found 
in atherosclerotic plaques. The phenotypes of T lymphocytes 
are predominantly CD 45 RO+ memory CD4+ and CD8+ 
subsets [6,7]. In response to antigen stimulation, these cells 
can induce the production of many inflammatory cytokines 
like interferon- T (IFN-T), tumor necrosis factor-a, (TNF-t~) 
and interleukin-1 (IL-1). Although the paucity of neutrophils 
in atherosclerotic lesions has been documented, polymorpho- 
nuclear neutrophils (PMNs) may be implicated in the earliest 
phase of atherosclerosis [6-9]. 

The activation of endothelial cells by oxidized LDL (ox- 
LDL) may induce the expression of various inflammatory 
mediators, in particular of chemokines which modulate leuco- 
cyte adhesion and migration across the endothelium [2,3,10- 
12]. Minimally ox-LDL can induce the synthesis of the mono- 
cyte chemotactic protein-1 (MCP-1) which is chemotactic and 
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activating for monocytes/macrophages [13,14]. T lymphocytes 
may be recruited by other chemokines. 

Chemokines are low molecular mass cytokines (8-10 kDa) 
of which there are two subgroups: the C-C chemokine family 
- typified by MCP-1 and RANTES (regulated on activation 
normal T expressed and secreted) - and the C-X-C family - 
typified by interleukin-8 (IL-8) [11,12]. 

IL-8, produced by macrophage foam cells in human ather- 
oma, may be involved in atherosclerosis [15]. Although initi- 
ally identified as a neutrophil-specific cytokine, IL-8 also acts 
as a chemoattractant for T lymphocytes [12]. Attraction of 
neutrophils may depend on the IL-8 concentration gradient 
[16]. The ~-chemokine RANTES selectively recruits and acti- 
vates CD4+ memory T lymphocytes and monocytes but not 
neutrophils [11,12,17]. IL-8 and RANTES preferentially at- 
tract CD45RO T lymphocytes, which are the predominant 
type in atherosclerotic lesions [6,12,17]. 

IL-8 is a multifunctional chemokine involved in many bio- 
logical processes, several of which may play roles in athero- 
genesis. Smooth muscle cell attraction and proliferation is 
implicated in atherosclerotic plaque formation and neovascu- 
larization appears in more advanced lesions and predisposes 
to intramural hemorrhage and plaque rupture [18]. As IL-8 is 
a potent mitogen and chemoattractant of vascular smooth 
muscle cells, it may be involved in smooth muscle cell invasion 
of the intima [19]. Its angiogenic capacity may contribute to 
the neovascularization associated with the atherosclerotic 
plaque [20,21]. 

EA.hy 926 endothelial cells are a reliable model for study- 
ing vascular inflammation, leucocyte-endothelial cell interac- 
tions and the metabolic effects of ox-LDL [22-25]. We inves- 
tigated the effects of ox-LDL on RANTES and IL-8 
production by these endothelial cells. Since reactive oxygen 
species (ROS) have been previously reported to upregulate 
IL-8 gene transcription and secretion in non-immune cells 
[26], we studied the effects of various antioxidants on the 
IL-8 production by endothelial cells incubated in the presence 
of ox-LDL. 

2. Materials and methods 

2.1. Chemicals 
L-Glutamine, Dulbecco's modified Eagle's medium (DMEM), and 

trypsin-EDTA solution were obtained from Gibco. Foetal calf serum 
(FCS) was obtained from Boehringer, Mannheim. KBr and malon- 
dialdehyde (MDA) were obtained from Merck. Superoxide dismutase 
(SOD), glutathione peroxidase (Gpx) (from bovine erythrocytes), cat- 
alase (from bovine liver), N-acetylcysteine (NAC) and L-buthionine- 
S,R-sulphoximine (BSO) were from Sigma (France). Recombinant 
human TNF-tx and TGF-I] were obtained from PreproTech Inc. 
(Rocky Hill, N J). 
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2.2. Endothelial cell culture 
The human EA.hy 926 endothelial cell line was obtained from Dr. 

C.-J.S. Edgell (University of North Carolina, USA) [27]. The cells 
were cultured in DMEM, supplemented with 10% FCS, 2 mM L- 
glutamine, 100 U penicillin/ml, 100 ~tg streptomycin/ml and HAT 
(1000 IzM hypoxanthine, 0.4 ~tM aminopterin, 16 ~tM thymidine). 
Factor VIII-antigen production was monitored. 

2.3. LDL &olation and oxidation 
LDL was isolated by sequential ultracentrifugation of human 

pooled plasma in the presence of EDTA according to Havel et al. 
[28]. Isolated LDL was dialysed for 24 h against a Tris-HC1 buffer 
(0.01 M, pH 7.4) containing 1 mM EDTA, sterilised by filtration and 
stored at 4°C. The lipid components and the apolipoprotein B (apo B) 
content were determined and the absence of apolipoprotein A verified. 

Before experiments, EDTA was removed by dialysis against phos- 
phate-buffered saline (PBS, 10 mM, pH 7.4). LDL samples were ad- 
justed to a final concentration of 2 mg apoB/ml with PBS. LDL was 
oxidized at 37°C in the presence of 5 laM CuSO4 for up to 22 h and 
then dialysed against three changes of PBS for 24 h. LDL samples 
were filter-sterilised and incorporated in the culture medium. Filtra- 
tion caused loss of 10% of the apo B and this was taken into account 
when adjusting LDL concentrations. 

2.4. Oxidized LDL characterization 
LDL oxidation was evaluated by assaying thiobarbituric acid reac- 

tive substances (TBARS) according to Yagi [29]. Although the 
TBARS content was 40-50 nmol/mg apo B before dialysis, it was 
reproducibly 5-8 nmol/mg apo B after extensive dialysis against three 
changes of PBS. The lipoperoxide concentration was around 1500 
nmol/mg apo B, as determined by a kinetic application of the method 
of El Saadani et al. using cumene hydroperoxide as standard [30,31]. 
Electrophoretic mobility was characterized by the isolation of frac- 
tions A-D by HPLC analysis following the method of Vedie and co- 
workers adapted to the Waters chromatographic equipment [32]. Na- 
tive LDL was 100% fraction A and ox-LDL 100% fraction C. No 
lipopolysaccharide (LPS) was detectable in the native LDL and ox- 
LDL preparations by the Limulus test technique, which can detect as 
little as 2 ng of LPS. 

2.5. Incubation with oxidized LDL 
Cells were diluted to 5 × 10 ~ cell/ml, plated (200 gl) in 96-well plates 

and then allowed to reach confluence. Native LDL and ox-LDL (50, 
100, 200 gg/ml), sterilized by filtration through 0.22 Ism Millipore 
membranes, were added to the culture medium and incubated with 
endothelial cells at 37°C for 24 h. When used, SOD, Gpx and catalase 
were pre-incubated with the cells for 15 h. Cells were rinsed twice with 
DMEM and the culture medium replaced with fresh medium without 
enzyme containing native and ox-LDL (100 gg/ml). NAC and BSO 
were pre-incubated 2 h before adding LDL. 

2.6. Regulation by TGF-~ and TNF-ot 
Cells were diluted to 5 x 105 cell/ml, plated (200/.tl) in 96-well plates 

and then allowed to reach confluence. Cells were rinsed twice with 
DMEM and then stimulated with TNF-c~ (10, 100, 1000 U/ml) for 24 
h. When used, TGF-]3 (1, 10, 20 ng/ml) was pre-incubated with the 
cells for 20 h before adding TNF-ot (100 U/ml). 

2. 7. Assays for cytok&es 
After incubation with LDL, supernatants were removed and as- 

sayed for IL-8 and RANTES using the ELISA IL-8 and RANTES 
kits, respectively, obtained from R&D Systems (Minneapolis, MN). 
All data are presented as means in pg/ml of duplicate samples deter- 
mined using standard curves. 

2.8. Statistical analysis 
Analysis of variance (ANOVA) was used for comparing the means 

of several groups, with p < 0.01. 

3. Resul ts  

3.1. Effect of  TGF-~ on the production of  IL-8 by TNF-ct 
stimulated endothelial cells 

Stimulat ion with T N F - a  increased the p roduc t ion  of  IL-8 

in a dose-dependent  manner .  The IL-8 concent ra t ion  in cul- 
ture media  was 3843 _+ 164, 9737_+ 312 and  14 890 + 283 pg/ml 
following t rea tment  with  10, 100 and  1000 IU/ml  TNF-c~, 
respectively. Trea tmen t  of  EA.hy 926 endothel ial  cells with  
TGF-I3 (1, 10, 20 ng/ml) alone did not  significantly change 
the level of  IL-8 product ion.  Pre t rea tment  of  EA.hy  926 en- 
dothelial  cells with  TGF-13 pr ior  to TNF-c~ (10 U/ml)  stimula- 
t ion significantly inhibi ted in a dose-dependent  fashion the 
p roduc t ion  of  IL-8 (Fig. 1). In  the presence of  10 ng/ml of  
TGF-]3, the level of  IL-8 in the culture superna tan t  was 1941 
pg/ml, corresponding to 50% inhibi t ion (p < 0.01). T rea tmen t  
of  EA.hy  926 cells with TGF-I3 (up to 20 ng/ml) did not  affect 
cell viability, as assessed by t rypan  blue staining (data  no t  
shown). 

3.2. Oxidized LDL induce IL-8 production by EA.hy 926 
endothelial cells 

IL-8 and  R A N T E S  concent ra t ions  were measured  in the 
superna tan ts  of  confluent  cultures of  EA.hy 926 cells incu- 
ba ted  with copper  ox-LDL for 4 and  24 h. N o  R A N T E S  
was produced whatever  the concent ra t ion  of  nat ive L D L  or  
ox-LDL f rom 50 to 200 ~tg/ml. In contrast ,  IL-8 produc t ion  
was 3-fold higher  by cells incuba ted  for 24 h with ox-LDL 
than  by cont ro l  cells or cells incuba ted  with nat ive L D L  (Fig. 
2). IL-8 p roduc t ion  was not  significantly increased by 4 h 
incubat ion  with ei ther nat ive L D L  or ox-LDL.  After  24 h 
incuba t ion  with ox-LDL,  a dose-dependent  increase in IL-8 
p roduc t ion  was observed up to 200 ~tg/ml of  ox-LDL whereas 
no increase was found with nat ive L D L  (Fig. 3). 

3.3. IL-8 production is free radical dependent in ox-LDL 
treated cells 

To determine whether  free radicals were involved in IL-8 
product ion ,  we assessed the effect of  var ious  an t iox idant  en- 
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Fig. 1. Inhibition of IL-8 production by TGF-[3 in TNF-ct-activated 
EA.hy 926 endothelial cells. EA.hy 926 cell monolayers on 96-well 
plates were pretreated with various concentrations of TGF-[3 (1, 10, 
20 ng/ml) for 20 h at 37°C. After decanting the medium, cells were 
washed twice with DMEM, and then stimulated with TNF-ct (10 U/ 
ml) for 24 h. Culture supernatants were collected and assayed for 
IL-8 by ELISA assay. The results shown are the means+S.D, of 
one experiment carried out in duplicate which was representative of 
two. *p < 0.01 vs. group receiving TNF-c~ (10 U/ml) but no TGF-13. 
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zymes: SOD, catalase and Gpx (Fig. 4). The level of IL-8 in 
the supernatant of cells incubated without LDL was 288 + 15 
pg/ml, that of cells incubated with native LDL being 256 + 16 
pg/ml. The basal IL-8 concentration was not modified by the 
presence of antioxidant enzymes. Ox-LDL-IL-8 induced secre- 
tion was completely inhibited by Gpx (100 U/ml) and moder- 
ately but significantly inhibited by catalase (600 U/ml). In 
contrast, the scavenging enzyme SOD (600 U/ml) did not 
prevent the increase in IL-8 production. Heat-inactivated en- 
zymes were ineffective (data not shown) indicating that specif- 
ic enzymatic activities were required for the inhibition of IL-8 
production. 

As Gpx was the most effective enzyme in preventing IL-8 
production, we measured the cellular Gpx activity. The Gpx 
activity in EA.hy 926 cells (11.95 _+ 6.7 IU/g) was increased 18- 
fold to 211.9 + 9.9 IU/g by pre-incubation with Gpx. In addi- 
tion, the glutathione precursor NAC at 10 mM also comple- 
tely inhibited IL-8 production. The glutathione synthesis in- 
hibitor BSO (0.1, 1 and 10 mM) did not increase IL-8 
production. 

4. Discussion 

We have shown for the first time that ox-LDL induces the 
production of the chemotactic cytokine IL-8 by human EA.hy 
926 endothelial cells. RANTES was not induced. We have 
also shown that IL-8 secretion in ox-LDL treated cells is 
mediated by ROS. 

Most of the information needed for cell (lymphocytes, en- 
dothelial cells, neutrophils) activation is communicated by 
cytokines. Neutrophil migration, adhesion to vascular en- 
dothelial cells, protease release and ROS production and lym- 
phocyte T cell attraction is mediated by IL-8 [11,12]. IL-8 
production is stimulated by IL-I~, IL-lc~, TNF-et and LPS 
in vascular endothelial cells and this enhances the chemotaxis 
of neutrophils and T cells [11,12]. We have shown that IL-8 
secretion can also be induced by oxidized-lipid mediators. In- 
cubation of endothelial cells with ox-LDL resulted in a 3-fold 
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Fig. 2. IL-8 accumulation in supernatants of endothelial cell cul- 
tures. EA.hy 926 cell monolayers on 96-well plates were incubated 
with native and oxidized LDL (100 gg/ml) and supernatants were 
assayed for IL-8 after 4 and 24 h. Results are expressed as mean 
IL8 production + S.E.M., n = 3. *p < 0.01 relative to control cells. 
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Fig. 3. Dose effect curves of oxidized LDL on IL-8 production by 
endothelial cells. EA.hy 926 cell monolayers on 96-well plates were 
incubated with native and oxidized LDL at the following concentra- 
tions: 50, 100, 200 gg/ml. IL-8 concentrations were determined after 
24 h. Results are expressed as mean IL-8 production_+ S.E.M., n = 3. 

increase in IL-8 production whereas native LDL did not stim- 
ulate IL-8 release. 

In our copper ox-LDL preparations, the apo B was mod- 
ified but 90% of the TBARS were water-soluble material lost 
after extensive dialysis against PBS as previously described 
[33]. In contrast, the lipoperoxide content was higher than 
those reported by some but not all workers [34,35]. However, 
ox-LDL composition depends on the conditions of copper 
oxidation: the ratio of CuZ+/LDL, medium and temperature 
[36]. In addition, the differences in reported levels of lipid 
hydroperoxides may arise from the various techniques used 
or different reactivities of various classes of hydroperoxide 
[351. 

The basal levels of IL-8 secretion by EA.hy 926 cells were 
not higher than those described for HUVEC. Moreover, 
EA.hy 926 endothelial cells respond to T N F - a  like primary 
cells [37,38]. They are induced by T N F - a  to produce IL-8 in a 
dose-dependent manner and 10 ng/ml TGF-I3 inhibits TNF-a-  
induced IL-8 production by 50% [38,39]. 

Our results also demonstrate the involvement of ROS in IL- 
8 production by endothelial cells induced by ox-LDL. The 
metal ion-catalyzed reaction between superoxide and hydro- 
gen peroxide (H2Oe) gives rise to the highly reactive hydroxyl 
radical OH'. Catalase and SOD inhibit cytokine synthesis in- 
duced by hypoxia and HeOe [40,41]. Exogenous Cu/Zn-SOD 
has been shown to penetrate cells [40,42,43]. However, SOD 
did not prevent ox-LDL induced IL-8 production in our 
study. This suggests that superoxide anions are not involved 
in this phenomenon or are inactivated by other means (spon- 
taneous dismutation or chemical scavengers). In contrast, a 
moderate but significant inhibition of ox-LDL induced IL-8 
production was observed with catalase, implicating H 2 0 2  [44]. 

Uptake of catalase by endothelial cells has been demonstrated 
but it may also act extracellularly at plasma membrane sites 
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Fig. 4. Effect of antioxidants on oxidized LDL-induced IL-8 syn- 
thesis by endothelial cells. EA.hy 926 cell monolayers on 96-well 
plates were pre-incubated overnight with superoxide dismutase 
(SOD, 600 U/ml), catalase (600 U/ml), and glutathione peroxidase 
(GPx, 100 U/ml). After decanting the medium, cells were washed 
twice with DMEM before adding native and oxidized LDL (100 ktg/ 
ml). N-Acetylcysteine (NAC) was pre-incubated 2 h before LDL ad- 
dition. IL-8 concentrations were determined after 24 h of incuba- 
tion. Results are expressed as mean IL-8 production-+ S.E.M., n = 2. 
*p < 0.01 relative to control cells. 

[43]. The removal of HzO2 may prevent the formation of the 
initiating hydroxyl species OH" [44]. 

Pre-incubation with Gpx completely inhibited IL-8 produc- 
tion. The superiority of Gpx as compared to catalase sug- 
gested that the reduction of other peroxides over H202 might 
be involved [44]. These peroxides may be lipid hydroperoxides 
originating from ox-LDL or those formed from cellular lipids. 
After pre-incubation with Gpx, the cellular Gpx activity was 
18-fold increased compared to control cells. Gpx may be en- 
docytosed or be absorbed by the outer leaflet of the plasma 
membrane to antagonize the initiation of lipoperoxidation 
induced by hydroperoxides [45]. Glutathione is the specific 
substrate for Gpx and in the outer leaflet of the membrane, 
glutathione may originate from supernatants where thiols 
tend to liberate it from mixed disulfides with proteins [46]. 
NAC is a GSH precursor and has been reported to increase 
intracellular GSH levels in many cultured cells by promoting 
cysteine uptake [47,48]. Its inhibitory effect on IL-8 produc- 
tion indicates the importance of the glutathione redox cycle 
which counteracts lipoperoxidation and the involvement of 
lipoperoxy radicals. An inhibitory effect of Gpx on cytokine 
synthesis induced by hypoxia has been described by Ala et al. 
[40]. 

One possible mechanism for the ox-LDL-induced IL-8 se- 
cretion is alteration of the redox status of cells. Nuclear fac- 
tor-kappaB (NF-kB) is a DNA-binding protein involved in 
the transcriptional activation of a variety of genes (TNF-c~, 
IL-1, IL-6, MCP-1) [11,13,14] and its activation depends on 
the cell redox status [47]. NAC inhibits NF-kB activation, 
which has also been associated with the GSH content of cells 
[47,49,50]. The IL-8 gene contains NF-kB binding sites which 
can fix activated NF-kB and induce its transcription [11]. In 
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this study, the inhibitory effects of NAC and Gpx indicate a 
possible inhibition of NF-kB activation. However, BSO did 
not increase basal or ox-LDL-induced IL-8 production. Pos- 
sibly, as reported by Schultze and co-workers, oxidants can 
regulate, but are not sufficient to initiate NF-kB activation. 
This NF-kB activation may require additional signalling 
events such as protein tyrosine phosphorylation [51]. 

We did not detect RANTES in our culture supernatants, 
even at high ox-LDL concentrations. Both cytokine genes 
contain NF-kB binding sites. However, the mechanisms which 
control RANTES expression and secretion are different and 
may need costimulatory signals such as INF- 7 [11,17]. 

The release of numerous cytokines causes the development 
of a network of activated macrophages, smooth muscle cells, 
T cells, and endothelial cells and leads to progression of the 
atherosclerotic lesion to a more advanced, complicated lesion 
[2,3,52]. The identification and characterization of genes in- 
volved in the cross-talk may help decipher the mechanisms of 
atherogenesis [52]. Secretion of IL-8 may: (i) attract CD45RO 
lymphocytes; (ii) induce smooth muscle cell proliferation; (iii) 
induce angiogenesis, giving rise to advanced atherosclerosis 
[12,19,20]. IL-8 may also attract and activate PMNs, although 
their paucity in the atherosclerotic plaque has been document- 
ed [7]. In some models, the formation of intimal thickening is 
characterized by the infiltration of PMNs, monocytes and 
lymphocytes. PMNs are present during the early phase of 
lesion development and their disappearance from the intima 
may result from their phagocytosis by macrophages and their 
migration toward the adventia [9]. Understanding the mech- 
anism which regulates IL-8 secretion may help explain the 
clinical significance of the increase of ox-LDL in atherosclero- 
sis. The exact mechanism of IL-8 secretion and its implica- 
tions for patients with coronary artery disease are under study 
in our laboratory. 
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