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1. Introduction

Throughout this paper, the symbols u, = o(1) and u, = O(1) mean respectively that u, — 0asn — oo and that
(uy) is bounded for large enough n. Let the sequence of the backward differences of a sequence u = (u,) be denoted by
Au = (Auy,), where Au, = u, — u,_1 forn > 1, and Aug = ug for n = 0. For each integer m > 0 and for all nonnegative

integers n we define anm) (u) by

n (m 1)
=1 () = ki(A“)
(m)(u)_ n+1Zk ) = U+Z , m=>1

k=1
Up, m=0

where

1 & _
B E v (Aw), m=>1
(m) n+1:=
V)" (Au) = "

1
n+];kAuk, m=0.
The identity
u, — oV () = VO (Au) (1.1)
which 1s well known and will be used extensively in the proofs is known as the Kronecker identity. Since o, )(u)
Zk:l u (A“) ~+ up, the Kronecker identity can be rewritten in terms of the generator sequence Vn >(Au) of (uy,) as
=V (au) + Z "(O)(Au) + Up. (12)
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The classical control modulo of the oscillatory behavior of (u,) is denoted by w,ﬂo) (u) = nAu, and the general control modulo
of the oscillatory behavior of integer order m > 1 of (u,) is defined inductively in [1,2] by

o™ W) = o™ VW) — o (0™ P (u) (1.3)

for all nonnegative integers n. We define (nA)u, = nA((nA)m—_1u,) for each integer m > 1and for all nonnegative integers
n, where (nA)ou, = u,. It is proved in [3] that a),(lm) (u) = (nA)mVn“"_l)(Au) for each integer m > 1.

A sequence (uy) is Cesaro summable to s if lim, crn(])(u) =Ss.

A sequence (u,) is backward convergent if Au, = o(1). A sequence (u,) is backward Cesaro convergent if Aa,f” (v =
o(1).

A sequence (u,) is said to be subsequentially convergent [1] if there exists a finite interval I (1) such that all accumulation
points of (u,) are inI(u) and every point of I (1) is an accumulation point of (u,). We note that bounded backward convergent
sequences are subsequentially convergent.

A sequence (u,) is said to be slowly oscillating [4] if

lim limsup max |u; —u,| =0,
A—>1T n n+1<k<[An]

where [An] denotes the integer part of An. It is proved in [2] that (u,) is slowly oscillating if and only if (Vn(o) (Au)) is bounded
and slowly oscillating.
A sequence (u,) is said to be |C, 1|, summable [5]if forp > 1

o0
> P MA@ < oo
j=1
A positive sequence (u,) is O-regularly varying [6] if limn%’” < oo for A > 1. A sequence (u,) is said to be slowly
varying [7] if
u([An])
m
n o u(n)
fora > 1.
Our goal is to retrieve backward Cesaro convergence of a real sequence u = (u,) from the Cesaro summability of the

general control modulo of oscillatory behavior of integer order m of (u,) under certain conditions.
We prove the following theorem.

Theorem 1.1. Let (o.\” (0™ Y (u))) be Cesaro summable to s. If for some p > 1

Gl (oo™ (u)[P

(A — 1P M limsup Y =o(1), »— 17, (1.4)
T j=nt1
then (uy) is backward Cesdro convergent.
Remark 1.2. We note that for p > 1,
n w(m) WP n
> o WP _ Y AV @ . (1.5)
= =
If
n
> 1A @ @)l = logun, p> 1 (16)

=

for some O-regularly varying sequence (v,), then (1.6) is equivalent to
1 n
VO (a0™ @) p) = = > kAo )’ =0(1), p>1
n
k=1

which is a Tauberian condition for the Cesaro and Abel summability method (see [8,9,3,10]). For more detailed information
about this equivalence, we refer the reader to [11].
The proof is based on the following lemmas.
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Lemma 1.3 ([4]). For . > 1,

[An] k
ot = P g ) o - S5 Y a, 17
k n+1j=n+1

where [An] denotes the integer part of An.

Lemma 1.4. Let (u,) be a sequence of real numbers. If w,(qm) (u) = nay, for some sequence a = (ay), then

m—j J ]
o™ (u) =n ; < k) o (a) (1.8)

forj=0,1,2,...,m—1

Proof Let w™ (u) nay for some sequence a = (a,). Hence, o, (w™ D (u)) = S,(a). Using the equality (1.3) and
wp )(u) = na,, we get

o™ V() = n(a, + 0" (a)). (1.9)
Similarly, the equality (1.3) and (1.9) gives

"2 () = n(a, + 20, (@) + 0,2 (a)). (1.10)

Continuing in this way, we have

j .
_j J K
oI =03 (1)o@
k=0
forj=0,1,2,...,m—1. O
2. Proof of Theorem 1.1

Applying Lemma 1.3 to (o,.” (@™~ (u))), we have

oM (@™ P W) — 0P (0™ V()] < hnr—ll oim @™V W) — 0P @™V )]
k
0 | 2 A0 @) @2.1)

=n+1

Since (arf])(a)(m*”(u))) is Cesaro summable to s, the first term on the right-hand side of (2.1) is 0(1) and so (2.1) becomes

k
lim sup |0 P (@™ " W) — 0@ (0™ 1)(u))|<llmsup max Z AcV (@™ D )] . (2.2)
1 +1skslan] | £
For the second term on the right-hand side of (2.1) we have
k [An]
1, (m-1) M, (m=1)
om0 AgT @V @)) = Y 180 @)
j=n+1 Jj=n+1
Gl oo™ )P\ P
1 w; (U 1 1
< ([An] —n)d 217 , where—+-=1
St P q

1

[An] (m) p\ P

< (2] — ) (2 o ek )
j=n+1 J J

; S
fmn]—n)q(,,lz - )

Jj=n+1

_ 1 [An] a)fm) u)P 5

_ (Ol —ms (Z o™ W) )
< T .
na j=n+1 J

A

. [An] (m) p %
< (-1 (Z |w’J(u)|> : (2.3)

j=n+1
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From (2.2) and (2.3) we have

i i o™ wp)?
lim sup o, (@™ " W) — 0,2 (@™ W)| < (A = D7 limsup [ Y —L—— (2.4)
n n j=n+1 J
Letting A — 17 in (2.4) and taking (1.4) into account, we deduce that
limsup |0 P (0™ () — 0,2 (0™ V()| < 0. (2.5)
n

From (2.5) we have lim, ;" (@™ (u)) = s. Since o, (@™ D)) = 0™ V(oD (u)) for any sequence u = (u,) and any
integer m > 1, we have lim, o™ " (¢ V(1)) = s. Taking j = m — 1in Lemma 1.4, we obtain

D, = (m—1 k
oM (e V@) =n) B o (e) (2.6)
k=0

for some null sequence € = (¢,). Dividing the equality (2.6) by n and then summing the resulting equality from k = 0 to n,
we have

n m—1
Vil (Au) = ZZ( )oﬁ“(e).

j=0 k=0

Since Av,fl)(Au) 0(1) and Aoy, @ (u) = o(1), it follows by the Kronecker identity that Ao, 1>(u) =o(1).
Furthermore, (Aan )(u)) is slowly oscillating and for some slowly varying sequence (B,), we have Aanl)(u) = O(By).

Smce Aoy M (u) = 0(B,),n — oo, it follows that there exists a finite interval I such that forevery r € I, there is a subsequence
e

) () (u)
n(r) n(r) .
( sty ) Such that limy) = = r (see [1,12]).

As a corollary we have the following result.

Corollary 2.1. Let (01" (0™ Y (u))) be Cesaro summable to s. If for some p > 1, (ox" (@™ (w))) is |C, 1|, summable, then
(uy) is backward Cesaro convergent.

Example. Let (a,) be a bounded sequence such that

i PPN 2.7)

n=1 n

Consider a sequence (u,) defined by
n n k—1
ay 1 a;
U = >4 — 3 2.8

forn>2andu; = ug = 0.
Put m = 1 in Theorem 1.1. For the sequence (u,), we have

o) = 1A, V?(Au) = a,.

The condition (2.7) implies that (a,f])(a)(o) w)) = (Vn(o)(Au)) is Cesaro summable. It follows by the boundedness of (a,)
that

O L A
217=2|1| <C ,_L (2.9)
Jj=n+1 J Jj=n+1 J Jj= n+1-’ n

for some positive constant C. Taking the lim sup in (2.9) gives

! “( )P
11msup Z <C(r—1), (2.10)
j=n+1

which shows that (1.4) holds for m = 1. So, the sequence (u,) is backward Cesaro convergent by Theorem 1.1.
Note that one can easily construct sequences like in the example above for the case m > 2 in Theorem 1.1.
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