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a b s t r a c t

In this paper we retrieve the backward Cesàro convergence of a real sequence u = (un)
from the Cesàro summability of the general control modulo of the oscillatory behavior of
integer order m of (un) under certain conditions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, the symbols un = o(1) and un = O(1) mean respectively that un → 0 as n → ∞ and that
(un) is bounded for large enough n. Let the sequence of the backward differences of a sequence u = (un) be denoted by
1u = (1un), where 1un = un − un−1 for n ≥ 1, and 1u0 = u0 for n = 0. For each integer m ≥ 0 and for all nonnegative
integers nwe define σ

(m)
n (u) by

σ (m)
n (u) =


1

n + 1

n−
k=0

σ
(m−1)
k (u) = u0 +

n−
k=1

V (m−1)
k (1u)

k
, m ≥ 1

un, m = 0
where

V (m)
n (1u) =


1

n + 1

n−
k=0

V (m−1)
k (1u), m ≥ 1

1
n + 1

n−
k=0

k1uk, m = 0.

The identity

un − σ (1)
n (u) = V (0)

n (1u) (1.1)

which is well-known and will be used extensively in the proofs is known as the Kronecker identity. Since σ
(1)
n (u) =∑n

k=1
V (0)
k (1u)

k + u0, the Kronecker identity can be rewritten in terms of the generator sequence V (0)
n (1u) of (un) as

un = V (0)
n (1u) +

n−
k=1

V (0)
k (1u)

k
+ u0. (1.2)
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The classical controlmodulo of the oscillatory behavior of (un) is denoted byω
(0)
n (u) = n1un and the general controlmodulo

of the oscillatory behavior of integer orderm ≥ 1 of (un) is defined inductively in [1,2] by

ω(m)
n (u) = ω(m−1)

n (u) − σ (1)
n (ω(m−1)(u)) (1.3)

for all nonnegative integers n.We define (n∆)mun = n∆((n∆)m−1un) for each integerm ≥ 1 and for all nonnegative integers
n, where (n∆)0un = un. It is proved in [3] that ω

(m)
n (u) = (n∆)mV

(m−1)
n (1u) for each integerm ≥ 1.

A sequence (un) is Cesàro summable to s if limn σ
(1)
n (u) = s.

A sequence (un) is backward convergent if 1un = o(1). A sequence (un) is backward Cesàro convergent if 1σ
(1)
n (u) =

o(1).
A sequence (un) is said to be subsequentially convergent [1] if there exists a finite interval I(u) such that all accumulation

points of (un) are in I(u) and every point of I(u) is an accumulation point of (un).We note that bounded backward convergent
sequences are subsequentially convergent.

A sequence (un) is said to be slowly oscillating [4] if

lim
λ→1+

lim sup
n

max
n+1≤k≤[λn]

|uk − un| = 0,

where [λn] denotes the integer part of λn. It is proved in [2] that (un) is slowly oscillating if and only if (V (0)
n (1u)) is bounded

and slowly oscillating.
A sequence (un) is said to be |C, 1|p summable [5] if for p > 1

∞−
j=1

jp−1
|1σ

(1)
j (u)|p < ∞.

A positive sequence (un) is O-regularly varying [6] if limn
u[λn]
un

< ∞ for λ > 1. A sequence (un) is said to be slowly
varying [7] if

lim
n

u([λn])
u(n)

= 1

for λ > 1.
Our goal is to retrieve backward Cesàro convergence of a real sequence u = (un) from the Cesàro summability of the

general control modulo of oscillatory behavior of integer orderm of (un) under certain conditions.
We prove the following theorem.

Theorem 1.1. Let (σ
(1)
n (ω(m−1)(u))) be Cesàro summable to s. If for some p > 1

(λ − 1)p−1 lim sup
n

[λn]−
j=n+1

|ω
(m)
j (u)|p

j
= o(1), λ → 1+, (1.4)

then (un) is backward Cesàro convergent.

Remark 1.2. We note that for p > 1,

n−
j=1

|ω
(m)
j (u)|p

j
=

n−
j=1

jp−1
|1σ (1)(ω

(m−1)
j (u))|p. (1.5)

If
n−

j=1

jp−1
|1σ (1)(ω

(m−1)
j (u))|p = log vn, p > 1 (1.6)

for some O-regularly varying sequence (vn), then (1.6) is equivalent to

V (0)
n (|1ω(m)(u)|, p) =

1
n

n−
k=1

kp|∆ω
(m)
k (u)|p = O(1), p > 1

which is a Tauberian condition for the Cesàro and Abel summability method (see [8,9,3,10]). For more detailed information
about this equivalence, we refer the reader to [11].

The proof is based on the following lemmas.
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Lemma 1.3 ([4]). For λ > 1,

un − σ (1)
n (u) =

[λn] + 1
[λn] − n

(σ
(1)
[λn](u) − σ (1)

n (u)) −
1

[λn] − n

[λn]−
k=n+1

k−
j=n+1

1uj, (1.7)

where [λn] denotes the integer part of λn.

Lemma 1.4. Let (un) be a sequence of real numbers. If ω
(m)
n (u) = nan for some sequence a = (an), then

ω(m−j)
n (u) = n

j−
k=0


j
k


σ (k)
n (a) (1.8)

for j = 0, 1, 2, . . . ,m − 1.

Proof. Let ω
(m)
n (u) = nan for some sequence a = (an). Hence, σ

(1)
n (ω(m−1)(u)) = Sn(a). Using the equality (1.3) and

ω
(m)
n (u) = nan, we get

ω(m−1)
n (u) = n(an + σ (1)

n (a)). (1.9)

Similarly, the equality (1.3) and (1.9) gives

ω(m−2)
n (u) = n(an + 2σ (1)

n (a) + σ (2)
n (a)). (1.10)

Continuing in this way, we have

ω(m−j)
n (u) = n

j−
k=0


j
k


σ (k)
n (a)

for j = 0, 1, 2, . . . ,m − 1. �

2. Proof of Theorem 1.1

Applying Lemma 1.3 to (σ
(1)
n (ω(m−1)(u))), we have

|σ (1)
n (ω(m−1)(u)) − σ (2)

n (ω(m−1)(u))| ≤
[λn] + 1
[λn] − n

|σ
(2)
[λn](ω

(m−1)(u)) − σ (2)
n (ω(m−1)(u))|

+ max
n+1≤k≤[λn]

 k−
j=n+1

1σ
(1)
j (ω(m−1)(u))

 . (2.1)

Since (σ
(1)
n (ω(m−1)(u))) is Cesàro summable to s, the first term on the right-hand side of (2.1) is o(1) and so (2.1) becomes

lim sup
n

|σ (1)
n (ω(m−1)(u)) − σ (2)

n (ω(m−1)(u))| ≤ lim sup
n

max
n+1≤k≤[λn]

 k−
j=n+1

1σ
(1)
j (ω(m−1)(u))

 . (2.2)

For the second term on the right-hand side of (2.1) we have

max
n+1≤k≤[λn]

 k−
j=n+1

1σ
(1)
j (ω(m−1)(u))

 ≤

[λn]−
j=n+1

|1σ
(1)
j (ω(m−1)(u))|

≤ ([λn] − n)
1
q


[λn]−

j=n+1

|ω
(m)
j (u)|p

jp

 1
p

, where
1
p

+
1
q

= 1

≤ ([λn] − n)
1
q


[λn]−

j=n+1

|ω
(m)
j (u)|p

jp−1j

 1
p

≤ ([λn] − n)
1
q


1

np−1

[λn]−
j=n+1

|ω
(m)
j (u)|p

j

 1
p

≤
([λn] − n)

1
q

n
1
q


[λn]−

j=n+1

|ω
(m)
j (u)|p

j

 1
p

≤ (λ − 1)
1
q


[λn]−

j=n+1

|ω
(m)
j (u)|p

j

 1
p

. (2.3)
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From (2.2) and (2.3) we have

lim sup
n

|σ (1)
n (ω(m−1)(u)) − σ (2)

n (ω(m−1)(u))| ≤ (λ − 1)
1
q lim sup

n


[λn]−

j=n+1

|ω
(m)
j (u)|p

j

 1
p

. (2.4)

Letting λ → 1+ in (2.4) and taking (1.4) into account, we deduce that

lim sup
n

|σ (1)
n (ω(m−1)(u)) − σ (2)

n (ω(m−1)(u))| ≤ 0. (2.5)

From (2.5) we have limn σ
(1)
n (ω(m−1)(u)) = s. Since σ

(1)
n (ω(m−1)(u)) = ω

(m−1)
n (σ (1)(u)) for any sequence u = (un) and any

integerm ≥ 1, we have limn ω
(m−1)
n (σ (1)(u)) = s. Taking j = m − 1 in Lemma 1.4, we obtain

ω(1)
n (σ (1)(u)) = n

m−1−
k=0


m − 1

k


σ (k)
n (ϵ) (2.6)

for some null sequence ϵ = (ϵn). Dividing the equality (2.6) by n and then summing the resulting equality from k = 0 to n,
we have

V (1)
n (1u) =

n−
j=0

m−1−
k=0


m − 1

k


σ

(k)
j (ϵ).

Since 1V (1)
n (1u) = o(1) and 1σ

(2)
n (u) = o(1), it follows by the Kronecker identity that 1σ

(1)
n (u) = o(1).

Furthermore, (1σ
(1)
n (u)) is slowly oscillating and for some slowly varying sequence (Bn), we have 1σ

(1)
n (u) = O(Bn).

Since1σ
(1)
n (u) = O(Bn), n → ∞, it follows that there exists a finite interval I such that for every r ∈ I , there is a subsequence

(
1σ

(1)
n(r)(u)

B(n(r)) ) such that limn(r)
1σ

(1)
n(r)(u)

B(n(r)) = r (see [1,12]).
As a corollary we have the following result.

Corollary 2.1. Let (σ
(1)
n (ω(m−1)(u))) be Cesàro summable to s. If for some p > 1, (σ (1)

n (ω(m−1)(u))) is |C, 1|p summable, then
(un) is backward Cesàro convergent.

Example. Let (an) be a bounded sequence such that

∞−
n=1

an
n

< ∞. (2.7)

Consider a sequence (un) defined by

un =

n−
k=2

ak
k

+

n−
k=2

1
k


k−1−
j=1

aj
j


(2.8)

for n ≥ 2 and u1 = u0 = 0.
Put m = 1 in Theorem 1.1. For the sequence (un), we have

ω(1)
n (u) = (n∆)1V (0)

n (1u) = an.

The condition (2.7) implies that (σ
(1)
n (ω(0)(u))) = (V (0)

n (1u)) is Cesàro summable. It follows by the boundedness of (an)
that

[λn]−
j=n+1

|ω
(1)
j (u)|p

j
=

[λn]−
j=n+1

|aj|p

j
≤ C

[λn]−
j=n+1

1
j

≤ C
[λn] − n

n
(2.9)

for some positive constant C . Taking the lim sup in (2.9) gives

lim sup
n

[λn]−
j=n+1

|ω
(1)
n (u)|p

j
≤ C(λ − 1), (2.10)

which shows that (1.4) holds for m = 1. So, the sequence (un) is backward Cesàro convergent by Theorem 1.1.
Note that one can easily construct sequences like in the example above for the casem ≥ 2 in Theorem 1.1.
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