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1. Introduction

Let uζ (g) be the small quantum group associated to the finite-dimensional simple complex
Lie algebra g, with parameter ζ ∈ C a primitive �-th root of unity. Assume that � is odd, not
divisible by 3 in case g is of type G2, and that � is greater than the Coxeter number h of g. In
1993, Ginzburg and Kumar [11] proved that the cohomology algebra R := H2•(uζ (g),C) is iso-
morphic to the coordinate algebra C[N ] of the closed affine subvariety N = N (g) of nilpotent
elements in g. Given a finite-dimensional uζ (g)-module M , the annihilator in R of the Ext-group
Ext•uζ (g)(M,M) defines a closed subvariety Vuζ (g)(M) of N , called the support variety of M .
Support varieties provide a method for understanding the interplay between the underlying geom-
etry and the overall representation theory. For the small quantum group, the support varieties for
the restriction to uζ (g) of Weyl modules for the Lusztig quantum group Uζ (g) were calculated
by Ostrik [22], and in subsequent work by Bendel, Nakano, Parshall, and Pillen [3].

The main result of the present paper provides an explicit determination of the support vari-
ety Vuζ (g)(L) when L is an arbitrary irreducible uζ (g)-module. To describe this result, it can
be assumed that L is the restriction to uζ (g) of an irreducible Uζ (g)-module Lζ (λ) whose
highest weight λ is �-restricted. Let W� = �Q � W be the affine Weyl group, which acts
via the dot action on the Euclidean space E spanned by Φ . In the root system Φ of g, let
Φλ = {α ∈ Φ: 〈λ + ρ,α∨〉 ≡ 0 (mod �)} be the set of roots α such that, for some n ∈ Z, λ is
fixed by the affine reflection sα,n. Here we are using standard notation, most of it explained at
the end of this introduction. Then there exists w ∈ W such that w(Φλ) = ΦJ , the subroot system
generated by a subset J of a fixed set Π of simple roots in Φ . Let b be the negative Borel sub-
algebra of g defined by Π , let pJ ⊃ b be the standard parabolic subalgebra corresponding to J ,
and let uJ be the nilradical of pJ . Then Theorem 3.3 establishes that

Vuζ (g)

(
Lζ (λ)

) = G · uJ ,

where G is the simple, simply-connected complex algebraic group acting on its Lie algebra g by
the adjoint action. In other words, the support variety of Lζ (λ) is the closure in N of a certain
explicitly described Richardson orbit in N . Observe that results of either [22] or [3] imply that
G · uJ = Vuζ (g)(	ζ (λ)), the support variety of the quantum Weyl module 	ζ (λ) of highest
weight λ.

As a guide to the reader, we provide a brief outline here of the proof of our main result. A first
step consists of showing that Vuζ (g)(Lζ (λ)) ⊆ Vuζ (g)(	ζ (λ)). If the dominant weight λ lies in the
bottom �-alcove, then Lζ (λ) = 	ζ (λ), so the equality follows in this case. Otherwise, Lζ (λ) is
the head of 	ζ (λ), and the other composition factors of 	ζ (λ) have the form Lζ (μ) with μ < λ

and μ linked to λ under the dot action of W�. Given an exact sequence 0 → M1 → M2 → M3 →
0 of finite-dimensional uζ (g)-modules and i ∈ {1,2,3}, the support variety of Mi is contained
in the union of the support varieties of the other two modules. Now an easy induction shows for
arbitrary dominant λ that Vuζ (g)(Lζ (λ)) ⊆ Vuζ (g)(	ζ (λ)).

The more difficult step entails showing the reverse containment. Interestingly, this half of the
argument is “analytic” in style. Since support varieties are closed subvarieties of the nilpotent
cone N of g, it is sufficient to prove that

dimVuζ (g)

(
Lζ (λ)

)
� dimVuζ (g)

(
	ζ (λ)

)
.
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Given a finite-dimensional uζ (g)-module V , it is well known (see, e.g., [7]) that the complexity
of V can be defined as the rate of growth of various sequences {an}∞n=0, with one choice being to
take an = dim Extnuζ (g)(V ,V ). The complexity has a geometric interpretation as dimVuζ (g)(V ).
In addition, the complexity of V is bounded below by the order of a pole at ζ of a certain naturally
defined rational function. This rational function is easily described in terms of the so-called
generic dimension dimt V of V , defined in (2.2.2) below. As developed in [21, §3] (influenced
by earlier work of [22]), this leads to the inequality cuζ (g)(V ) � |Φ| − 2s + 2, where s is the
multiplicity of ζ as a root of the Laurent polynomial dimt V .

For V = Lζ (λ), the multiplicity s is determined by repeatedly differentiating a variant f (t)

of the generic dimension dimt Lζ (λ) and then substituting t = ζ . In this way, we are able to de-
termine the smallest s for which f (s)(ζ ) �= 0. Because dimt Lζ (λ) is easily determined from
the character of Lζ (λ), a first step, carried out in Proposition 3.1, amounts to rewriting the
Lusztig character formula for Lζ (λ) in terms of certain parabolic Kazhdan–Lusztig polyno-
mials P

I,−1
y,w ; these polynomials were introduced by Deodhar [6], though our notation follows

Kashiwara–Tanisaki [18]. Because the coefficients of P
I,−1
y,w have interpretations as multiplici-

ties of composition factors in certain Hodge modules, these coefficients are all non-negative [19].
Finally, making use of a subtle combinatorial result, given in Theorem 2.4, involving the alcove
geometry of W�, we determine that s = |Φ+

λ |. This gives

dimVuζ (g)

(
Lζ (λ)

) = cuζ (g)

(
Lζ (λ)

)
� |Φ| − |Φλ| = dimG · uJ = dimVuζ (g)

(
	ζ (λ)

)
,

as required.
Section 4 shifts attention to a simple, simply-connected algebraic group G defined and split

over a prime field Fp , p > 0. We show that the above calculation of support varieties for ir-
reducible modules holds when uζ (g) is replaced by the restricted enveloping algebra u(g) (or,
equivalently, the first Frobenius kernel G1) associated to G; cf. Theorem 4.1. Thus, g is now
the Lie algebra of G and the support varieties are closed subvarieties of the nilpotent cone N
of g. The calculation assumes that p > h, so that early results of Friedlander and Parshall [9] and
Andersen and Jantzen [1] can be used. It is also assumed that the modular Lusztig character for-
mula holds for G for all restricted dominant weights. This last assumption is known to hold for
p sufficiently large, depending on the root system Φ of g; see Andersen, Jantzen, and Soergel [2]
and the subsequent work of Fiebig [8], which provides explicit, albeit large, sufficient bounds on
the size of p. Some instances for which the Lusztig character formula is known to hold are listed
in Section 4. At present, it is still expected that Lusztig’s conjecture holds if p � h. For the p = h

version of the above support variety result, see Remark 4.2.
The results presented in this paper signify the first complete non-trivial calculation of the sup-

port varieties of irreducible modules for a large class of important algebras. Some evidence for
our calculations exists already in the literature. The cases in which the highest weight of L is reg-
ular or lies on a single wall (i.e., the subregular case) were established in [23] (inspired by earlier
work [15] of Jantzen for algebraic groups). In fact, the results in [23] on the generic dimension
motivate the results of Section 2. For irreducible G-modules having regular highest weights, the
calculation given in Section 4 was already shown in [21] and was attributed there to Jantzen. It
has been known for some time (cf. [5]) that the validity of the Lusztig character formula com-
pletely determines, through parity considerations, the groups Ext•A(L,L), for A ∈ {G1, uζ (g)}
and L,L′ irreducible A-modules with regular highest weights. In fact, the dimensions of these
cohomology groups are given in terms of Kazhdan–Lusztig polynomials. Conversely, essentially
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no results are known for these Ext-groups when L,L′ have singular highest weights. Thus, from
this viewpoint, it seems remarkable that the support varieties for all irreducible modules can be
determined explicitly in the quantum case or in the modular case assuming the validity of the
Lusztig character formula.

1.1. Some preliminary notation and conventions

All of the following notation is standard.

(1) g: finite-dimensional simple complex Lie algebra.
(2) h: Cartan subalgebra of g.
(3) Φ: corresponding irreducible root system.
(4) Π = {α1, . . . , αn}, Φ+, α0: simple roots, positive roots, and maximal short root.
(5) b: Borel subalgebra of g consisting of the span of negative root vectors and h, and opposite

to b+ (span of positive root vectors and h).
(6) E: Euclidean space spanned by Φ .
(7) Q = ZΦ: root lattice in E.
(8) 〈·,·〉: W -invariant inner product on E, normalized so that 〈α,α〉 = 2 if α ∈ Φ is a short root.
(9) ρ: Weyl weight defined by ρ = 1

2

∑
α∈Φ+ α.

(10) α∨ = 2α/〈α,α〉: coroot of α ∈ Φ .
(11) h = 〈ρ,α∨

0 〉 + 1: Coxeter number of Φ .
(12) X = Z
1 ⊕ · · · ⊕ Z
n: weight lattice in E, where the fundamental dominant weights 
i

are defined by 〈
i,α
∨
j 〉 = δij , 1 � i, j � n.

(13) X+ = N
1 + · · · +N
n: cone of dominant weights.
(14) X+

� = {λ ∈ X+: 〈λ,α∨〉 < � for all α ∈ Φ}: the set of �-restricted dominant weights.
(15) sβ :E → E (β ∈ Φ): reflection across the hyperplane Hβ of vectors orthogonal to β .
(16) W ⊂ O(E): Weyl group of Φ , generated by the orthogonal reflections {sα1 , . . . , sαn}.
(17) W� = �Q�W : affine Weyl group, generated by the affine reflections sα,r :E → E, defined

for α ∈ Φ and r ∈ Z by sα,r (x) = x − [〈x,α∨〉 − rl]α. For θ ∈ Q, let t�θ :E → E be the
translation operator in W� given by x �→ x + �θ . The affine Weyl group W� is a Coxeter
group with fundamental system S� = {sα1 , . . . , sαn} ∪ {sα0,−1}.

(18) l :W� → N: usual length function on W�.
(19) l|W : length function on the parabolic subgroup W of W�.
(20) Φλ,� = {α ∈ Φ: 〈λ + ρ,α∨〉 ≡ 0 (mod �)} for λ ∈ X. When � is clear from context, denote

Φλ,� simply by Φλ. Set Φ+
λ = Φ+ ∩ Φλ.

(21) C− = {λ ∈ E: −� < 〈λ + ρ,α∨〉 < 0 for all α ∈ Φ+}. The closure C− is a fundamental
domain for the dot action of W� on E (which is defined by w · λ = w(λ + ρ) − ρ). Let
C−
Z

= C− ∩ X and C−
Z

= C− ∩ X.
(22) χ(λ) = ∑

w∈W(−1)l(w)e(w(λ + ρ))/
∑

w∈W(−1)l(w)e(wρ) ∈ Z[X] for λ ∈ X: This is
Weyl’s character formula if λ ∈ X+.

(23) Ψ�(t) ∈ Z[t]: cyclotomic polynomial for a primitive �-th root of unity ζ ∈ C.
(24) dα = 〈α,α〉/2 = 〈α,α〉/〈α0, α0〉 ∈ {1,2,3} for α ∈ Φ .

Throughout this paper we will assume that � is an odd positive integer, l > h, and (�, r) = 1 for
each bad prime r of Φ . In Section 4 we also assume that � = p is a prime integer. The assumption
that (l, r) = 1 whenever r is bad for Φ guarantees that Φλ is a closed subroot system of Φ . In
fact, one then has (dα, �) = 1 for all α ∈ Φ , so that, since dαα∨ = α, we have 〈λ + ρ,α〉 =
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dα〈λ + ρ,α∨〉 ∈ Z for all α ∈ Φ , and hence Φλ = {α ∈ Φ: 〈λ + ρ,α〉 ≡ 0 (mod �)}. The fact
that � is not divisible by a bad prime means, by definition, that ZΦ/ZΦ ′ has no �-torsion for any
closed subsystem Φ ′ of Φ . Then QΦλ ∩ Φ = Φλ, so by [4, VI.1.7 Proposition 24], there is a set
of simple roots for Φλ contained in a set of simple roots for Φ . Thus, there exists w ∈ W and
a subset J ⊆ Π such that Φλ = w(ΦJ ), where ΦJ = ZJ ∩ Φ . The argument of this paragraph
largely reiterates that given in [21, §6.2] for the special case when � = p is a good prime.

2. Differentiating the generic dimension

For θ ∈ Q, write θ = ∑n
i=1 miαi (mi ∈ Z). The height of θ is defined by ht(θ) = ∑n

i=1 mi .
A weighted height on X will be defined and used later. We require the following elementary
result.

Lemma 2.1. For β ∈ Φ+, l(sβ) < 2 ht(β).

Proof. The result is true if ht(β) = 1, i.e., if β ∈ Π . So assume that ht(β) > 1, and that the
result is true for positive roots of smaller height. Choose α ∈ Π so that sα(β) = γ ∈ Φ+ with
ht(γ ) < ht(β). Then sβ = sαsγ sα . Since 〈γ,α〉 < 0, it is easily verified that l(sβ) = l(sγ ) + 2.
Then

l(sβ) = l(sγ ) + 2 < 2 ht(γ ) + 2 � 2 ht(β),

as required. �
Fix λ− ∈ C−

Z
throughout this section. An element w ∈ W� is called dominant for λ− provided

that w ·λ− ∈ X+. Let w ∈ W� be dominant for λ−, and write w = t�θ x with θ ∈ Q, x ∈ W . Since
w · λ− = x(λ− + ρ) + �θ ∈ ρ + X+, and

∣∣〈x(
λ− + ρ

)
, α∨〉∣∣ = ∣∣〈λ− + ρ,x−1α∨〉∣∣� � for all α ∈ Φ,

it follows that θ ∈ X+. In addition, w is called minimal dominant for λ− if it has minimal length
among all y ∈ W� such that y · λ− = w · λ−.

Let w = t�θ x ∈ W� with θ ∈ Q, x ∈ W . If θ ∈ X+, then it follows that

�(w) = �(x) + 2 ht(θ). (2.1.1)

This result is proved in [14, Proposition 1.23]. A routine adjustment must be made in the formula
given there, since a different set of fundamental reflections for W� is used.

Lemma 2.2. Let w = t�θ x be minimal dominant for λ− ∈ C−
Z

. Given α ∈ Φ+
λ− , xα ∈ −Φ+ if and

only if 〈λ− + ρ,α∨〉 = −�.

Proof. Suppose that α ∈ Φ+
λ− . Then 〈λ− + ρ,α∨〉 ∈ {0,−�}. If this value is 0, then xsα · λ− =

x · λ−. By hypothesis on w, this means that

2 ht(θ) + l(x) = l(w) < l(wsα) = 2 ht(θ) + l(xsα),
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so that l(xsα) > l(x), and hence xα > 0. Thus, if xα < 0, then necessarily 〈λ− + ρ,α∨〉 = −�.
Conversely, assume that 〈λ− +ρ,α∨〉 = −�. We will show that xα < 0. Suppose otherwise, viz.,
xα > 0. We have sα,−1 · λ− = λ−. Also,

wsα,−1 = t�θ xt−�αsα = t�θ−�xαxsα.

Since wsα,−1 · λ− = w · λ− is dominant, θ − xα must be dominant. Then, by (2.1.1), wsα,−1 has
length equal to l(xsα) + 2 ht(θ − xα). But,

l(wsα,−1) = l(xsα) + 2 ht(θ − xα) = l(sxαx) + 2 ht(θ) − 2 ht(xα)

� l(x) + l(sxα) + 2 ht(θ) − 2 ht(xα) < l(w)

since Lemma 2.1 guarantees that l(sxα) < 2 ht(xα) when xα ∈ Φ+. This inequality contradicts
the minimality of w, so we must conclude that if 〈λ− + ρ,α∨〉 = −�, then xα < 0. �

Following [23], we will use a weighted height function wht :X → Z[ 1
2 ]. For α ∈ Φ , recall

dα = 〈α,α〉/2 = 〈α,α〉/〈α0, α0〉 ∈ {1,2,3}. Given λ = ∑
α∈Π rαα ∈ X (rα ∈Q), put

wht(λ) :=
∑
α∈Π

rαdα = 2〈λ,ρ〉
〈α0, α0〉 = 1

2

∑
α∈Φ+

dα

〈
λ,α∨〉

. (2.2.1)

See [23, Lemma 1.1] for the verification that these quantities are all equal. Given a finite-
dimensional X-graded vector space V = ⊕

λ∈X Vλ, its generic dimension is the Laurent polyno-
mial

dimt V :=
∑
λ∈X

(dimVλ)t
−2 wht(λ) ∈ Z

[
t, t−1]. (2.2.2)

We also put ch(V ) = ∑
λ∈X(dimVλ)e(λ) for the character of V .

For λ ∈ X, set

Dλ(t) =
∏

α∈Φ+

(
tdα〈λ+ρ,α∨〉 − t−dα〈λ+ρ,α∨〉) ∈ Z

[
t, t−1]. (2.2.3)

Lemma 2.3. (See [23, Theorem 1.3].) Suppose that V is a finite-dimensional X-graded vector
space such that ch(V ) = χ(λ) for some λ ∈ X+. Then

dimt V = Dλ(t)/D0(t). (2.3.1)

We call (2.3.1) the Weyl generic dimension formula. Its value at t = 1 gives Weyl’s classical
dimension formula for the irreducible g-module of highest weight λ.

Let λ− ∈ C−
Z

as before, and let w = t�θ x, θ ∈ X+ ∩ Q, x ∈ W , be minimal dominant for λ−.
Set λ = w · λ−, and set s = |Φ+

λ |. For α ∈ Φ+, 2dα〈λ + ρ,α∨〉 is divisible by � if and only if
α ∈ Φ+

λ . Also, by our assumptions, � does not divide any of the 2dα〈ρ,α∨〉. It follows that the
cyclotomic polynomial Ψ�(t) occurs as a factor of tdα〈λ+ρ,α∨〉 − t−dα〈λ+ρ,α∨〉 in Z[t, t−1] if and
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only if α ∈ Φ+
λ , hence that Ψ�(t) occurs as a factor of Dλ(t) in Z[t, t−1] precisely s times. In

particular, Ψ�(t) is relatively prime to D0(t).
For the main result of this paper, we need to calculate the value at t = ζ of the Laurent

polynomial

D
(s)
λ (t) := ds

dts
Dλ(t),

obtained by differentiating Dλ(t) s times.

Theorem 2.4. Fix λ− ∈ C−
Z

. Let w = t�θ x ∈ W� be minimal dominant for λ−, and put λ = w ·λ−.
Set s = |Φ+

λ |, and set

aλ− = ∣∣{α ∈ Φ+
λ− :

〈
λ− + ρ,α∨〉 = −�

}∣∣.
Then

0 �= D
(s)
λ (ζ ) = (−1)l(w)−(aλ− )(s!)

( ∏
α∈Φ+

λ

2dα

〈
λ + ρ,α∨〉

ζ−1
)

×
( ∏

α∈Φ+\Φ+
λ−

ζ dα〈λ−+ρ,α∨〉 − ζ−dα〈λ−+ρ,α∨〉
)

.

Proof. Write fα(t) = tdα〈λ+ρ,α∨〉− t−dα〈λ+ρ,α∨〉, so that Dλ(t) = ∏
α∈Φ+ fα(t). If (di/dt i)fα(t)

is denoted by f
(i)
α (t), then D

(s)
λ (t) is a sum of terms

[
s!/

(∏
iα!

)]
·
∏

f (iα)
α (t) (2.4.1)

over distinct sequences (iα)α∈Φ+ of non-negative integers iα summing to s. Since Ψ�(t) divides
fα(t) precisely when α ∈ Φ+

λ (and then divides it with multiplicity one), the only terms in (2.4.1)
that do not vanish upon the substitution t = ζ are those in which iα = 1 for all α ∈ Φ+

λ (and thus
iα = 0 for all α ∈ Φ+\Φ+

λ ). However,

f (1)
α (t) = f ′

α(t) = dα

〈
λ + ρ,α∨〉(

tdα〈λ+ρ,α∨〉−1 + t−dα〈λ+ρ,α∨〉−1),
so that, for α ∈ Φ+

λ ,

f ′
α(ζ ) = 2dα

〈
λ + ρ,α∨〉

ζ−1.

Furthermore, each 〈λ + ρ,α∨〉 is a positive integer because λ ∈ X+.
Next, for α ∈ Φ+\Φ+

λ ,

ζ dα〈λ+ρ,α∨〉 = ζ dα〈x(λ−+ρ),α∨〉ζ dα�〈θ,α∨〉 = ζ dα〈λ−+ρ,x−1α∨〉.
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Observe that α /∈ Φλ implies that x−1α /∈ Φλ− . If x−1α < 0, then we write the (non-zero) quantity

ζ dα〈λ−+ρ,x−1α∨〉 − ζ−dα〈λ−+ρ,x−1α∨〉

as

−(
ζ dα〈λ−+ρ,−x−1α∨〉 − ζ−dα〈λ−+ρ,−x−1α∨〉).

By Lemma 2.2, there are l(w) − (aλ−) such sign changes. The theorem now follows. �
In the next section, it will be convenient to write

Eλ−(ζ ) =
∏

α∈Φ+\Φ+
λ−

(
ζ dα〈λ−+ρ,α∨〉 − ζ−dα〈λ−+ρ,α∨〉). (2.4.2)

3. Support varieties for quantum irreducible modules

We continue to assume that the positive integer � satisfies the conditions (with respect to the
root system Φ) stated in the last paragraph of Section 1. Let ζ ∈ C be a primitive �-th root of 1.
Let Uζ (g) be the Lusztig quantum enveloping algebra associated to g at ζ , and let uζ (g) be the
corresponding small quantum group. Then uζ (g) is the Hopf-algebraic kernel of the Frobenius
morphism on Uζ (g).

For λ ∈ X+, let Lζ (λ) be the irreducible type-1 integrable Uζ (g)-module of highest weight λ.
Similarly, let 	ζ (λ) and ∇ζ (λ) denote the standard and costandard (i.e., Weyl and induced) mod-
ules of highest weight λ. Then 	ζ (λ) (resp. ∇ζ (λ)) has head (resp. socle) Lζ (λ), with all other
composition factors Lζ (μ) satisfying μ < λ in the usual partial ordering on X+. Furthermore, if
Lζ (μ) is a composition factor of 	ζ (λ) (resp. ∇ζ (λ)), then μ is linked to λ (i.e., μ is conjugate
to λ under the dot action of W�), and hence Φλ and Φμ are W -conjugate. It is well known that
given λ ∈ X+, 	ζ (λ) and ∇ζ (λ) both have formal characters (with respect to the action of the
“torus” U0

ζ (g)) equal to χ(λ), the Weyl character associated to the dominant weight λ. Thus,
taking V = 	ζ (λ) or ∇ζ (λ), one has dimt V = Dλ(t)/D0(t) by Lemma 2.3.

Recall that W� is generated as a group by the fundamental system S� ⊂ W�. Given I ⊆ S�,
set W�,I = 〈I 〉 � W�, and set WI

� = {w ∈ W�: l(w) � l(ws) for all s ∈ W�,I }. Let � denote
the Chevalley–Bruhat partial ordering on W�. Given y � w in W�, Py,w(q) is the Kazhdan–
Lusztig polynomial associated to the pair (y,w). In [6], Deodhar introduced two generalizations
of the Py,w’s, called parabolic Kazhdan–Lusztig polynomials, which depend on a choice of sub-
set I ⊆ S�, and a choice of a root u of the equation u2 = q + (q − 1)u, i.e., u = −1 or u = q .
Given I ⊆ S�, and given (y,w) ∈ WI

� × WI
� with y � w, the parabolic Kazhdan–Lusztig poly-

nomial P
I,−1
y,w associated to the root u = q is related to the usual Kazhdan–Lusztig polynomials

by the following equation [6, Remark 3.8]:

P I,−1
y,w =

∑
x∈WI ,yx�w

(−1)l(x)Pyx,w. (3.0.3)

We are following the notational convention of [19], so the superscript in P
I,a
y,w indicates the op-

posite root of the equation u2 = q + (q − 1)u; see [19, Remark 2.1]. If y � w, then P
I,−1
y,w = 0.
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By [19, Corollary 4.1], the coefficients of the P
I,−1
y,w are non-negative integers. In fact, the coeffi-

cients are interpreted there as multiplicities of composition factors in Hodge modules associated
to Schubert varieties; an alternate approach using affine Hecke algebras is provided in [12].

Fix λ− ∈ C−
Z

. The stabilizer in W� of λ− is defined by W�,λ− = {w ∈ W� | w · λ− = λ−}; it is
generated as a group by the set I := W�,λ− ∩ S� [16, II.6.3]. Then W�,λ− = W�,I := 〈I 〉 � W� is
a parabolic subgroup of W�. If w ∈ W� is minimal dominant for λ−, then w ∈ WI

� .

Proposition 3.1. Let w ∈ W� be minimal dominant for λ−, and write λ = w · λ−. Let I ⊆ S� be
such that W�,λ− = W�,I . Then

chLζ (λ) =
∑

y∈WI
�

(−1)l(w)−l(y)P I,−1
y,w (1) ch	ζ

(
y · λ−)

. (3.1.1)

Proof. As mentioned in the introduction (see also [27, §§6–7]), the Lusztig character formula

chLζ (λ) =
∑

y∈W�,y�w,y·λ−∈X+
(−1)l(w)−l(y)Py,w(1) ch	ζ

(
y · λ−)

(3.1.2)

holds. If y ∈ W� is not dominant for λ−, then ch	ζ (y · λ−) = 0. Also, if y � w, then Py,w = 0.
Then (3.1.2) can be rewritten as

chLζ (λ) =
∑

y∈WI
�

(−1)l(w)−l(y)

( ∑
x∈W�,I

(−1)l(x)Pyx,w(1)

)
ch	ζ

(
y · λ−)

=
∑

y∈WI
�

(−1)l(w)−l(y)P I,−1
y,w (1) ch	ζ

(
y · λ−)

by (3.0.3). �
Now choose J ⊆ Π such that Φλ− is W -conjugate to ΦJ . Let

uJ =
∑

α∈Φ+\Φ+
J

g−α ⊂ g (3.1.3)

be the nilpotent radical of the (negative) standard parabolic subalgebra pJ ⊇ b determined by J .
If J = ∅, denote u∅ simply by u, the nilpotent radical of b. Let G be the simple complex algebraic
group with Lie algebra g. Recall that G · uJ is a closed, irreducible subvariety of the nullcone
N (g) of g.

The following theorem was first stated in [22, Theorem 6.1]. We also refer the reader to [3],
which considers in addition the situation when � � h and when (l, r) �= 1 for r a bad prime of Φ .

Theorem 3.2. Let λ ∈ X+, and choose J ⊆ Π such that w(Φλ) = ΦJ for some w ∈ W . Then
Vuζ (g)(	ζ (λ)) = Vuζ (g)(∇ζ (λ)) = G · uJ .
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We remark that the subset J ⊆ Π and the element w ∈ W in Theorem 3.2 may not be
unique. However, the Johnston–Richardson theorem [17] guarantees that if J,K ⊆ Π are such
that ΦJ is conjugate to ΦK under W , then G · uJ = G · uK , so the variety Vuζ (g)(∇ζ (λ)) is
well-defined. Also, the equality Vuζ (g)(	ζ (λ)) = Vuζ (g)(∇ζ (λ)) may be seen as follows. First,
Φλ = w0(Φ−w0λ), so Vuζ (g)(∇ζ (λ)) = Vuζ (g)(∇ζ (−w0λ)). Next, 	ζ (λ) = ∇ζ (−w0λ)∗, so the
equality Vuζ (g)(	ζ (λ)) = Vuζ (g)(∇ζ (−w0λ)) follows as in [23, Remark 5.3] from the fact that
the small quantum group uζ (g) is a quasitriangular Hopf algebra [20, Example 8.16].

Now let M be a finite-dimensional type-1 Uζ (g)-module. Before proving the main theorem,
we collect some information concerning the support varieties Vuζ (g)(M) and Vuζ (b)(M). First, by
[11, Lemma 2.6], there exists a rational B-algebra isomorphism H2•(uζ (b),C) ∼= S•(u∗), and by
[11, Theorem 3], there exists a rational G-algebra isomorphism H2•(uζ (g),C) ∼= C[N ]. Under
these identifications, the restriction map H•(uζ (g),C) → H•(uζ (b),C) induced by the inclusion
uζ (b) ⊂ uζ (g) is simply the restriction of functions from N to u. In particular, the restriction
map is surjective.

Now, from the inclusion of algebras uζ (b) ⊂ uζ (g) we get the commutative diagram

H•(uζ (g),C)

res

H•(uζ (g),M ⊗ M∗) Ext•
uζ (g)

(M,M)

H•(uζ (b),C) H•(uζ (b),M ⊗ M∗) Ext•
uζ (b)

(M,M),

where the vertical maps are the obvious restriction maps, and the horizontal maps are induced
by the uζ (g)-module homomorphism C → M ⊗M∗ ∼= Endk(M), 1 �→ IdM . From the commuta-
tivity of the diagram and the surjectivity of the leftmost restriction homomorphism, we conclude
that there exists a closed embedding Vuζ (b)(M) ⊆ Vuζ (g)(M) ∩N (b) = Vuζ (g)(M) ∩ u.

The support variety Vuζ (g)(M) is naturally an algebraic G-variety, hence is a union of G-
orbits. The dimension of Vuζ (g)(M) as an algebraic variety is the maximum of the dimensions
of the G-orbits in Vuζ (g)(M). Similarly, Vuζ (b)(M) is naturally an algebraic B-variety, and its
dimension is the maximum of the dimensions of the B-orbits in Vuζ (b)(M). Since Vuζ (b)(M) ⊆
Vuζ (g)(M) ∩ u, it follows by a result of Spaltenstein [13, Proposition 6.7] that dimVuζ (b)(M) �
1
2 dimVuζ (g)(M).

We are now ready to prove the main theorem.

Theorem 3.3. Let λ ∈ X+, and choose J ⊆ Π such that w(Φλ) = ΦJ for some w ∈ W . Then

Vuζ (g)

(
Lζ (λ)

) = G · uJ .

Proof. We first claim that Vuζ (g)(Lζ (λ)) ⊆ G · uJ . This is proved in [22, §5], but it is easily
deduced from the previous theorem: If μ is linked to λ and is minimal among all dominant
weights � λ, then Lζ (μ) = ∇ζ (μ), and Φμ is W -conjugate to Φλ. Then Theorem 3.2 and the
Johnston–Richardson theorem [17] imply that Vuζ (g)(Lζ (μ)) = G · uJ = Vuζ (g)(∇ζ (λ)). More
generally, if 0 → M1 → M2 → M3 → 0 is a short exact sequence of finite-dimensional uζ (g)-
modules, then Vuζ (g)(Mσ(1)) ⊆ Vuζ (g)(Mσ(2))∪Vuζ (g)(Mσ(3)) for any permutation σ of {1,2,3}
[23, Lemma 5.2]. Thus, the full claim follows from an evident induction argument, again using
Theorem 3.2 together with the remarks at the start of this section.



2666 C.M. Drupieski et al. / Advances in Mathematics 229 (2012) 2656–2668
We next estimate the dimension of Vuζ (b)(Lζ (λ)). We have dimVuζ (b)(Lζ (λ)) =
cuζ (b)(Lζ (λ)), the complexity of Lζ (λ) as a uζ (b)-module. By [21, Theorem 3.4.1(a)],4 the
complexity cuζ (b)(Lζ (λ)) satisfies the inequality cuζ (b)(Lζ (λ)) � |Φ+| − d + 1, where d is any
positive integer such that Ψ�(t)

d does not divide the generic dimension dimt Lζ (λ) ∈ Z[t, t−1].
According to the character formula (3.1.1) in Proposition 3.1, Lemma 2.3, and the remarks at the
end of the second paragraph of this section, we have

dimt Lζ (λ) =
∑

y∈WI
�

(−1)l(w)−l(y)P I,−1
y,w (1)Dy·λ−(t)/D0(t),

where I ⊆ S� is such that W�,λ− = W�,I . Since D0(t) is relatively prime to Ψ�(t), to deter-
mine a lower bound for cuζ (b)(Lζ (λ)), it suffices to determine the multiplicity with which Ψ�(t)

occurs as a factor in D0(t) · dimt Lζ (λ). Equivalently, it suffices to determine the multiplicity
with which the primitive �-th root of unity ζ ∈ C occurs as a root of the Laurent polynomial
D0(t) · dimt Lζ (λ).

Set f (t) = D0(t) · dimt Lζ (λ). If f (i)(ζ ) = 0 for all 0 � i < n, but f (n)(ζ ) �= 0, then ζ occurs
as a root of f with multiplicity exactly equal to n. Set s = |Φ+

λ−|. Then s = |Φ+
y·λ−| for any

y ∈ W� by [21, (3.4.2)]. We want to show that n = s. Certainly n � s, because Ψ�(t) occurs as
a factor of Dy·λ−(t) precisely s times by the discussion following Lemma 2.3. Then, to prove
n = s, we must show that f (s)(ζ ) �= 0.

Applying Theorem 2.4, we get

f (s)(ζ ) =
∑

y∈WI
�

(−1)l(w)−l(y)P I,−1
y,w (1)D

(s)

y·λ−(ζ )

=
∑

y∈WI
�

(−1)l(w)−(aλ− )P I,−1
y,w (1)(s!)

( ∏
α∈Φ+

y·λ−

2dα

〈
y · λ− + ρ,α∨〉)

ζ−sEλ−(ζ )

= (
(−1)l(w)−(aλ− )(s!)ζ−sEλ−(ζ )

) ·
( ∑

y∈WI
�

P I,−1
y,w (1)

( ∏
α∈Φ+

y·λ−

2dα

〈
y · λ− + ρ,α∨〉))

.

The first term in the product of the last line is non-zero. The second term in the product is
a sum of non-negative integers (by the positivity property for the parabolic Kazhdan–Lusztig
polynomials). Since P I,−1

w,w (1) = 1, we conclude that the second term in the product is a strictly
positive integer, hence that f (s)(ζ ) �= 0.

4 Although cast in the situation of algebraic groups, the results of [21, §3] apply here. In fact, [21, Theorem 3.4.1(a)]
depends formally on the arguments given in [21, §§3.2–3.3]. In our case, we replace the r-th infinitesimal subgroup Br by
uζ (b) and T Br by U0

ζ (g)uζ (g). Taking P• → Lζ (λ) → 0 to be a minimal projective resolution in the category of type-1

integrable U0
ζ (g)uζ (g)-modules, the critical description [21, (3.2.2)] holds in our case, and the remaining arguments

follow as for algebraic groups. As pointed out in [21, Footnote 2], this argument is in some sense given in [22]. In the
proof of [21, Theorem 3.3.1], one should first tensor M by an appropriate one-dimensional character so that dimt M is
a polynomial in t ; this will not affect the complexity of M , and will ensure that the only poles of q(t) occur at roots
of unity. Also, in the second paragraph of the proof, the phrase “the orders of these poles” should be replaced by “the
multiplicative orders of these roots of unity,” in the second line the two occurrences of d should be replaced by b, and
the phrase “so that aij ” should be replaced by “so that for all sufficiently large j , aij ”.
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Now Vuζ (b)(Lζ (λ)) has dimension at least |Φ+| − s = |Φ+| − |Φ+
λ−|. By the discussion pre-

ceding the theorem, we have dimVuζ (g)(Lζ (λ)) � |Φ| − |Φλ−| = dimG · uJ . �
4. Results in positive characteristic

In this section, G is a simple, simply-connected algebraic group defined over an algebraically
closed field k of positive characteristic p. We leave to the reader the routine task of extending
these results to reductive groups. Fix a maximal torus T ⊂ G, and let Φ be the root system
of T acting on the Lie algebra g. Most of the previous notation, with � set equal to p, carries
over to G with only small changes (e.g., B ⊃ T is a Borel subgroup whose opposite B+ de-
fines the set Φ+ of positive roots, etc.). The Lie algebra g carries a restricted structure; let u(g)

denote its restricted enveloping algebra. We assume that p > h, so that, using [9] and [1], the
cohomology algebra H•(u(g), k) is isomorphic to k[N ], the coordinate ring of the variety N of
nilpotent elements in g. The result below concerns the support varieties Vu(g)(L(λ)) of the irre-
ducible G-modules L(λ), λ ∈ X+. If λ = λ0 + pλ1 with λ0 ∈ X+

p (the restricted weights), then
Vu(g)(L(λ)) = Vu(g)(L(λ0)). Therefore, in computing support varieties for irreducible modules,
it suffices to consider only those having restricted highest weights.

Let λ = w · λ− ∈ X+, λ− ∈ C−
Z

, w ∈ Wp . Assume that w is minimal dominant for λ−. The
Lusztig character formula asserts

ch L(λ) =
∑

y∈Wp,y�w,y·λ−∈X+
(−1)l(w)−l(y)Py,w(1) ch 	

(
y · λ−)

, (4.0.1)

where 	(y ·λ−) is the Weyl module for G of highest weight y ·λ−. As mentioned in the introduc-
tion, (4.0.1) holds for all restricted dominant weights λ, provided that the prime p is sufficiently
large (the lower bound on p depending on the root system).5

Let J ⊆ Π such that Φλ is W -conjugate to ΦJ . By [21, Proposition 7.4.1], Vu(g)(L(λ)) ⊆
G · uJ , where uJ is defined as in (3.1.3). With this fact, the proof of the following result is
exactly analogous to that of Theorem 3.3 (replacing Ψ�(t) by Ψp(t), etc.).

Theorem 4.1. Assume that G is a simple, simply-connected algebraic group over an alge-
braically closed field k of characteristic p > h. Assume that the Lusztig character formula (4.0.1)
holds for all restricted dominant weights. Then, for λ ∈ X+ and J ⊆ Π with w(Φλ) = ΦJ ,

Vu(g)

(
L(λ)

) = G · uJ .

Remark 4.2. (a) Suppose p = h. It may no longer hold that A := H2•(u(g), k) ∼= k[N ]. Even
so, it has been proved that the algebraic variety defined by the affine algebra A is homeomorphic
to N [25,26]. In this case, we identify Vu(g)(L(λ)) with its image in N , and Theorem 4.1 holds
with the condition “p > h” replaced by the condition “p � h”.

5 The Lusztig character formula is also known to hold for restricted weights in the following low rank cases (assuming
p � h): (1) type A1, p � 2 = h; (2) type A2, p � 3 = h; (3) type B2, p > 4 = h; (4) type G2, p > 9 = 2h − 3; (5)
type A3, p > 4 = h; (6) type A4, p = 5 or p = 7. Case (6) for p = 5 is due independently to L. Scott (working with
undergraduates) and to A. Buch and N. Lauritzen. The case p = 7 is due to L. Scott (again working with undergraduates).
Both of these cases required extensive computer application. For more details and references, see [24].
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(b) For a restricted Lie algebra g with restriction map x �→ x[p] and restricted enveloping
algebra u(g), and for a finite-dimensional u(g)-module M , the support variety Vu(g)(M) has an
alternate, more concrete description as the set of all x ∈ g such that x[p] = 0 and the induced
operator xM on M has an r × r Jordan block of size r < p. In other words, for 0 �= x ∈ g

satisfying x[p] = 0, x /∈ Vu(g)(M) if and only if M is projective over the subalgebra of u(g)

generated by x (cf. [10]). At present there is no known concrete realization in N for the support
varieties of modules over the small quantum group.
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