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The stability of discontinuous large scale systems under structural perturbations 
are studied in this paper. It is assumed that the discontinuous equations possess 
solutions in the sense of Fihppov. The results obtained yield sufficient conditions 
for connective stability. The interconnected systems are treated in terms of their 
subsystems. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

In practice we frequently encounter systems which are most appropriately 
represented by discontinuous ordinary differential equations. Such equations 
are investigated qualitatively by Filippov [Z], He [3], Michel and Porter 
[S, 61, and others. Many such systems often are complex and of a very 
large scale. It is possible to view such systems as consisting of several 
simpler subsystems which when interconnected in an appropriate fashion 
yield the original large scale systems. The behavior of such systems are 
studied by He [4], Michel and Porter [5, 61, etc. 

In this paper, we develop the connective stability which was established 
for the continuous large scale systems by Siljak [ 10, 111 to the discontinuous 
large scale systems. Following He [4], the decomposition-aggregation 
method and comparison principle are used to derive sufficient conditions 
such that the trivial solution of the discontinuous large scale systems is 
connectively stable, uniformly, and connectively stable, respectively. 

2. NOTATION 

Let R” be a real Euclidean space, R + = [0, co ), 0 E D c R”, D is a bounded 
openset of R”. Consider the discontinuous large scale system 

i =A& XL (1) 
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where tER,, feF(R+ x D, R”), which denotes that f is defined and 
measurable almost everywhere (a.e.) in a domain G E R + x D, and for any 
closed bounded domain Q c G c R + x D, it is assumed that there exists a 
summable function m(t) such that 1) f (t, x)ll d m( t) a.e. in Q. In this case we 
say f satisfies the Filippov condition in R, x D. The absolutely continuous 
solutions of (1) in the sense of Filippov [2], are denoted by x( t; t,, x0) 
with x(tO) = x,,. Furthermore, we assume that f( t, 0) = 0, Vt E R +, and 
x* = 0 is the unique equilibrium state of (1). 

Let us decompose the state vector XE R” into s vector components 

xi= txil 3 xi2, ...t Xin,)T, i = 1 , 2, . . . . s, 

where x, E R”l, n = XI= r ni. The scalar components f;: R t x R” -+ R of the 
function .f( t, x) in (1) are further speciaiized as 

.Lfi(t, XJEfi(t, xi, ejlxl, -., eisxs), (2) 

wher:ep, are elements of a given s x s interconnective matrix E (see [ 12]), 
iES = {1,2, . . . . s). We formulate the following. 

DEFINITION 1. The equilibrium x * = 0 of (1) is connectively stable, if 
for each number E > 0 there exists a number 6 = s(t,, E), t, E R, , such that 
for the Fihppov solutions x(t; t,, x0) of (1) with x(to) =x0, l)xOII < 6 
implies /x(t; to,xofll CC, t”t~f=[t~, co) for ail EEI?, where i? is the 
fundamental interconnection matrix of (1). 

When for each E>O there exists a 6 = b(s) >O independent of to such 
that I/+,/l ~6 implies jlx(t; f,, x0)11 <E, Vt EJ, or all EE I?, then x* =0 is 
uniformly and connectively stable. 

Assume that the system (1) can be decomposed into s interconnected 
subsystems described by the equations 

;i-;= g,(t, Xi) + h;(t, x), icS, (3) 

where X,E R”‘, x=(x:, xc, . . . . ‘x,‘) E R”, llxll = (x;=, x~)‘~~, gi: R, x R”l-+Rni 
describe the decoupled subsystems 

.t = g,(t, Xi), iES (4) 

and the functions hi: R, x R” - R”‘, i E S represent the interactions among 
the subsystems (3) which have the form 

h;(t, x) = hit& ejlxl, ej2x2, . . . . e,x,>), ieS, (5) 

where again eV are elements of the s x s interconnection matrix E. Further- 
more, we assume that for all i E S, g, (t, 0) = 0, h, (t, 0) = 0, Vt E .I. 
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When t is fixed, we define the essential supermum on a point X of a 
scalar function u(t, x) as following 

M,(u(t, X)> = /imO vrai XEma;6j u(t, x) 

= lim inf SUP d-+0 WV=0 xcU(x,S)-N 46 xl, 

where U(X, S) denotes the 6 neighbourhood of X, and ,uN denotes the 
measure of set N (see [2]). 

3. MAIN RESULTS 

THEOREM 1. Suppose that for each subsystem (3) with (5), Vi E S, there 
exist functions bljc K class, uj(t, x,) E C’(Jx R”l, R), wi(t, yi) E F(Jx R, R) 
with oi( t, 0) = 0 a.e. t E J, and VU(t) is Lebesgue integrable in J, such that for 
all E E i? the following conditions are satisfied 

(a) dli(llxjII)<cj(t, x,) a.e. (t, xi)EJX R”‘; 
(b) aui(t, Xi)/dt + (aUi(t, X,)/8X,) gi(t, Xi) ,< CBi(t, L’i(t, Xi))a.e. (t, Xi)E 

J x R”l; 

(C) (avj(t, X,)/ax,) hi(t, eilxl, eigxz, -.p ejsX,) 6 Cy= 1 e,?,(t) llxjll a.e. 
(t,x)EJxR”‘x ... xR”*; 

(d) the trivial solution y * = 0 of the comparison system 

ii=@iCt, Yi) + 1 d,q,(t) IlYill (6) 
j=l 

is stable (see [37). 

Then the trivial solution of large scale system (1) with decomposition (3) is 
connectively stable. 

Proof Since conditions (b) and (c) hold for all E E i?, stability of yf = 0 
is connective. Therefore, if 0 < E < cli, to E J are given, then for all EE E and 
q5ri(s), there exists a positive number A = d(t,, a) such that the right-hand 
maximum Filippov solution ji(t; to, yp) with y,(to) = yy satisfies 

llv;(t; to, y:,rr < !$,i(E), t EJ. (7) 

provided (( yp (( < A. 
For any (to, xp) E R, x R”, xi(t; to, xy) Ef xi denotes Filippov solution of 

system (3), along the solutions of (3) we have 

dui(t, Xi(t; to, XO)) 

dt =“ir(t,Xi(t; tO, xO)) + vix,(tt Xi(t; tO> Xp)) 2 (8) 
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a.e. t E J. By [2, Lemma 21, we have 

u;Jt, x;(t)) fy 

d K, {u,& x,(t))Cg,(t, xi+ h;(f, x)1) 
d MY,{“tt,(t2 xi(t) gitf9 x~) + ui.x,(t, xi(t)) hi(f, e~lxl, ...3 e,,xt} 

6 vrai max 
1 

vi.r,(t5 xl(t)) gitr, x:) + i ?ijrlij(l) llxl(t)ll 

I 

(9) r;;c U(&(1).6,) j= I 

a.e. t EJ and for any hi> 0. By the definition of essential supremum and 
analogous to the method of Chen [ 11, we have 

d”i(t~ xi(t)) 

dt 

a.e. t E J. By [3, Lemma l] we have 

Ui(4 x,(t)) G ji(C to, yp,, t E J. 

We choose J?: = u,(tO, xy). From (7) and condition (a) we have 

~li(llx;(t;tO,x~(l)~Uj(t,Xi(t;tO,X~)) 

G j,(t; to, yp, <d,i(E), tat,. 

therefore, Ilxi(t; to, xp)I\ < E for t E J and all EE i?, provided Ilxp 11 < di, this 
completes the proof. 

THEOREM 2. Suppose for each subsystem (3), i E S, there exists ,functions 
bIi, &E K class and vi, co,, nii same as in Theorem 1, such that for all EE .!?, 
the following conditions are satisfied 

(a) ~~~(I/x~/I)~~~(trx;)~~~~(I/-~j/I)a.e.(t,x,)EJ~R”; 

(b) aui(t, xi)lat + (aui(t, x;h’ax;) g,(t, x,) d m,(t, u,(t, .x,)1 a.e. (t, X,)E 
J x R”’ ; 

(c) (dUi(t, x,)/ax,) hi(t, eilxl, . . . . e,x,) d C;=, F,Y/,(c) /IX,// a.e. 
(t, X)E Jx R”; 

(d) the trivial solution y* =0 of the comparison system (6) is 
unrformly stable. 

Then the trivial solution of discontinuous large scale system (1) with (3 ) is 
untformly and connectively stable. 

The proof of Theorem 2 is similar to that of Theorem 1, here we omit it. 
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4. CONCLUSIONS 

The connective stability of discontinuous large scale systems were 
discussed. The comparison principle and decomposition-aggregation method 
were used to derive suffkient conditions such that the trivial solution of 
discontinuous large scale system (1) is connectively stable, uniformly and 
connectively stable, respectively. The method can be used to investigate 
other stability properties of the discontinuous large scale systems, and we 
can derive many corollaries by choosing various functions ui and wi. 

REFERENCES 

1. P. CHEN, Method of vector function for practical stability analysis of composite systems, 
Control Theory Appl. 1 (1984), 48-59. 

2. A. F. FILIPPOV, Differential equations with discontinuous right hand side, Math. USSR-Sb. 
51 (1960), 99-128. 

3. J. HE, On the comparison principle of stability of discontinuous systems, Acta Sci. Natur. 
Univ. Amoien. 21 (1982), 126-130. 

4. J. HE, Practical stability of discontinuous large scale systems, Comput. Mach. Appl. 14 
(1987), 119-125. 

5. A. N. MICHEL AND D. W. PORTER, Analysis of discontinuous large scale systems: Stability, 
transient behavior and trajectory bounds, Internat. J. Systems Sci. 21 (1971), 77-9.5. 

6. A. N. MICHEL AND D. W. PORTER, Practical stability and finite-time stability of 
discontinuous systems, IEEE Truns. Circuit Theory CT-19 (1972), 123-129. 

7. S. RUAN, Connective stability of large scale systems described by functional differential 
equations, IEEE Trans. Automat. Contr. AC-33 (1988), 198-200. 

8. S. RUAN, On global existence of the solutions of retarded Filippov systems, J. Murh. 
(PRC) 9 (1989), 431438. 

9. S. RLJAN, Strong practical stability of retarded Filippov systems with external perturbations, 
Northeast. Math. J. 5 (1989), 5-10. 

10. D. D. SILJAK, Stability of large scale systems under structural perturbations, IEEE Trans. 
Systems Man Cybernet, SMC-2 (1972), 657-663. 

11. D. D. SILJAK, Stability of large scale systems under structural perturbations, IEEE Trans. 
Systems Man Cybernet. SMC3 (1973), 415417. 

12. D. D. SILJAK, “Large Scale Dynamic Systems: Stability and Structure,” North-Holland, 
New York. 1978. 


