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Abstract

We study the emission of Hawking radiation in the form of scalar fields from a(4 + n)-dimensional, rotating black hole on the brane.
perform a numerical analysis to solve both the radial and angular parts of the scalar field equation, and derive exact results for the
radiation energy emission rate. We find that, in 5 dimensions, as the angular momentum increases, the emission rate is suppressed
energy regime but significantly enhanced in the intermediate and high-energy regimes. For higher values ofn, the Hawking radiation emission ra
on the brane is significantly enhanced, with the angular momentum, over the whole energy regime. We also investigate the energy am
due to the effect of super-radiance and demonstrate that, in the presence of extra dimensions, this effect is again significantly enhance
 2005 Elsevier B.V.Open access under CC BY license.
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During the past few years, great interest has been draw
the concept of trans-Planckian collisions which can be real
in the framework of theories with large extra dimensions[1],
under the assumption that the colliding particles have a ce
of-mass energys larger than the(4 + n)-dimensional, funda
mental Planck scaleM∗. During such high-energy collisions,
is natural to expect that the products will no longer be ordin
particles but heavy objects, arising in the context of a fun
mental theory of interactions including gravity[2].

Small, (4 + n)-dimensional black holes are one of t
possible products of such collisions[2–4]. As long as their
massMBH is larger than a few times the fundamental Plan
scaleM∗, these black holes can be treated as classical,
all the laws of black hole physics applying to them. One
the most important characteristics would then be their deca
time, through the emission of Hawking radiation[5], a charac-
teristic that will also be the most striking observable effec
their existence. The produced black holes, after shedding
additional quantum numbers inherited from the colliding p
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ticles, will settle down to Kerr-like, rotating black holes, and
spin-down phase will commence[3], in which the black hole
angular momentum will be gradually lost through the em
sion of Hawking radiation and super-radiance. ASchwarzschild
phase describing a non-rotating black hole will follow next wi
the emission of Hawking radiation resulting in the decreas
the black hole mass.

The emission of Hawking radiation during the Schwa
schild phase has been studied both analytically[6,7] and numer-
ically [8] (see[9], for a review and related works), however t
same is not true for the spin-down phase which has been,
from a few exceptions[10,11], largely ignored. In this shor
Letter, we present, for the first time in the literature, exact
merical results for the Hawking radiation energy emission
coming from a(4+n)-dimensional, rotating black hole. We fo
cus our attention on the emission of scalar field radiation on
brane where, according to the assumptions of the model[1], the
observer is situated. After formulating the problem, we num
ically solve both the angular and radial scalar field equation
determine the exact angular eigenvalues and radial wave
tion, respectively, for arbitrarily large black hole angular m
mentum and energy of the emitted particles. Then, we deriv
absorption coefficient and subsequently the differential en
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emission rate for Hawking radiation and the energy spect
amplification due to the super-radiance effect.

The line-element describing a(4 + n)-dimensional, rotat-
ing, uncharged black hole was found by Myers and Perry[12].
A black hole created by the collision of particles moving in
(4+n)-dimensional spacetime can have up to(n+3)/2 angular
momentum parameters. However, in the context of the th
with large extra dimensions[1], the colliding partons are re
stricted to propagate on an infinitely-thin 3-brane and there
they have a non-zero impact parameter only on a 2-dimens
plane along our brane; thus, it is reasonable to assume
they will acquire only one non-zero angular parameter ab
an axis in the brane. The 4-dimensional induced spacetim
the brane, in which the emitted particles propagate, takes
form [9]

ds2 =
(

1− µ

Σrn−1

)
dt2 + 2aµsin2 θ

Σrn−1
dt dϕ − Σ

∆
dr2

(1)− Σ dθ2 −
(

r2 + a2 + a2µsin2 θ

Σrn−1

)
sin2 θ dϕ2,

where

(2)∆ = r2 + a2 − µ

rn−1
and Σ = r2 + a2 cos2 θ.

The parametersµ and a are related to the mass and angu
momentum, respectively, of the black hole through the de
tions[12]

(3)MBH = (n + 2)An+2

16πG
µ, J = 2

n + 2
MBHa.

In the above,G is the(4 + n)-dimensional Newton’s constan
andAn+2 the area of a(n + 2)-dimensional unit sphere give
by: An+2 = 2π(n+3)/2/�[(n + 3)/2]. Note that the induced
line-element on the brane has an explicit dependence on
numbern of extra dimensions.

The black hole horizon is given by solving∆(r) = 0. Un-
like the 4D Kerr black hole for which there is an inner a
outer solution forrh, for n � 1 there is only one solution o
this equation. In addition, in then = 0 andn = 1 cases, there
is a maximum possible value ofa, otherwise there are no solu
tions of∆ = 0 and thus no horizon to shield the singularity
r = 0. On the other hand, forn > 1 there is no fundamental up
per bound ona and a horizonrh always exists. For generaln,
the horizon radius is given byrn+1

h = µ/(1 + a2∗), where we
have defineda∗ = a/rh. An upper bound can nevertheless
imposed on the angular momentum parameter of the black
by demanding the creation of the black hole itself from the c
lision of the two particles. The maximum value of the imp
parameter between the two particles that can lead to the
ation of a black hole was found to be[13]

(4)bmax= 2

[
1+

(
n + 2

2

)2]− 1
n+1

µ
1

n+1 .

If we, then, writeJ = bMBH/2 [11] for the angular momentum
of the black hole, and use the second of Eq.(3), we obtain[13]

(5)amax∗ = n + 2
.
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By using the Newman–Penrose formalism, the equation
the propagation of a field with spin 0, 1/2 and 1, in the grav
itational background induced on the brane, can be found[9].
Here, we will focus on the emission of scalar fields leaving
analysis for non-zero spin fields for a subsequent work[14]. By
using the field factorization

(6)φ(t, r, θ,ϕ) = e−iωt eimϕR(r)T m
	 (θ),

whereT m
	 (θ) are the so-called spheroidal harmonics[15], we

obtain a set of decoupled radial and angular equations,

(7)
d

dr

(
∆

dR

dr

)
+

(
K2

∆
− Λm

	

)
R = 0,

1

sinθ

d

dθ

(
sinθ

dT m
	 (θ)

dθ

)

(8)+
(

− m2

sin2 θ
+ a2ω2 cos2 θ + Em

	

)
T m

	 (θ) = 0,

respectively, where we have defined

K = (
r2 + a2)ω − am,

(9)Λm
	 = Em

	 + a2ω2 − 2amω.

The Hawking temperature of the(4+ n)-dimensional, rotat-
ing black hole is found to be

(10)TH = (n + 1) + (n − 1)a2∗
4π(1+ a2∗)rh

,

and leads to the emission of scalar Hawking radiation on
brane, with the corresponding differential energy emission
given by the expression

(11)
dE(ω)

dt
=

∑
	,m

|A	,m|2 ω

exp[(ω − mΩ)/TH] − 1

dω

2π
.

In the above, the rotation velocityΩ is defined as

(12)Ω = a∗
(1+ a2∗)rh

,

while |A	,m|2 is the absorption probability for a scalar par
cle propagating in the background induced on the brane(1).
Its presence in the expression for the emission rate modifie
blackbody profile of the spectrum due to its explicit depende
on the energyω of the emitted particle, its angular momentu
numbers(	,m), and the number of extra dimensionsn. The
exact form of|A	,m|2 can be found by solving the radial equ
tion (7), a task which we have performed by using numer
analysis. The numerical solution obtained forR(r) interpolates
between the asymptotic solutions at the horizon of the b
hole and infinity. Near the horizon, Eq.(7) leads to the asymp
totic solution

(13)Rh
(
r∗) = A1e

ikr∗ + A2e
−ikr∗

,

whereA1,2 are integration constants,

(14)k = ω − ma

r2
h + a2

,
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andr∗ is the tortoise coordinate defined by

(15)
dr∗

dr
= r2 + a2

∆(r)
.

A boundary condition must be applied in the near-horiz
regime, namely that the solution must contain only incom
modes; this is satisfied if we setA1 = 0. On the other hand, fo
fixeda∗ and larger , the solution at infinity takes the form

(16)R∞(r) = B1
eiωr

r
+ B2

e−iωr

r
,

whereB1,2 are again integration constants.
However, before the numerical integration of Eq.(7) can

take place, the value of the constantΛm
	 , or equivalently, the an

gular eigenvalueEm
	 , must be determined. The eigenvalues

the spheroidal harmonics are functions ofaω, and an analytic
form can be found only in the limit of smallaω [16]—the only
work in the literature on the Hawking radiation coming from
(4 + n)-dimensional, rotating black hole[11] employs this ap-
proximate expression forEm

	 , and the corresponding analysis
valid only in the limit of low energy and low black-hole angul
momentum. The exact value ofEm

	 , for arbitrarily large values
of aω can be obtained by using a continuation method[13,17].
This is a generalization of perturbation theory which can be
plied for arbitrarily large changes in the initial Hamiltonian f
which the eigenvalues are known. Here, we briefly describe
technique for the cases = 0. Eq.(8) can be alternatively written
as

(17)(H0 +H1)T
m
	 (θ, aω) = −Em

	 (aω)T m
	 (θ, aω),

whereH0 stands for the first two terms of the differential ope
tor in Eq.(8), andH1 = a2ω2 cos2 θ . Foraω = 0,H1 vanishes,
andT m

	 (θ,0) reduce to the usual spherical harmonicsSm
	 (θ),

with Em
	 (0) = 	(	 + 1). To employ the continuation metho

we write theT m
	 (θ, aω) functions in the basis of theθ -parts of

the spherical harmonics:

(18)T m
	 (θ, aω) =

∑
	′

Bm
		′(aω)Sm

	′ (θ).

By differentiating Eq.(17)and applying the same techniques
in perturbation theory, we obtain the equation

(19)
dEm

	

d(aω)
= −

∑
α,β

Bm
	αBm

	β〈α|β〉,

where 〈α|β〉 ≡ 〈αm|dH1/d(aω)|βm〉. The coefficientsBm
	a

satisfy themselves a similar differential equation, i.e.,

(20)
dB		′

d(aω)
= −

∑
α,β,γ �=	

BγαB	β

Em
	 − Em

γ

〈α|β〉Bγ	′ ,

with initial condition Bm
		′(0) = δ		′ . By integrating Eqs.(19)

and (20), it is possible to obtain the eigenvalues of the sph
oidal functions for any	 andm and for arbitrarily large value
of aω. This integration was performed numerically by usin
Runge–Kutta method.Fig. 1shows the angular eigenvaluesEm

	

for scalar fields as a function ofaω, for some indicative angula
momentum modes.
-

is

-

Fig. 1. The angular eigenvaluesEm
	

, for s = 0, as a function ofaω for three
angular momentum modes:	 = m = 1, 	 = m = 2, and	 = 3, m = 2.

Fig. 2. Power spectra for scalar emission on the brane from rotating black h
for n = 1 and various values ofa∗.

Having derived the eigenvaluesEm
	 , we can now procee

to integrate Eq.(7) and derive the solution for the radial fun
tion R(r). The integration starts at the horizon of the black h
and proceeds towards infinity. Comparing our numerical res
with the asymptotic solution at infinity(16), we determine the
integration constantsB1 andB2. The absorption probability fo
scalar fields can then be derived from the relation

(21)|A	,m|2 = 1− |R	,m|2 = 1−
∣∣∣∣B1

B2

∣∣∣∣
2

,

whereR	,m is the reflection coefficient given by the ratio of t
outgoing and ingoing amplitudes at infinity.

The value of the absorption probability|A	,m|2 is then in-
serted into Eq.(11) to determine the differential energy em
sion rate per unit time and frequency by the black hole
the brane. This rate is shown inFig. 2, for the case of a
5-dimensional black hole (n = 1). For convenience, we assum
that the black hole horizon value remains fixed, and setrh = 1.
Fig. 2 shows the emission spectrum on the brane for var
values of the angular momentum parametera∗, up to the value
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amax∗ = 1.5 defined by the black-hole-creation constraint1 (5).
The dimensionless parameterωrh on the horizontal axis ade
quately covers the low, intermediate and high-energy regim
The different curves in the figure allow us to compare the
ergy emission rates for black holes with the same horizon ra
and different angular momentum. Whenrh is kept fixed, as in
this case, the temperature of the black hole decreases sh
with a∗, leading to the observed suppression of the energy e
sion rate in the low-energy regime—this is in agreement w
the behaviour found by analytical methods in the lowω and low
a limit [11]. As the energy increases further, however, the
sorption probability is significantly enhanced; this enhancem
gradually overcomes the decrease in the black hole temper
leading to the observed increase in the energy emission ra
a∗ increases, both in the intermediate and high-energy regi
This in turn leads to a significant enhancement of the total e
sivity of a 5-dimensional rotating black hole (that is, ene
emitted per unit time over the whole frequency band) compa
to that of a non-rotating black hole of the same dimensiona

The numerical results produced above allowed the state
made in[3], according to which the emission of Hawking rad
ation is dominated by modes with	 = m, to be tested. We hav
found thatFig. 2 looks the same at the∼ 90% level if only the
	 = m modes are included in the sum of Eq.(11), a result that
confirms this statement.

Keeping the black hole horizon valuerh fixed during our
analysis was a convenient choice from a calculational poin
view. However, asa varies, this leads to the comparison of e
ergy emission rates for black holes with different masses. F
a phenomenological point of view, fixing the mass param
µ of the black hole, instead, makes more sense. InFig. 3, we
present the energy emission spectrum on the brane for
dimensional black hole, i.e., forn = 2 andµ = 1M−3∗ . The
angular momentum parameter now varies from zero to the m
imum value—derived from Eqs.(4)–(5)—of amax= 1.17M−1∗ ,
whereM∗ is the fundamental Planck scale. For fixedµ, the
black hole temperature again decreases,2 asa increases; how
ever, the increase in this case is only a mild one, which all
for the enhancement of the absorption probability to domin
the spectrum. This leads to a significant enhancement of th
ergy emission rate on the brane in all energy regimes, and
to a clear enhancement of the total emissivity of a rotating b

1 In terms of fixed mass parameterµ, the maximum value ofa is 0.83
√

µ.
Had the angular momentum parameter been allowed to increase indefinite
critical value for the existence of the horizon, i.e.,a = √

µ, would have been
reached. For this value, both the black hole horizon and the temperature v
the latter leading to the suspension of the emission of Hawking radiation
non-vanishing value of the area of the black hole induced on the brane, giv

A
(4)
H = 4π(r2

h +a2), as opposed to the vanishing one of the(4+n)-dimensional

black hole, given byA(4+n)
H = Ω2+nrn

h (r2
h +a2) [with Ω2+n the solid angle of

the (2 + n)-dimensional space], would lead to a substantial suppression o
emission of energy in the bulk compared to the one on the brane during
last stages, in addition to the suppression found in the non-rotating case[8,18].

2 To be exact, the temperature decreases up to the pointa = 1.1M−1∗ , and

then starts increasing up toamax= 1.17M−1∗ ; however, the increase in its valu
is only 0.5%, which leads to no observable effect.
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Fig. 3. Power spectra for scalar emission on the brane from rotating black h
for n = 2, µ = 1M−3∗ and various values ofa in units ofM−1∗ .

hole compared to the one of a non-rotating black hole with
same mass.

An interesting effect which takes place during the propa
tion of a bosonic field in the background of a rotating black h
is super-radiance[19], that is, the amplification of the amplitud
of the incident wave. This becomes manifest when the re
tion probability becomes larger than unity, or equivalently wh
the absorption probability becomes negative. In the contex
a higher-dimensional model, the only studies in the litera
are an analytic approach[10] which confirmed super-radianc
for bulk scalars incident on five-dimensional black holes,
a sole numerical result forn = 6 and	 = m = 1 [20]. In the
context of our numerical analysis, we have investigated this
fect for various values of the angular momentum of the bl
hole and number of extra dimensions. InFig. 4, we compare the
energy amplification due to super-radiant scattering of sc
fields for a 4-dimensional, maximally-rotating black hole w
a∗ = 1 (equivalent toa = MBH), and a 6-dimensional blac
hole with againa∗ = 1. The vertical axis is the absorption pro
ability (in fact −|Â	,m|2) expressed as a percentage so tha
gives the percentage energy amplification of the incident w
Fig. 4(a) shows excellent agreement with the results produ
for n = 0 anda∗ = 1 in [21]. Comparing the vertical axes o
Fig. 4(a) and (b), we clearly see that, in the presence of extr
mensions, the peak amplification is more significant. For sm
values ofa∗, it is found that the	 = m = 1 mode provides the
greatest amplification as in the 4-dimensional case. Howe
for larger values ofa∗ or n, the maximum amplification can oc
cur in modes with larger values of	: for n = 6, anda∗ = 4.0,
the maximum energy amplification is found to be around
and occurs in the	 = m = 7 mode.

In summary, in this work we have studied the emission
Hawking radiation in the form of scalar fields from a(4 + n)-
dimensional, rotating black hole on the brane. We have
formed a numerical analysis to solve both the radial and
gular parts of the scalar field equation on the brane, and
rived exact results for the Hawking radiation energy emiss
rate. We found that in the case of a 5-dimensional black h
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n in-
Fig. 4. Left: super-radiant scattering of scalars by a maximally rotating (a∗ = 1) 4-dimensional black hole; right: super-radiant scattering of scalars by a
duced-on-the-brane 6-dimensional black hole witha∗ = 1.
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the emission rate is suppressed in the low-energy regim
the angular momentum increases—in agreement with p
ous approximate results—but is significantly enhanced in
intermediate and high-energy regimes, that were until now
explored. We have extended our analysis to black hole
higher-dimensionality and, as an illustrative example, we h
presented the spectrum of a 6-dimensional black hole: in
case, the energy emission rate on the brane is enhanced w
angular momentum over the whole energy band, a behav
that persists for all higher values ofn. We have also investi
gated the amplification of the incident wave due to the effec
superradiance, and showed that this effect is also significa
enhanced in the presence of extra dimensions.
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