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Abstract In this paper we find numerical solutions for the pricing problem in

jump diffusion markets. We utilize a model in which the underlying asset price

is generated by a process that consists of a Brownian motion and an independent

compensated Poisson process. By risk neutral pricing the option price can be

expressed as an expectation. We simulate the option price numerically using

the Monte Carlo method.
ª 2011 King Saud University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

Options are financial derivative products that give the right, but not the obligation,
to engage in a future transaction on some underlying financial instrument. For in-
stance, a European call option on a financial underlying asset S-with price (St)t2[0,T]
is a contract between two agents (buyer and seller) which gives the holder the right to
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buy S at a pre-specified future time T (the expiration date) for an amount K (called
the strike). Moreover, at the signature of the contract (t = 0) the buyer pays an
amount of money called the premium and at the expiration date (t= T) he obtains
the payoff h(ST) = max(ST � K,0) = (ST � K)+. Naturally, two questions arise
herein: (i) what price should the seller charge for the option? (known as the pricing
problem); (ii) which self-financing strategy should the seller use to secure a wealth
equals to the payoff at t= T? (known as the hedging problem).

Most of the works on modeling financial derivatives assume that the underlying
asset prices S is a continuous process. For instance, in the pioneer work of Black
and Scholes (1973) financial asset prices are modeled by the Brownian motion.
One of the shortcoming of this model is that, it does not consider the random
jumps which can occur in the prices at any time. However, the international finan-
cial crisis has shown the importance of adding jumps to financial modeling for
stock prices. Unlike the continuous case, models with jumps allow for the possi-
bility that at any moment, a financial price can suddenly decrease (or increase)
and attain a significant lower (or higher) value in a negligible time.

Indeed, many researchers have studied financial models with jumps (Bellamy
and Jeanblanc, 2000; Dritschel and Protter, 1999; El-Khatib and Privault, 2003;
Jeanblanc and Privault, 2002; Merton, 1976), but the issue has not been resolved
because of some theoretical complications. Thus, these models generate incom-
plete markets where the contingent claim (payoff) can impossibly be hedged.

In this paper we study the pricing problem for an underlying asset price with
jumps which is governed by the following stochastic differential equation:
dSt

St

¼ rtdtþ rt½atdWt þ btdðNt � kttÞ�; t 2 ½0;T�; S0 is given > 0; ð1:1Þ
where r, r, a, b are deterministic functions such that 1 + rtbt > 0. Here (Nt)t2[0,T]
is a Poisson process with deterministic intensity k and (Wt)t2[0,T] is a Brownian mo-
tion. Note that the process M defined by Mt :¼ Nt � ktt for t 2 [0,T] is the com-
pensated process associated to N. We consider a market with two assets: the
risky asset S given by the Eq. (1.1) to which is related a European call option
and a risk-free asset given by
dAt ¼ rtAtdt; t 2 ½0;T�; A0 ¼ 1:
We work on a probability space ðX;F ;PÞ: ðMtÞt2½0;T� and (Wt)t2[0,T] are indepen-
dent and we denote by ðF tÞt2½0;T� the filtration generated by (Nt)t2[0,T] and
(Wt)t2[0,T]. We assume that (1.1) is the price of the asset under the risk-neutral
probability P. Recall that a stochastic process is a function of two variables the
time t 2 [0,T] and the event x 2 X, but in the literature it is common to write
St, while it means St :¼ St(x). The same interpretation is true for Wt, Nt and
Mt or any other stochastic process in this paper. To the authors knowledge, it is
impossible to find an explicit formula for the solution of the pricing problem.
However, the premium can be determined and expressed in the following expecta-
tion form (see Harrison and Kreps, 1979; Harrison and Pliska, 1981)
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C :¼ e
�
R T

0
rsdsEP ðST � KÞþ

� �
; ð1:2Þ
where EP denotes the expected value in a risk-neutral world. Here P is called the
equivalent martingale measure. Note that, when b = 0 Eq. (1.1) is reduced to the
well-known continuous case
St ¼ S0 exp

Z t

0

asrsdWs þ
Z t

0

rs �
1

2
a2sr

2
s

� �
ds

� �
:

Therefore, the expectation in (1.2) can be calculated by integrating over the nor-
mal distribution which gives the same pricing formulas as in the Black and Scholes
paper (Black and Scholes, 1973). However if a „ 0 and b „ 0, the expectation func-
tion cannot be calculated to have an explicit formula because the random variable
ST does not have a known probability density. To surmount this problem, we use
Monte Carlo techniques to simulate the premium. The Monte Carlo method is a
very effective tool to simulate the prices of financial derivatives that do not have
closed explicit formulas. The use of this method in options pricing was initiated by
Boyle (1977). Since then it has been used by many researchers in finance. In this
paper, we compute the premium and the price of the option at any time t,
0 6 t 6 T using the Monte Carlo method.

The remainder of the paper is organized as follows. Some theoretical results are
presented in Section 2. In Section 3, we perform numerical simulations for the pre-
mium. Concluding remarks are given in Section 4.

2. Theoretical results

First we solve Eq. (1.1) using the following lemma (Itô’s formula, see Protter, 1990).

Lemma 1. Let f, g, and k be three adapted processes such that
Z t

0

jfsjds <1;
Z t

0

jgsj
2
ds <1; and

Z t

0

ksjksjds <1
and let X = (Xt)t2[0,T] be the process defined by
dXt ¼ ftdtþ gtdWt þ ktdMt:
We have for any function F 2 C1;2ð½0;T� � RÞ
FðXt; tÞ ¼ FðX0; 0Þ þ
Z t

0

gs@xFðXs� ; sÞdWs þ
X
s6t

FðXs; sÞ � FðXs� ; sÞð Þ

þ
Z t

0

@sFðXs; sÞ þ ðfs � ksksÞ@xFðXs� ; sÞ þ
1

2
g2s@

2
xxFðXs� ; sÞ

� �
ds:
Which can be written in the following form (see for example Exercise 1.3.1 page
13 in JeanBlanc (2007) for pure jump processes)
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FðXt; tÞ ¼ FðX0; 0Þ þ
Z t

0

gs@xFðXs� ; sÞdWs þ
Z t

0

½FðXs� þ ks; sÞ � FðXs� ; sÞ�dMs

þ
Z t

0

@sFðXs; sÞ þ ðfs � ksksÞ@xFðXs� ; sÞ þ
1

2
g2s@

2
xxFðXs� ; sÞ

�

þksðFðXs� þ ks; sÞ � FðXs�Þ; sÞ
�
ds: ð2:1Þ
Lemma 2. The underlying asset price S at time t, 0 6 t 6 T, is then given by
St ¼ S0 exp

Z t

0

asrsdWs þ
Z t

0

rs � ksbsrs �
1

2
a2sr

2
s

� �
ds

� �
�
Yk¼Nt

k¼1
ð1þ rTk

bTk
Þ:

ð2:2Þ

Proof. Applying Itô’s formula (2.1) with F(St, t) = lnSt, we obtain
lnSt ¼ lnS0 þ
Z t

0

rsasSs@x lnSs�dWs þ
Z t

0

lnðSs� þ rsbsSs�Þ � lnSs�½ �dMs

þ
Z t

0

@s lnSs þ ðrsSs � rsbsSsksÞ@x lnSs þ
1

2
r2
s a

2
sS

2
s@

2
xx lnSs

�
þksðlnðSs� þ rsbsSs�Þ � lnSs�Þ�ds;

¼ lnS0 þ
Z t

0

rsasSs

1

Ss

dWs þ
Z t

0

½lnðSs�ð1þ rsbsÞÞ � lnSs��ðdNs � ksdsÞ

þ
Z t

0

rsSs � rsbsSsks

Ss

þ�r2
s a

2
sS

2
s

2S2
s

þ ksðlnðSs�ð1þ rsbsÞÞ � lnSs�Þ
" #

ds;

¼ lnS0 þ
Z t

0

rsasdWs þ
Z t

0

rs � rsbsks �
1

2
r2
s a

2
s

� �
dsþ

Z t

0

lnð1þ rsbsÞdNs;
which is equivalent to (2.2). h

In the following lemma we provide a closed formula for the option prices when
the coefficients of the model (r, r, a, b and k) are constants.

Lemma 3. If r, r, a, b and k are constants then the price of the European option with
stock price governed by (1.1) has the following form
C ¼ S0e
�kbr

Xi¼1
i¼0

ðð1þ rbÞkTÞi

i!
eð�kTÞU di2

� 	
� Ke�rT

Xi¼1
i¼0

ðkTÞi

i!
eð�kTÞU di1

� 	
;

ð2:3Þ

where U(Æ) is the cumulative distribution function of the standard normal distribution,
and
di1 ¼
ln S0ð1þrbÞi

K


 �
þ r� kbr� 1

2
a2r2

� 	
T

ar
ffiffiffiffi
T
p ; di2 ¼ di1 þ ar

ffiffiffiffi
T
p

:
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Proof. Using Eq. (2.2), the stock price at maturity can be simplified as
ST ¼ S0 exp arWT þ r� kbr� 1

2
a2r2

� �
T

� �
� ð1þ rbÞNT :
Then, the premium can be written as
C ¼ e�rTEP½ðST � KÞþ� ¼ EP ðe�rTST � e�rTKÞþ
� �

¼
Xi¼1
i¼0

EP ðe�rTST � e�rTKÞþjNT ¼ i
� �

PðNT ¼ iÞ

¼
Xi¼1
i¼0

EP S0ð1þ rbÞie
ar
ffiffiffi
T
p WTffiffi

T
p � kbrþ1

2a
2r2ð ÞT


 �
� e�rTK

 !þ2
4

3
5 ðkTÞi

i!
eð�kTÞ

¼
Xi¼1
i¼0

Z 1

�1
S0ð1þ rbÞieðar

ffiffiffi
T
p

x�ðkbrþ1
2a

2r2ÞTÞ � e�rTK

 �þ�

e�
x2

2ffiffiffiffiffiffi
2p
p dx

!
ðkTÞi

i!
eð�kTÞ ¼ 1ffiffiffiffiffiffi

2p
p S0

Xi¼1
i¼0

Z
Ii

e ar
ffiffiffi
T
p

x� kbrþ1
2a

2r2ð ÞTð Þ

 �

e�
x2

2 dx
ðð1þ rbÞkTÞi

i!
eð�kTÞ � 1ffiffiffiffiffiffi

2p
p

Xi¼1
i¼0

Z
Ii
e�rTKe�

x2

2 dx
ðkTÞi

i!
eð�kTÞ

¼ 1ffiffiffiffiffiffi
2p
p S0e

�kbr
Xi¼1
i¼0

Z
xP�di1

e�
ðx�ar

ffiffi
T
p
Þ2

2 dx
ðð1þ rbÞkTÞi

i!
eð�kTÞ

� e�rTK
Xi¼1
i¼0

1ffiffiffiffiffiffi
2p
p

Z
xP�di1

e�
x2

2 dx
ðkTÞi

i!
eð�kTÞ

¼ S0e
�kbr

Xi¼1
i¼0

ðð1þ rbÞkTÞi

i!
eð�kTÞU di2

� 	
� Ke�rT

Xi¼1
i¼0

ðkTÞi

i!
eð�kTÞU di1

� 	
;

where Ii ¼ fxjS0ð1þ rbÞieðar
ffiffiffi
T
p

x�ðkbrþ1
2a

2r2ÞTÞ P e�rTKg ¼ �di1;
�

1Þ and
di1 ¼
ln S0ð1þrbÞi

K


 �
þ r� kbr� 1

2
a2r2

� 	
T

ar
ffiffiffiffi
T
p ; di2 ¼ di1 þ ar

ffiffiffiffi
T
p

:

Here U(Æ) is the cumulative distribution function of the standard normal
distribution. h
3. Numerical computing of option prices

In this section we discuss the simulation of the premium (1.2) using the Monte
Carlo method. The main steps are summarized below (Hull, 2005):
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Step 1. Simulation of ST We select an integer L > 0, then we simulate ST[i] for
i 2 {1, . . . ,L}.

Step 2. Monte Carlo solution for the premium The simulation of the premium via
the Monte Carlo method involves the following steps:
� For each path ST[i], compute the payoff max(ST[i] � K, 0).

� Calculate the mean of the resulting payoffs 1
L

Pi¼L
i¼1 maxðST ½i� � K; 0Þ

� 	
.

� Estimate the price of the option by discounting the mean payoff at the

risk-free rate 1
L

Pi¼L
i¼1 maxðST ½i� � K; 0Þ

� 	
e�
R T

0
rsds

.

In the proceeding subsections, we give the details of the above steps.

3.1. Simulation of ST

We seek L realizations of ST:
STðx1Þ; . . . ;STðxiÞ; . . . ;STðxLÞ;

where x1, . . . ,xi, . . . ,xL are chosen randomly from X. We follow the following
algorithm:

� Simulate N trajectories for (St)t2[0,T]:
ðSt½1�Þt2½0;T�; . . . ; ðSt½i�Þt2½0;T�; . . . ; ðSt½L�Þt2½0;T�;

where (St[i])t2[0,T] is a simulation of (St(xi))t2[0,T] and i 2 {1, . . . ,L}.

� For each i 2 {1, . . . ,L}, take the value of (St[i])t2[0,T] at the terminal time: ST[i].

First, we select an integer H> 0, then we discretize the time interval [0,T] into
steps tj = jDt, j= 0,1, . . . ,H of identical duration Dt ¼ T

H
:

St0 ½i�; . . . ;Stj ½i�; . . . ;StH ½i�

and thus we get L approximations of ST : StH ½1�; . . . ;StH ½i�; . . . ;StH ½L�.

Let i be fixed in {1, . . . ,L}. We start by simulating a trajectory (Wt[i])t2[0,T] of the
Brownian motion and a trajectory (Nt[i])t2[0,T] and then we use Eq. (2.2) to find the
approximation StH ½i� of ST. We implement the following steps:

1. Simulation of the Brownian motion and the Brownian integral. We simulate
ðW tj ½i�Þj¼0;1;...;H noting the fact that the Brownian motion fulfills:
Wt0 ½i� ¼ 0;

Wtj ½i� ¼Wtj�1 ½i� þ
ffiffiffiffiffi
Dt
p

Zj½i�; j ¼ 1; . . . ;H;
where Zj[i] follows a normal distribution N(0,1). We simulate 2L uniform random
variable Uj[i] and Vj[i], and we use the Box–Muller method

Z½j� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 logðUj½i�Þ

p
cosð2pVj½i�Þ. Then, the integral

R T

0
atrtdWt in Eq. (2.2) is

approximated by
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Z T

0

atrtdWt½i� ¼
Xj¼H
j¼1

atjrtjðWtj ½i� �Wtj�1 ½i�Þ:
2. Simulation of the Poisson Process and the Poissonian part. Regarding the Pois-
son process, we simulate first the jump times (Tk)kP0 of (Nt)t2[0,T] with intensity
k by ðT Ntj

½i�Þj¼0;...;H . We are using the following properties of the Poisson
process:
TNt0
½i� ¼ 0;

TNtj
½i� ¼ TNtj�1

½i� þ ExpLawðkÞ; j ¼ 1; . . . ;H;
where ExpLaw is an exponential random variable which can be written as
ExpLawðkÞ ¼ �1k logðurandðÞÞ and urand() is a uniform random variable.
A trajectory of the Poisson process Ntj ½i�; j ¼ 0; . . . ;H is then determined by
using:
Nt0 ½i� ¼ 1;

Ntj ½i� ¼
Xk¼j
k¼0

1fTk½i�6tjg; j ¼ 1; 2; . . . ;H:
The Poissonian part
Qk¼NT

k¼1 ð1þ bTk
rTk
Þ in Eq. (2.2) is approximated byQk¼NtH

½i�
k¼1 ð1þ bTk½i�rTk½i�Þ.
3.2. Monte Carlo solution for the premium

We have from the previous subsections L realizations for ST, so we can apply the
Monte Carlo method to compute the premium numerically using
1

L

Xi¼L
i¼1

maxðST½i� � K; 0Þ
 !

e
�
R T

0
rsds: ð3:1Þ
3.2.1. Reduction of the variance

To reduce the computational time we reduce the variance by using the antithetic
variable method. This technique consists of computing two values of the premium
C. The first value C1 is calculated as described above and the second value C2 is
calculated similarly as C1 with changing the sign of all the random samples from
the standard normal distribution. Then C is obtained by taking the average of C1

and C2.
The standard error of the estimate premium is then sCffiffiffi

L
p , where sC is the standard

deviation of the estimate premium and L is the number of trials. A 95% confidence
interval for the premium is
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lC �
1:96sCffiffiffiffi

L
p < C < lC þ

1:96sCffiffiffiffi
L
p ;
where lC is the mean of the estimated premium.
Now, we present the numerical results of the premium by the Monte Carlo sim-

ulation when T ¼ 1; kt ¼ 0:01tþ 3; rt ¼ 0:01ð2þ 8 sinðptÞ þ cos pt
2

� 	
Þ; at ¼ 0:1;

bt ¼ 0:3; rt ¼
ffiffi
t
p
þ 0:1; S0 ¼ 7 and K= 7.5. Notice that, the parameters T and

k are used to simulate trajectories for the Brownianmotion and for the Poisson pro-
cess with number of realizations H= 500 (see Fig. 1). Then, we simulate trajecto-
ries for the stock price at terminal time T= 1withH = 500 (see Fig. 2) and for the
premium with number of realizations L= 500 (see Fig. 3). It is found that, the
5.5
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2 Realizations of the asset price for T ¼ 1; kt ¼ 0:01tþ 3; rt ¼ 0:1þ sin pt
2

� 	
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tþ 0:1, and S0 = 7.
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Figure 1 Brownian motion Wt (left) and Poisson process Nt (right).
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standard error of the estimate premium is 0.237 · 10�3. A 95% confidence interval
for the premium is therefore given by 5.469 · 10�2 < C< 5.562 · 10�2.

We also provide the premium as a function of the stock price at t = 0 for two
different values of the strike K= 7.5 and K= 9 with number of realizations
L= 500, see Fig. 4.
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4. Conclusion

In this paper, a jump diffusion model is considered for option pricing. The pricing
problem for such a model does not have a closed formula since the market is
incomplete. However, since it imitates financial crashes, it is a more realistic ap-
proach. The price of a European option is simulated numerically by using the
Monte Carlo method.
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