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We address the question of thermodynamical evolution of regular spherically symmetric cosmological
black holes with de Sitter center. Space–time is asymptotically de Sitter as r → 0 and as r → ∞.
A source term in the Einstein equations connects smoothly two de Sitter vacua with different values
of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its
stress–energy tensor. In the range of masses Mcr1 � M � Mcr2 it describes a regular cosmological black
hole with three horizons, an internal horizon ra , a black hole horizon rb > ra , and a cosmological horizon
rc > rb . Thermodynamical preference for a final product of evaporation is a double-horizon (ra = rb) black
hole remnant with the positive specific heat.
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1. Introduction

The Hawking radiation from a black hole horizon [1] is the most
remarkable example of a successful marriage between quantum
mechanics and general relativity which gave the birth to thermo-
dynamics of black holes [2].

Black hole remnants are considered as a source of dark matter
for more than two decades [3–7] (for a review [8,9]), and planned
to be searched at CERN LHC [10].

Gibbons and Hawking found that also cosmological horizon can
radiate [11], and this gave rise to thermodynamics of horizons [12–
16] (for a recent review [17]).

Astronomical observations testify that our universe is domi-
nated at above 73% of its density by a dark energy responsible
for its accelerated expansion due to negative pressure, p = wρ ,
w < −1/3 [18], with the best fit w = −1 [19] corresponding to a
cosmological constant λ. This motivates study of black hole rem-
nants in de Sitter space.

Theoretical developments suggest the existence of a holographic
duality between quantum gravity on de Sitter space and a certain
Euclidean conformal field theory on its spacelike boundary, dS/CFT
correspondence [20].

Studies on black hole thermodynamics in the de Sitter space
are thus important in the context of dark matter physics and of
the quantum theory of gravity.

A loop quantum gravity [21] provides arguments in favor of a
regular black hole. Analyzing a Schwarzschild interior in frame of a
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minisuperspace model, Modesto found that the curvature invariant
and the inverse volume operator have a finite spectrum inside a
horizon [22].

The Einstein equations admit the class of regular spherically
symmetric solutions asymptotically de Sitter as r → 0 [23,24]. The
idea of replacing a Schwarzschild singularity with a de Sitter vac-
uum, goes back to 1965 papers by Sakharov [25] who considered
p = −ρ as the equation of state for superdense matter and by
Gliner who interpreted p = −ρ as a vacuum with a non-zero den-
sity [26], and to 1988 paper by Poisson and Israel [27] who studied
Schwarzschild–de Sitter transition as r → 0.

A spherically symmetric space–time with de Sitter center
(T k

i → ρ0δ
k
i = (8πG)−1Λδk

i as r → 0) is described by the Einstein
equations with a source term satisfying [28]

T t
t = T r

r ; T θ
θ = T φ

φ (1)

The equation of state reads [27–29]

pr = −ρ; p⊥ = −ρ − r

2
ρ ′ (2)

where ρ(r) = T t
t is the energy density, pr(r) = −T r

r is the radial

pressure, and p⊥(r) = −T θ
θ = −T φ

φ is the tangential pressure for
anisotropic perfect fluid.

Spherically symmetric solutions specified by (1) belong to the
Kerr–Schild class [30], so that extension to the Kerr family is
straightforward [31] (for a recent review [32]).

A stress–energy tensor (1) represents a spherically symmetric
anisotropic vacuum fluid [28,23,24,33,34] whose symmetry is re-
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duced as compared with maximally symmetric de Sitter vacuum
T k

i = ρ0δ
k
i .1

Vacuum with a reduced symmetry (for a review [36–41]) pro-
vides a unified description of dark ingredients in the Universe
by a vacuum dark fluid [34], which represents both distributed
vacuum dark energy by a time evolving and spatially inhomoge-
neous cosmological term [23], and gravitational vacuum solitons,
G-lumps, as dark matter candidates [34] which are regular gravita-
tionally bound vacuum structures without horizons (dark particles
or dark stars, dependently on a mass) [29,24,42]. Remnants of reg-
ular black holes with de Sitter center are naturally incorporated
into this picture.

Spherically symmetric regular solutions satisfying (1), belong to
the class of metrics [23]

ds2 = g(r)dt2 − dr2

g(r)
− r2 dΩ2 (3)

asymptotically de Sitter as r → 0 if the weak energy condition is
satisfied [24]. In the case of two vacuum scales, at the center and
at infinity, a space–time can be described by a metric function [43]

g(r) = 1 − 2G M(r)

r
− λr2

3
; M(r) = 4π

r∫
0

ρ(x)x2 dx (4)

whose asymptotics are the de Sitter metrics with λ as r → ∞ and
with (Λ + λ), Λ = 8πGρ0, as r → 0.

An asymptotically flat (λ = 0), de Sitter–Schwarzschild regular
black hole [28] has in general two horizons [24], which coincide
for a certain value Mcr of the mass parameter M = M(r → ∞). It
evaporates from both horizons, and generic asymptotic behavior of
the metric function g(r) defines generic dynamic of evaporation:
It involves a phase transition where a specific heat is broken and
changes its sign; a mass decreases during evaporation, tempera-
ture vanishes at a double horizon and evaporation stops leaving
a regular double-horizon remnant with M = Mcr [29,24]. A phase
transition of this kind was found [44] also in the case of a minimal
model [45] of a regular black hole.

Thermodynamics of two horizons has been studied in the lit-
erature for the case of the Schwarzschild–de Sitter black hole de-
scribed by the metric function

g(r) = 1 − 2GM

r
− r2

l2
(5)

where M is the mass parameter and l is related to the background
cosmological constant λ by l2 = 3/λ. It emits the Hawking radia-
tion from both horizons which are not in thermal equilibrium [11].
A global temperature can be defined only when the relation of sur-
face gravities on horizons is a rational number [46].

Following Teitelboim who considered the Euclidean Schwarz-
schild–de Sitter geometry as an extremum of two different action
principles [15,16], dynamical evolution is studied for two differ-
ent thermodynamical systems [47]: a cosmological horizon with
a black hole as a boundary, and a black hole horizon with a cos-
mological horizon as a boundary. Teitelboim identified a black hole
mass M as a thermodynamical energy (without taking into account
a pressure), and found the tendency of growing the mass M in the
course of evaporation so that a black hole would evolve to the
Nariai state [15]. Applying the second law of thermodynamics for
a manifold between the horizons, Aros found an opposite tendency

1 (1) is invariant under radial Lorentz boosts which makes impossible to single
out a preferred comoving reference frame and thus fix the velocity with respect to
a medium specified by (1) – which is the intrinsic property of a vacuum [35].
Fig. 1. Metric function g(r) for a regular cosmological black hole with the de Sitter
center.

– complete evaporation of a black hole [17]. An open question
noted by Aros concerns the causal structure of space–time, namely
the fate of energy radiated once the black hole disappears leav-
ing behind the de Sitter space in which there is nothing beyond
the cosmological horizon but the de Sitter space itself, and thus,
“roughly speaking the energy cannot be hidden there” [17].

Complete evaporation of a singular black hole would involve
also serious changes in space–time symmetry – from a singularity
in a distinguished center to a maximally symmetric de Sitter or
Minkowski space.

An asymptotically flat regular black hole leaves behind a
double-horizon remnant [29,24,44]. We will show in this Letter
that a regular black hole in de Sitter space does not evaporate
completely too. In both cases space–time symmetry leaves un-
changed.

A regular black hole in de Sitter space described by (4), rep-
resents a nonsingular modification of two-horizon Schwarzschild–
de Sitter black hole. A singularity is replaced with de Sitter vacuum
(with Λ > λ), and space–time involves two scales of vacuum den-
sity. The number of horizons is related to the number of extrema
of the metric function g(r) which in turn is related to the number
of zeros of a tangential pressure p⊥ [24], since in an extremum of
the metric function g(r), the Einstein equation with the T θ

θ = T φ
φ in

the right-hand side reads g′′ = 16πGp⊥ . Zeros of p⊥ are surfaces
of zero-gravity at which the strong energy condition, ρ+∑

pk � 0,
is violated. For the class of metrics (3) corresponding to the equa-
tion of state (2), it reduces to p⊥ � 0. In the case of two vacuum
scales it is violated twice, p⊥ has two zero points, and space–
time can have not more than three horizons [48], a black hole
horizon rb , a cosmological horizon rc , and an internal horizon ra

which is the cosmological horizon for an observer in the region
0 � r < ra . Typical behavior of a metric function is shown in Fig. 1.

An extreme state with ra = rb puts a lower limit Mcr1, and the
extreme state rb = rc puts an upper limit Mcr2 on a black hole
mass [43]. Two extreme states and two one-horizon configurations
are shown in Fig. 2.

Uncertainties in predictions concerning an endpoint of evap-
oration of the Schwarzschild–de Sitter black hole, are related to
the problem of definition of thermodynamical variables in a multi-
horizon case with non-zero pressure.

In this Letter we study thermodynamical evolution in the case
of three horizons by applying the Padmanabhan approach which
takes into account that a pressure is not zero in de Sitter space
[13]. Padmanabhan deduced the thermodynamical identity directly
from the Einstein equations on a horizon for the class of solutions
described by (3), and independently by consideration of a canoni-
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Fig. 2. Metric function g(r) for one-horizon and double-horizon regular configura-
tions in de Sitter space.

cal ensemble of metrics belonging to the class (3) at the constant
temperature of the horizon determined by the periodicity of the
Euclidean time in the Euclidean continuation of the Einstein ac-
tion [13].

We keep fixed an internal Λ (as corresponding to a certain
fundamental symmetry scale [42,23]). We keep also fixed (follow-
ing [15,17]) a background λ (the question of λ-decay [49] is out
of scope of this Letter), so that the results are applicable to the
case when a time scale of evaporation is less than a time scale of
changing λ.

Thermodynamics of a regular black hole with de Sitter inte-
rior is dictated by the typical behavior of the metric function g(r),
generic for the considered class of space–times specified by sym-
metry (1) of a stress–energy tensor satisfying the weak energy
condition. A particular form of the density profile ρ(r) affects only
numerical values of thermodynamical parameters but not their dy-
namical behavior.

In Section 2 we outline the basic features of space–time. In Sec-
tion 3 we study thermodynamics of horizons, and show that in the
case of three horizons there exists a certain range of parameters
for which there can exist a global temperature. In Section 4 we
study evolution during evaporation and find a thermodynamically
stable double-horizon remnant (M = Mcr1 in Fig. 2) with a positive
specific heat. In Section 5 we summarize and discuss the results.

2. Metric of space–time

The stress–energy tensor responsible for geometry (4) connects
two de Sitter vacua: Tik = (8πG)−1(Λ + λ)gik at the center, and
Tik = (8πG)−1λgik at infinity.

A density component of T k
i is given by

T t
t (r) = ρ(r) + (8πG)−1λ; ρ(r → 0) → (8πG)−1Λ (6)

It includes a background vacuum density ρλ = (8πG)−1λ and the
dynamical density ρ vanishing as r → ∞ quickly enough to ensure
the finiteness of the total mass

M = 4π

∞∫
0

ρ(r)r2 dr (7)

Geometry defined by (4) has three characteristic lengths

rg = 2GM; r0 =
√

3

Λ
=

√
3

8πGρ0
; l =

√
3

λ

where l is related to the background vacuum density ρλ =
(8πG)−1λ, and r0 to the de Sitter vacuum in the origin ρ0 =
Fig. 3. Horizons for the case q = 25.

(8πG)−1Λ. The characteristic parameter relating two vacuum
scales, Λ and λ, is given by

q = l

r0
=

√
Λ

λ
(8)

For r � r∗ where

r∗ = (
r2

0rg
)1/3

(9)

is the characteristic scale of space–time with the de Sitter interior
[27,28], the metrics (4) are asymptotically Schwarzschild–de Sit-
ter, Eq. (5), or asymptotically Schwarzschild in the case λ = 0. For
r � r∗ the metrics are asymptotically de Sitter with Λ + λ.

For numerical calculations needed to produce pictures illustrat-
ing typical behavior, we adopt the density profile

ρ(r) = ρ0e−r3/r2
0rg (10)

which corresponds to replacing Schwarzschild singularity with
de Sitter vacuum in a simple semiclassical model for vacuum po-
larization in the spherically symmetric gravitational field [28,29].
The mass function is given by

M(r) = M
(
1 − e−r3/r2

0rg
)

(11)

In all pictures below we use the normalization r → r/l so that the
mass parameter M is normalized to l/G .

A mass (7) of a regular cosmological black hole is confined
within a certain range Mcr1 < M < Mcr2 which depends on the pa-
rameter q [43]. The critical values Mcr1 and Mcr2 correspond to the
two double-horizon configurations, ra = rb and rb = rc . Horizon-
mass diagram is plotted in Fig. 3.

In geometries with de Sitter center there exist zero gravity
surfaces defined by p⊥(r) = 0 [29,23], beyond which the strong
energy condition is violated and gravitational attraction becomes
gravitational repulsion.

In geometries satisfying the weak energy condition and not sat-
isfying the dominant energy condition (which requires pk � ρ),
there exist also surfaces at which 4-curvature scalar and 3-cur-
vature scalar

R = 16πG(ρ − p⊥); P = 8πG(2ρ − p⊥) (12)

vanish, which can be essential for evaporation dynamics [42,24].
For geometries satisfying the energy dominant condition these sur-
faces are absent [41].

In the case of two vacuum scales the curvature scalars R and
P can have two zero points since R → 4(Λ+λ), P → 3(Λ+λ) as
r → 0, while R → 4λ, P → 3λ as r → ∞.
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Fig. 4. Horizons, zero gravity surfaces r = rz and zero 4-curvature surfaces r = rs , for
q = 10.

For geometry with the density profile (10) the energy dominant
condition is not satisfied. Zero gravity surfaces r = rz and zero 4-
curvature surfaces r = rs are plotted in Fig. 4 for the case q = 10.

3. Thermodynamics of horizons

The Hawking temperature of a horizon rh is given by [11]

kTh = h̄

2πc
κh = h̄

4πc

∣∣g′(rh)
∣∣ (13)

where κh is the surface gravity and k is the Boltzmann constant.
We apply here the Padmanabhan approach based on the ther-

modynamical identity T dS − dE = p dV where the pressure p is
provided by a source term in the Einstein equations, and dV is
the change in the volume when the horizon is displaced infinites-
imally [13].

On a black hole horizon where g′(rh) > 0, temperature and
thermodynamical energy are given by (in the units h̄ = G = c =
k = 1) [13]

Tb = g′(rb)

4π
; Eb = 1

2
rb (14)

On a cosmological horizon g′(rh) < 0, and [13]

Th = − g′(rh)

4π
; Eh = −1

2
rh (15)

In our case it is valid for rh = ra and rh = rc .
Entropy and free energy are given by

Sh = 4πr2
h; Fh = Eh − Th Sh (16)

An observer in the region rb < r < rc can detect radiation from
a black hole horizon rb and cosmological horizon rc . An observer
in the region 0 � r < ra can detect radiation from his cosmological
horizon ra .

For geometry specified by (4) the temperature of a horizon is
given by

Th = 1

4π

∣∣∣∣ 1

rh
− 3rh

l2
− 8πρ(rh)rh

∣∣∣∣; rh = ra, rb, rc (17)

A specific heat, Ch = dEh/dTh is calculated from

C−1
h = dTh

drh

drh

dEh
(18)

which gives
C−1
h = − 1

2π

[
8πρ ′(rh)rh + 8πρ(rh) + λ + 1

r2
h

]
(19)

It is easy to check that C−1
h can be written as

C−1
h = 1

2π

(
g′(rh)

rh
+ g′′(rh)

)
(20)

On a double horizon rh = rd it gives

C−1
d = 1

2π
g′′(rd) (21)

As we shall see in the next section, the basic formulae (13) and
(20)–(21) determine the dynamics of evaporation as dictated by
generic behavior of the metric function g(r) for any density profile
ρ(r) whose behavior is governed by the weak energy condition
(non-negative density for any observer which is satisfied if and
only if ρ � 0 and ρ + pk � 0) which requires it (by Eq. (2)) to
decrease monotonically from ρ0 = (8πG)−1Λ for r = 0 to ρ = 0 as
r → ∞ [24].

In particular, the simple general formula (21) tells us unam-
biguously that an extreme state with a double horizon is thermo-
dynamically stable when it appears in a minimum of the metric
function g(r), and thermodynamically unstable when it appears in
its maximum.2

Derivative of the metric function g(r) is negative on the cosmo-
logical horizons and positive on a black hole horizon. As a results
temperatures on cosmological horizons rh = ra , rh = rc are

Tc,a = 1

4π

(
8πρ(rh)rh + 3rh

l2
− 1

rh

)
(22)

and on a black hole horizon rb it is

Tb = 1

4π

(
1

rb
− 3rb

l2
− 8πρ(rb)rb

)
(23)

Let us note that in the case of three horizons there exists a cer-
tain range of parameters for which temperatures on a black hole
and cosmological horizons are equal, i.e. the case when one can
speak about a global temperature for an observer in the region be-
tween the black hole horizon rb and the cosmological horizon rc .
The equation g′(rb(M,q)) = |g′(rc(M,q))| gives the dependence
M(q) so that for each value of the parameter q there exists such a
value of the mass parameter M at which surface gravities and thus
temperatures are equal. Dependence of global temperature T G on q
and M is shown in Fig. 5.

4. Evolution during evaporation

The first question is – where to move horizons?
For an observer in the region 0 � r � ra , the horizon ra is the

boundary of his manifold, and the second law of thermodynamics
reads dSa � 0. It requires dra � 0.

Looking at the horizon-mass diagram plotted for the density
profile (10) we see that on the black hole horizon drh/dM > 0
while on both cosmological horizons drh/dM < 0, so that

dra

dM
� 0; drb

dM
� 0; drc

dM
� 0 (24)

It follows then that when ra increases, mass M decreases by (24),
hence black hole horizon shrinks, drb < 0, and cosmological hori-
zon moves outward, drc � 0.

2 In [44] a specific heat was calculated as vanishing at the double horizon by
identifying the thermodynamical energy with a black hole mass M , which is true
for the Schwarzschild black hole but cannot be applied directly in the case of two
horizons and non-zero pressure.
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Fig. 5. Dependence of the global temperature kTG and mass MG on the parameter q.

The next question is – how general is the relation (24)?
Following Teitelboim we can take derivative of the relation

g(rh, M) = 0 keeping λ fixed [15]. It gives

drh

dM
= −∂ g(rh)

∂M

1

g′(rh)
(25)

With taking into account behavior of g′ on the horizons, we should
have to have

∂ g

∂M
< 0 (26)

on each horizon in order to get (24).
It is straightforward to check that (26) holds everywhere

for the regular metrics with ρ → ρ0 as r → 0, asymptotically
Schwarzschild–de Sitter, Eq. (5) as r → ∞ with the mass parame-
ter M given by (7). To ensure the needed behavior (7) for the mass
function in (4), an r-dependence of a density profile should involve
scaling r/r∗ , with the characteristic scale r∗ given by (9).

Then ρ(r) = ρ0ρ̃(r/r∗), and the mass function reads

M(r) = 3Mφ(y); y = r

r∗
; φ(y) =

y∫
0

ρ̃(z)z2 dz (27)

The metric function takes the form

g = 1 − M2/3 1

r2/3
0

[(
3

21/3

)
φ(y)

y
+ (22/3)

q2
y2

]
(28)

and we see that (26) holds everywhere. On the horizons

∂ g

∂M
= − 2

3M
(29)

As a result, for any density profile evolution of a black hole goes
towards a double-horizon state with ra = rb .

Near the double horizon rb = rc the specific heat Cb is negative
by (21). The same relation requires Cb be positive near the dou-
ble horizon ra = rb . Therefore it should occur a second-order phase
transition during evaporation where Cb is broken and changes sign.
Dependence of a specific heat on the black hole horizon rb is
shown in Fig. 6.

The temperature of a black hole horizon is shown in Fig. 7 for
several values of the parameter q. At the transition it acquires the
maximum value

Tb max = − 1

4π
g′′(rb)rb (30)

Before the transition, Cb < 0, hence dTb/drb < 0, when rb de-
creases, Eb decreases too, temperature increases to a maximum
Fig. 6. Dependence of Cb on rb for the case q = 10.

Fig. 7. Temperature on a black hole horizon.

(30) where Cb changes sign, so that after transition we have
dTb/drb > 0, and thus decreasing rb leads to decreasing Tb until
it vanishes at the double horizon. At this point of evolution spe-
cific heat Cb is positive by (21), the free energy is equal Eb which
achieves its minimum, so that the double-horizon state rb = ra is
the thermodynamically stable endpoint of evolution during evapo-
ration.

On the internal horizon thermodynamical energy is

Ea = − ra

2
(31)

By (24), dra/dM < 0 and M decreases when ra grows. Since
g′ < 0, we have

dTa

dra
= − Ta

ra
+ 1

4π
g′′(ra) (32)

Specific heat Ca is positive near the double horizon, so that
dTa/dEa > 0 and dTa/dra < 0. Hence Ta decreases with increas-
ing ra , the mass M decreases too, dTa/dM > 0 and dTa/dra < 0, so
the growth in ra leads to monotonic decreasing the temperature Ta

until it vanishes at the double horizon where the energy Ea , and
hence free energy Fa achieve the minimum.

The cosmological horizon rc moves outwards during evapora-
tion. The specific heat is negative near the double horizon rb = rc .
Hence dTc/dEc < 0, dTc/drc > 0, and Tc increases with increas-
ing rc , and since the mass decreases by virtue of (24), dTc/dM < 0.
Starting from the double horizon rb = rc evolution must thus oc-
cur as follows: M decreases and rc increases by (24), hence Ec

decreases by (15), and the specific heat remains negative. The tem-
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Fig. 8. Double horizon rcr1 and characteristic surfaces rz and rs in the remnant.

perature on the cosmological horizon is almost insensitive to the
parameter q.

At approaching the double horizon state, the nearest to the cen-
ter surfaces of zero gravity and zero curvature get consequently
inside an internal horizon ra (see Fig. 4).

The double horizon ra = rb = rcr1 and characteristic surfaces are
shown in Fig. 8 as functions of q. We see that the horizon fits
inside zero gravity surfaces. It is intrinsic behavior for any den-
sity profile. At this double horizon g′′ > 0. Two other extrema of
a metric function (4) are maxima at r = 0 and r > rcr1, so that g′′
changes sign at certain values r < rcr1 and r > rcr1. As a result a
double horizon is confined between surfaces of zero gravity.

5. Summary and discussion

We have studied thermodynamics of horizons for a spherically
symmetric regular space–time with two vacuum scales, Λ as r → 0
as a certain fundamental symmetry scale and the background
λ < Λ, applying the Padmanabhan approach relevant for the multi-
horizon space–time with non-zero pressure. We deduced basic
thermodynamical formulae valid for any density profile satisfying
the weak energy condition (needed for replacing a Schwarzschild
singularity with a de Sitter vacuum interior).

We have shown that in the case of three horizons there exists
a certain range of parameters for which there can exist a global
temperature for an observer between the black hole horizon rb and
cosmological horizon rc .

We found that a regular spherically symmetric black hole in
de Sitter space evolves to a double-horizon thermodynamically sta-
ble remnant with the positive specific heat. Its stability to small
perturbations is currently under investigation, preliminary results
suggest stability in a wide range of density profiles.

During evaporation the second-order phase transition occurs
where the specific heat Cb is broken and changes its sign, and the
black hole temperature achieves its maximum.

In the considered case of two vacuum scales such that Λ > λ

and hence q > 1, there exists a certain critical value qcr (for the
density profile (10) qcr 	 3.24) at which, for a certain value Mcr ,
the metric function, its first and second derivatives (and hence
also tangential pressure) vanish. As a result, the temperature and
the specific heat vanish, so this configuration is thermodynamically
stable. It is the case of the triple horizon. It is interesting that near
q = qcr , any metric function has only one zero and a “plateau”,
distinguished by two conditions g′(r) = 0; g′′(r) = 0. These two
equations give two dependences ri(M) and qi(M), the second ap-
pears to be close to qcr up to 10−5. Horizons and zero-gravity
surfaces are shown in Fig. 9.
Fig. 9. Horizons and zero-gravity surfaces for q = qcr .

The detailed study of this case and its applications will be pub-
lished in a separate paper.
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