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Detecting UV-lesions in the genome: The modular CRL4 ubiquitin ligase does it best!
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The DDB1–DDB2–CUL4–RBX1 complex serves as the primary detection device for UV-induced lesions
in the genome. It simultaneously functions as a CUL4 type E3 ubiquitin ligase. We review the current
understanding of this dual function ubiquitin ligase and damage detection complex. The DDB2 dam-
age binding module is merely one of a large family of possible DDB1–CUL4 associated factors (DCAF),
most of which are substrate receptors for other DDB1–CUL4 complexes. DDB2 and the Cockayne-
syndrome A protein (CSA) function in nucleotide excision repair, whereas the remaining receptors
operate in a wide range of other biological pathways. We will examine the modular architecture
of DDB1–CUL4 in complex with DDB2, CSA and CDT2 focusing on shared architectural, targeting
and regulatory principles.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Repair of UV-induced DNA lesions is facilitated by CUL4 type
E3 ubiquitin transferases

The nucleotide excision repair (NER) pathway safeguards the
genome against bulky DNA adducts and UV-light induced pyrimi-
dine dimers [1–4]. If left unrepaired, these lesions interfere with
the progression of transcription [5] and replication [6], requiring
extensive post replicative repair. It only very recently emerged that
NER requires targeted ubiquitination events in vivo [7]. The two
major CUL4 E3 ubiquitin ligase substrate receptors in NER are
the Cockayne-syndrome protein A (CSA) and the damage DNA
binding protein 2 (DDB2), both of which are connected to the ligase
through the DDB1 adaptor subunit. Proteomic studies have re-
vealed that the remainder of the CUL4-DDB1 RING LIGASE (CRL4)
family comprises more than fifty different substrate receptor com-
plexes. Additionally, two closely related CUL4 human paralogs,
CUL4A and CUL4B have been identified which differ mainly in a
large N-terminal extension present only in CUL4B [8]. By examin-
ing three of the best characterized CRL4 ubiquitin E3 ligases, all of
which function in the UV-response to damage (CRL4DDB2, CRL4CSA

and CRL4CDT2), we will highlight common architectural principles
and detail our current understanding of CRL4 targeting and
regulation.
cal Societies. Published by Elsevier

ä).
2. Nucleotide excision repair, an overview

NER consists of two branches that differ in the mechanism of
lesion detection: in transcription coupled repair (TCR) damaged
DNA bases initiate NER through RNA polymerase II stalling
[9,10]; in global genome repair (GGR) the non-transcribed gen-
ome is continuously interrogated for DNA damage through spe-
cialized surveillance protein complexes including XPC-RAD23
[11,12] and DDB1–DDB2 [2]. TCR and GGR are thought to ulti-
mately converge into a common pathway comprising: (i) local
scanning for the lesion and duplex unwinding by the 10 subunit
TFIIH complex [7,13], (ii) 50 incision through the XPF-ERCC1 endo-
nuclease [14], (iii) initiation of DNA gap re-synthesis and 30 inci-
sion catalyzed by XPG, (iv) removal of a 24–32 bp damage
containing oligonucleotide, (v) and nick ligation. Overall more
than 30 polypeptides are involved in this process resulting in er-
ror free repair [15]. NER generally proceeds in a rapid fashion and
does not interfere with cell cycle progression. Checkpoint activa-
tion is typically only triggered once the damage is considered
too extensive to be repaired [16]. Mutations in NER components
result in a number of rare autosomal recessive diseases including
Xeroderma pigmentosum (XP), Cockayne syndrome (CS & XP-CS),
UV-sensitive syndrome (UVSS) and Trichothiodystrophie (TTD)
[3,9,17,18]. These types of DNA repair defects are frequently asso-
ciated with various forms of UV-sensitivity, neurological and
development complications, and in case of XP pronounced skin
cancer predisposition.
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Fig. 1. Modular architecture of CRL4DCAF complexes. Tentative model of the CRL4DDB2 complex by overlaying the DDB1–DDB2 complex bound to a 6-4PP containing
oligonucleotide [30] and the DDB1-CUL4/RBX1 complex [33], assuming no overall conformational changes. The architecture of DDB1-DDB2 serves as a structural archetype
for complex formation between WD40-type DCAF receptor proteins and DDB1. The overall assembly of CRL4DCAF complexes and putative modes of association of (I) helix-
loop-helix containing WD40-type DCAF receptors (as seen in DDB1–DDB2), (II) hypothetical assembly of non-helix WD40 DCAFs and (III) helix containing non-WD40 DCAFs
(as seen in DDB1-SV5V) are depicted. Inlet panel: Structural details of UV-lesion recognition. The DDB2 (green) FQH-hairpin ‘finger’ (yellow) inserts into the damaged DNA
duplex (grey and black) and concomitantly extrudes the 6-4 PP lesion (red) into a hydrophobic surface pocket.
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3. First responders: the CRL4DDB2 ligase in pyrimidine dimer
detection in vivo

UV-light transforms adjacent pyrimidine bases into covalent
photo-dimers. The majority of these cross-links are cyclobutane-
pyrimidine dimers (CPD), and to a lesser extent 6-4 pyrimidine–
pyrimidone photoproducts (6-4PP) [19,20]. Detecting pyrimidine
dimers within a large genome poses an exquisite challenge. The
DDB1–DDB2 complex plays an important role in the initial pyrim-
idine dimer recognition in vivo [21–25]. Within the DDB1–DDB2
complex, the DDB2 subunit is found mutated in patients belonging
to Xeroderma pigmentosum complementation group E (XP-E) [26].
Cells lacking DDB2 are substantially impaired in the repair of CPDs
[27–29]. Recent X-ray crystallographic studies provided the molec-
ular mechanism of high affinity and specificity 6-4PP recognition
by DDB1–DDB2 (Fig. 1) [30]. DDB1–DDB2 largely comprises four
WD40 propeller domains. The 127 kDa DDB1 protein contains
three WD40-domains (BPA, BPB & BPC) [31]. The sides of the
DDB1–BPA and BPC propeller domains are facing each other at
an angle of �60� and form the binding cavity for DDB2 [30].
DDB2 binding to DDB1 is mediated by the N-terminal helix-loop-
helix motif preceding the DDB2 WD40 propeller [30,32]. The
DDB1–DDB2 complex binds damage containing DNA duplexes
exclusively through the DDB2 WD40 propeller domain. The
DDB1–BPB domain, which is located on the opposing face of the
DDB1–DDB2 module, provides the attachment site for the cullin4
ubiquitin ligase subunit [33] (Fig. 1). In vivo, DDB1–DDB2 exists
in complex with both CUL4A-RBX1 and CUL4B-RBX1 paralogs
[34–37]. Architecturally, DDB1 acts as an adaptor linking the E3
ubiquitin ligase (CUL4) to the UV-damage detection module
(DDB2). The protein complex specialized for the recognition of
pyrimidine dimers in human cells thus doubles as an E3 ubiquitin
ligase complex.

4. The mechanism of pyrimidine dimer recognition: showing
DNA damage the damage recognition finger

DDB2 utilizes a conserved tri-peptide Phe-Gln-His (FQH) hair-
pin to interrogate the duplex for damage. This hairpin forms a
surprisingly rigid unit that inserts into the minor groove, at the
lesion, in a finger like fashion. Concomitant with insertion of the
damage recognition finger, the lesion is flipped out and stabilized
in a hydrophobic pocket present at the DDB2 surface (Fig. 1). This
pocket serves to restrict the size of the modification accommo-
dated, biasing DDB2 towards photo-dimer recognition and pre-
venting larger base adducts from being bound. Co-crystallisation
of DDB1–DDB2 with a single-nucleotide abasic site (AP) lesion,
embedded in a duplex, revealed an almost identical dual base pair
flip of the abasic site and the adjacent 30 undamaged base. This is
surprising, as unlike in the case of 6-4PP, only one base is damaged
in the AP containing duplex. The damage recognition finger,
which spans exactly two nucleotides, therefore inherently triggers
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a di-nucleotide flip upon insertion. This flip is independent of
whether the adjacent 30 base is modified or not [30]. Contrary to
the common notion, DDB2 does not appear to recognize the ‘helix
distortion of the lesions’ per se, as the DDB2 bound DNA conforma-
tion differs significantly from those of damaged duplexes free in
solution. DDB2s therefore rather tests whether the damage recog-
nition ‘finger’ can be inserted into the duplex, assessing the DNA
conformation around the damage, and examines whether the
DNA can fit to the rigid DDB2 binding ‘mold’. The structural basis
of high affinity CPD recognition, the biological role of the DDB2
in which it excels above all other known human damage detection
factors, currently remains elusive.

5. UV-lesion detection in chromatin: the missing link

The challenging task of detecting UV-lesions within vast gen-
omes is further compounded by the presence of chromatin. In
chromatin, the DNA is wrapped around an octamer of core his-
tones, with additional linker histones implicated in further com-
paction. In vivo, the position of the photo-dimers respective to
the nucleosome core particle depends on the kind of lesion pres-
ent: the strongly duplex distorting 6-4PP is largely found randomly
localized in nucleosomes and linkers [38], while the highly muta-
genic and difficult to detect CPD clusters are found in surface ex-
posed regions of nucleosome [39]. How then are these lesions
detected and repaired within nucleosomes? While the global gen-
ome repair branch of NER can be effectively reconstituted on naked
DNA, the presence of nucleosomes was clearly inhibitory for NER
repair in vitro [40]. NER inhibition occurred on multiple levels
including damage recognition [41,42]. Nucleosome remodeling
complexes can function as a principal means to remove nucleo-
somes, providing NER with a DNA substrate that more closely
resembles the naked DNA. Several chromatin remodeling com-
plexes have been implicated in NER. Cells in which chromatin rem-
odelers Ino80 [43] and SWI/SNF (Brg1) [44,45] have been deleted
become UV-sensitive. While remodelers offer a potential solution
to facilitate downstream repair processes, they are unlikely to pro-
vide a means to directly find the damage. How then is damage
being read out in chromatin? Recent studies focusing on nucleo-
some dynamics in the presence and absence of damage indicated
that the DNA around the octamer core unwraps leaving proteins
sufficient time (and room) to gain access to the lesion [46,47]. In
vivo, DDB2 localizes to chromatin in a UV-dependent manner
[48,49] and remains associated with mono-nucleosomes upon
treatment with micrococcal nuclease [35]. DDB1–DDB2 is there-
fore a likely candidate for recognizing pyrimidine dimers embed-
ded in nucleosome core particles. The direct interactions
between NER damage detection factors including DDB1–DDB2,
XPC/Rad4 and chromatin remodelers has been described
[43,45,50] offering a principal means to recruit remodelers and
facilitate NER in an otherwise repressive chromatin environment.
6. DDB1–DDB2 mediated histone ubiquitination surrounding
the sites of damage

Additional evidence implicating DDB1–DDB2–CUL4–RBX1
(CRL4DDB2) in damage recognition in chromatin came from studies
reporting CRL4DDB2 dependent ubiquitination of histones H2A, H3
and H4 in response to UV-irradiation [51–53]. This histone ubiqui-
tination response appeared to be largely mono-ubiquitination. In
vitro, CUL4 mediated ubiquitination gives rise to poly-ubiquitin
chains. Whether a de-ubiquitination enzyme, a specific E2 trans-
ferase, or a regulatory protein serves to restrict the extent of ubiq-
uitination in vivo, is currently not known. CRL4DDB2 mediated
ubiquitination of histones is likely to be local and restricted to
the immediate �100 Å vicinity of the lesion [30,54]. In vitro, his-
tone ubiquitination by CRL4DDB2 altered the stability of the nucle-
osome core driving partial histone eviction [53]. Histone
ubiquitination with concomitant destabilisation of neighbouring
nucleosomes thus offers an additional mechanism to evict histones
and drive assembly of the NER machinery in a chromatin environ-
ment (Fig. 2) [30,55]. Mono-ubiquitination of histones could, in
addition, function as a recruitment signal for additional auxiliary
repair factors (see below).
7. Ubiquitination overseeing damage handover from DDB2 to
XPC

CRL4DDB2 ubiquitination has been implicated in resolving one of
the central conundrums of NER damage recognition [25]: while
DDB1–DDB2 has the highest affinity for UV-induced photo-dimers
in vitro, and appears to be the first protein complex at the lesion
in vivo [23,24,41], it is dispensable in vitro [15]. XPC, in contrast
binds 6-4PP with two orders of magnitude lower affinity than
DDB2 [25,56,57] and has no discernable affinity for CPD, yet is
essential for NER both in vitro and in cells. As DDB1–DDB2 is re-
quired for efficient XPC recruitment to chromatin [23], the ques-
tion arises as to how damage is handed over from DDB2 to XPC.
Recent work demonstrated that CRL4DDB2 targets XPC, as well as
DDB2 for ubiquitination in a UV-dependent fashion [25]. Poly-
ubiquitination of DDB2 ablates DNA binding by DDB1–DDB2 and
results in proteasome mediated DDB2 degradation [58,59]. Poly-
ubiquitination of XPC, on the other hand, does not appear to affect
DNA damage binding [25] and XPC is protected from immediate
proteasomal degradation, likely through association with RAD23
[60–62]. This and further studies [63] place DDB1–DDB2 in the
recruitment of XPC to the sites of damage in chromatin, with a sub-
sequent hand-over of the lesion from DDB2 to XPC in an ubiquitin
dependent manner [7,30]. XPC thereby emerges as an indispens-
able core component of NER, which in vivo does, however, require
assistance from DDB1–DDB2 in finding specific lesions. The exact
molecular nature of the damage handover complex from DDB2 to
XPC remains elusive. The damage probing hairpin of both DDB2
(hsDDB2: 334FQH336) and XPC (hsXPC: 799FHGGYS804) cannot
simultaneously engage with the lesion damage due to large steric
clashes [30,64]. Three, mutually non-exclusive possibilities for
such a hand-over complex have been considered: (i) XPC binding,
via the TGD domain, to the undamaged duplex 30 of the lesion with
DDB2 engaging the pyrimidine dimer; (ii) XPC attaching to DDB2
through protein–protein interaction [25], and (iii) in a more indi-
rect fashion XPC recruitment by ubiquitination (for example of
the histone or DDB2) as the RAD23 subunit also carries a UBA do-
main [65]. In the latter mechanism, in particular, CRL4DDB2 could
recruit XPC to lesions such as CPDs, for which XPC has no measur-
able affinity by itself, yet is required for repair in vivo. Interpreta-
tion of the role of CRL4 mediated ubiquitination in NER has been
complicated [66], also by the finding that mice carrying a Cul4a
deletion in skin cells are less likely to develop UV-induced skin
cancers and appear more repair proficient [67]. As CUL4A is in-
volved in many different cellular pathways regulated in response
to UV, such as the CRL4CDT2-p21 controlled by UV cell cycle check-
point, it is currently unclear which CRL4 substrate receptor and
pathway is responsible for the mouse cancer phenotype.
8. A related DDB1-CSA-CUL4 ligase in Cockayne syndrome

A general feature of DDB1–CUL4 cullin E3 ligases is their
modularity (Fig. 1). Largely through proteomic studies a number
of DDB1–CUL4 associated proteins have been identified [33,68–
70,99,116]. The family of these proteins is known as DCAFs
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(DDB1-CUL4-associated-factor) [33], DWD-proteins (DDB1-bind-
ing and WD40-repeat) [69] or CDW-proteins (CUL4- and DDB1-
associated WDR proteins) [70]. These DCAFs fall in two potential
categories: substrate receptors recruiting CRL4 complexes and reg-
ulators of CUL4 function. DDB2 thereby is one out of more than fifty
possible substrate receptors described. DDB2 recruits the ligase to
the sites of damage, whereas the majority of these CUL4-DDB1
ligase receptors, including CSA [71], are likely to recognize protein
epitopes, or posttranslational modifications of proteins. In a ‘plug
and play’ fashion these receptors can be exchanged, customizing
CRL4 substrate specificity to different pathways (Fig. 1).
9. The role of the Cockayne syndrome A protein (CSA) in
transcription coupled repair

We will first examine the Cockayne syndrome A CRL4CSA ligase
complex involved in transcription coupled repair of damages lo-
cated on the actively transcribed strand [4,9,72–74]. Cockayne syn-
drome is a rare autosomal disease with mutations in two proteins
CSA [75] and CSB [76]. The hallmarks of Cockayne syndrome in-
clude developmental defects, photosensitivity, segmental prema-
ture aging and mental retardation [3,77]. While CSA is integrated
in a CRL4CSA ubiquitin ligase complex [35], CSB functions as SWI/
SNF chromatin remodeler [78]. CSA and CSB both appear inter-
twined with the general transcription machinery [13]. Mutations
in CSA and CSB are indistinguishable on the patient level arguing
for a common pathway. Upon RNA polymerase II (RNAPII) stalling,
both CSA and CSB are required for repair and transcription restart.
CSB has been implicated in the remodeling of stalled RNAPII com-
plexes to which it binds tightly in the presence of damage [79,80].
CSA is translocated to the nucleus, in a CSB-dependent manner,
and co-localizes with CSB at sites of stalled RNAPII [81]. Arrival
of CSA is required for recruitment of HMGN1 (high mobility group
nucleosome-binding domain-containing protein 1), XAB2 (XPA-
binding protein 2) and transcript elongation factor TFIIS [82].

Five lines of evidence suggest the involvement of the ubiquitin
proteasome system in TCR: (i) CSA is constitutively found in com-
plex with DDB1 and CUL4 [35], (ii) ubiquitination of CSB was ob-
served under high UV conditions, with proteasome dependent
CSB degradation during later stages of TCR [71], (iii) UV-dependent
CSB degradation is absent in cells lacking CSA but can be restored
by exogenous CSA, and (iv) the DDB1-CSA-CUL4A ligase was capa-
ble of CSB ubiquitination in vitro; (v) finally, CSB has a ubiquitin
binding (UBA) domain which was found essential for CSB function
in TCR [83]. The structure and architecture of the CRL4CSA complex
is currently unknown. The current data is consistent with CSB
functioning as a CRL4CSA recruitment and ubiquitination substrate
[71]. Other, as yet unidentified targets cannot be ruled out at pres-
ent, however. While the CRL4DDB2 and CRL4CSA ligase complexes
differ substantially in respect to their function, there are interest-
ing mechanistic parallels: the respective main targets of CRL4DDB2

and CRL4CSA, XPC-RAD23 and CSB both carry UBA domains be-
lieved to play important regulatory roles in NER. What these UBA
domains recognise and what functional consequences UBA target
binding has, remains an active area of research.
10. The role of DDB1-CDT2-CUL4 in genomic stability and
beyond

DDB1-CDT2-CUL4 (CRL4CDT2), a third essential CUL4 ligase,
oversees the S/G2 cell cycle transitions through degradation of
the replication licensing factor CDT1 [84–86]. Additional human
targets include the cell cycle regulator p21 [87,88] and the histone
methyltransferase SET8/Pr-SET7 [89–92]. Degradation of these
substrates proceeds in a DNA replication and UV-dependent man-
ner. In Schizosaccharomyces pombe CRL4Cdt2 has been implicated in
the ubiquitination of Spd1, a ribonucleotide reductase inhibitor
[93] and Epe1 [94], which assists in the sculpting of heterochro-
matic boundaries. In most cases examined, CDT2 has been shown
to interact with its substrates through a conserved, PIP (PCNA-
interacting peptide) box containing degron motif in a manner
dependent on the proliferation cell nuclear antigen (PCNA)
[86,95–100]. The requirement of two polypeptides (PCNA + PIP
containing target) for substrate recognition is intriguing, and might
suggest that CDT2 uses PCNA as an additional level of proofreading
in proper substrate selection.

11. CSN functions as a master regulator of cullin type E3 ligases

The COP9 signalosome (CSN) has been reported to play a central
role in the regulation of all cullin E3 ligases (Fig. 2) [35,101]. Sim-
ilar to other cullin-RING E3 ligases [102], the CUL4 E3 ligase is acti-
vated through attachment of NEDD8, a small ubiquitin-like
modifier [35,54]. The removal of NEDD8 from cullins is catalyzed
through the metallo-isopeptidase activity of the COP9 signalosome
(CSN) [103,104]. CSN is an eight subunit, �350 kDa protein com-
plex conserved in all eukaryotes [35,105–107]. CSN shares signifi-
cant sequence and structural homology with the components of
the 19S proteosome lid. The first three-dimensional EM structure
of the CSN complex at 25 Å resolution shows a central cleft along
with two CSN segments corresponding to CSN1/2/3/8 and CSN4/
5/6/7 [108–110]. The exact mode of cullin binding to CSN is cur-
rently not known.

12. CSN a master regulator of ubiquitin ligase, challenges for
regulation

Detailed understanding of CSN regulation is complicated by the
observed discrepancies between biochemical and genetic proper-
ties of the complex. Gene deletion studies, for example, demon-
strated that S. pombe csn1� and csn2� strains are sensitive to UV
and ionizing radiation, along with a slow DNA replication pheno-
type [111,112]. The catalytic csn5 deletion mutant, in contrast,
did not display this pronounced phenotype [111], suggesting that
the CSN function extends beyond catalytic cullin de-neddylation
through the CSN5 isopeptidase activity. Intriguingly, despite being
a master regulator of all cullins, CSN appears nevertheless able to
differentially regulate CRL4 ligases in response to a common stim-
ulus, such as UV: in the absence of UV-damage, CSN is associated
with the un-neddylated CRL4DDB2 and CRL4CSA complexes. Upon
UV-damage, CSN dissociates from CRL4DDB2 [35,49] allowing its
neddylation. At later time points, CSN de-neddylates and re-associ-
ates with the CRL4DDB2 complex [113]. In TCR, on the other hand,
CRL4CSA complexed to CSN rapidly locates to the damage site upon
UV-irradiation [35], and only dissociates at a much later time
point. The PCNA-dependent ubiquitin-mediated proteolysis of
CDT1 by CRL4CDT2 for example also proceeds in response to UV,
similarly mediated by CSN [100,114]. The open question currently
is whether CSN can selectively regulate defined CRL4-substrate
receptor complexes in response to a given stimulus, while not
interfering with the remainder of cullin-CSN complexes, and if so
how it does achieve this kind of mechanistic specificity? Special-
ized CSN release CRL4 factors may exist regulating CSN release in
response to cellular signals [49].

13. General principles of DDB1-DCAF-CUL4 architecture and
regulation

What general architectural, targeting and regulatory principles
can we deduce from these CRL4 complexes?
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13.1. Architecture

All structurally characterized DDB1–DCAF complexes [32] uti-
lize a helical motif in binding DDB1. This motif structurally resem-
bles DDB2 helix1. Helix1 equivalents, although only moderately
conserved, have been identified in the protein sequence of several
DCAF proteins and are referred to as DDB-box (devoted to DDB1
binding) [115]. A number of WD40 containing DCAFs, however,
do not appear to contain recognizable helical domains. It is cur-
rently unclear if those helices simply escape detection or whether
fundamentally different DDB1 binding modes exist (Fig. 1). When
comparing different proteomic studies identifying DCAFs, a com-
mon set of about 20 WD40 containing DCAFs, have been consis-
tently identified [33,68–70,99,116], most of those appear to have
helical motifs that could be used for DDB1 binding. Currently, there
is no direct evidence for DDB1 binding mediated by WDXR motifs
equivalent to the WDXR motif present in DDB2. As seen in the
DDB1–DDB2 structure, The WDXR motif is not part of the DDB1
interface or the DNA binding interface [30]. Yet mutation of the
WDXR motif (R273H) in DDB2 gives rise to a mutant protein that
is no longer able to bind to DNA damage, likely due to local unfold-
ing of the propeller [57]. By analogy, it should thus be considered
that mutation of the corresponding WDXR in other DCAFs could
also indirectly ablate DDB1 binding through interference with
WD40 folding, leaving the possibility that WDXR is not necessarily
part of the DDB1-DCAF interface. Additional DDB1-DCAF structures
are required to resolve this issue.

13.2. WD40 containing and non-WD40 containing DCAFs

The majority of DCAFs comprise WD40 propeller domains. We
propose that those DCAFs who have helical elements preceding
the WD40 propeller bind DDB1 in a manner resembling the
DDB1–DDB2 complex. Other proteins have been classified as
DCAFs that do not contain WD40 propeller domains. They often
do have helical elements, nevertheless, and likely bind DDB1 using
those motifs (Fig. 1). Their mode of DDB1 attachment is likely to be
equivalent to that seen in the SV5V-DDB1 [31] and DDB2 (helix1)-
DDB1 structures.

13.3. Substrate recognition and ubiquitination

In case of WD40 containing DCAFs, the WD40 propeller is used
for recruiting the CRL4 complex to the ubiquitination target. The
ligand binding site of this WD40 propeller is expected to be located
at the narrow face of the WD40 propeller cone, pointing away from
DDB1 [30] (Fig. 1). This ligand, which recruits the CRL4 complex via
the WD40 of the substrate receptor, however, does not necessarily
have to be the target that undergoes ubiquitination (see DDB2).
The ligase is likely to be able to span distances up to 100 Å. The
recruiting ligand and the ubiquitination target might therefore also
be separate proteins/ligands (Fig. 2).

13.4. Regulation

As outlined above, the CRL4 family is likely to be under the
control of the signalosome (Fig. 2). Substrate binding to the
WD40 DCAF could also be regulated through post-translational
modification, as is commonly observed in the CUL1 family of
targets [117]. For example, substrates might require phosphory-
lation prior to CRL4DCAF binding [118], with phosphorylation
being the key determinant for binding/regulation. As is already
evident in case of CRL4CDT2, more complicated substrate binding
schemes appear in operation, ensuring tight regulation of the
ligase function. Additionally, a number of DDB1 binding proteins
have been identified, for example DET1 [119] and DDA1 [116],
which might have a regulatory role rather than serving as a sub-
strate receptor.

Within the large CUL4 family [36], the CRL4DDB2 ligase is
currently the best understood representative in respect to its
structure, function and regulation. While DDB2 recognizes dam-
aged DNA as a recruiting substrate, the majority of the remaining
receptors likely recognizes protein epitopes (or posttranslational
modification thereof). More work will be needed to define what
these epitopes are and how ubiquitination is regulated in these
CRL4DCAF ligases. Furthermore, we will need to understand the
functional role of the plethora of DDB1-CUL4 associated factors,
which do not function as substrate receptors. Knowledge of CRL4
targeting and regulation is expected to significantly improve our
understanding of the various biological pathways these proteins
operate in.
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