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Abstract

Given a fixed computable binary operationf, we study the complexity of the following generation
problem: the input consists of stringsa1, . . . , an, b. The question is whetherb is in the closure of
{a1, . . . , an} under operationf.
For several subclasses of operations we prove tight upper and lower bounds for the generation

problems. For example, we prove exponential-time upper and lower bounds for generation problems
of length-monotonic polynomial-time computable operations. Other bounds involve classes like NP
and PSPACE.
Here, the class of bivariate polynomialswith positive coefficients turns out to be themost interesting

class of operations. We show that many of the corresponding generation problems belong to NP.
However, we do not know this for all of them, e.g., forx2+2y this is an open question.We prove NP-
completeness for polynomialsxaybc wherea, b, c�1. Also, we show NP-hardness for polynomials
like x2 + 2y. As a by-product we obtain NP-completeness of the extended sum-of-subset problem
SOSc = {(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n}(∑i∈I wc

i
= z)} for anyc�1.
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1. Introduction

No, this paper is not about problemsbetweengenerations.1 However, genealogy presents
an example that explains thematterweare interested in. There is hardly any other prehistoric
question where scientists grope in the dark as in the following: are Neanderthals completely
extinct or are there traces of them left in some of us? To examine whether a person, e.g.,
one of the authors, is not a descendant of a Neanderthal, one would usually build the whole
family tree of the author and check whether every leaf of the tree is labeled with aHomo
sapiens. This becomes a generation problem in the following way. We go back to the time
where Neanderthals andHomo sapiensstill lived segregated from each other. It is well-
known that it is the operation of marriage (in a very natural sense) that produces children.
We start with this first generation ofHomo sapiensand apply this operation to obtain their
children. Then we apply the marriage operation again and again, until we reach today’s
people. Now we see whether our author has been generated.
Similar generation problems are for example

• Doesb belong to the closure of{a1, . . . , an} under pairwise addition? This is equivalent
to a modification of the sum-of-subset problem where factors other than 0 and 1 are
allowed. It can be shown that this is NP-complete[13].

• Does the empty clause belong to the closure of the clauses{�1, . . . ,�n} under the rule
of the resolution proof system. This problem is coNP-complete.

• Does a given element of a monoid belong to the submonoid that is generated by a
given set?

The complexity of generation problems has been investigated earlier, especially for groups.
Generation problems for matrix groups[1,3], for finite groups, where the group operation
is given by a multiplication table [4], and for permutation groups [2,10,12] have been
examined.
In this paper, we investigate sets that are generated by arbitrary computable binary oper-

ations. For a fixed such operation we study the complexity of the question:
Does a given string b belong to the set that is generated from strings{a1, . . . , an}?
To make this precise, let� = {0,1} be the alphabet and letf be a computable binary

operation on�∗, i.e.,f : �∗ ×�∗ → �∗. ForB ⊆ �∗, let [B]f be thef-closure ofB, i.e., the
smallest set that containsB and that is closed underf. For fixedf we define the generation
problem.

Generation problemGEN(f )
INPUT: a1, . . . , an, b ∈ �∗
QUESTION: Is b in [{a1, . . . , an}]f ?

Equivalently we can use this definition in the context of natural numbers, since these can be
identified in the standard way with�∗. For convenience we write operations like addition
in infix form.
In Section 3, we observe that generation problems for computable operations are recur-

sively enumerable, and there exist associative, commutative, polynomial-time computable

1Regardless of the different ages of the authors.



262 E. Böhler et al. / Theoretical Computer Science 345 (2005) 260–295

operations whose generation problems are many-one complete for recursively enumer-
able sets. There remain undecidable problems even if we further restrict the operation’s
resources like time and space. However, we achieve decidability when we demand the
operation to be length-monotonic which means that in the generation tree of somex, the
lengths of all intermediate results are bounded by the length ofx. If the operations are
length-monotonic and polynomial-time computable, all generation problems are solvable
in exponential time and there are also such operations for which the generation prob-
lem is hard for EXPTIME. We study the complexity of various restrictions of these op-
erations. If additionally the operation is associative, then the corresponding generation
problem belongs to PSPACE, and is even PSPACE-complete for suitable operations. If
we further restrict the operations to be commutative, then we obtain generation prob-
lems that belong to NP, and some of them are even NP-complete (e.g., the usual integer
addition).
The most interesting operations we consider in this paper are bivariate polynomials with

positive coefficients which are studied in Section4. Such polynomials are length-monotonic
and hence, the corresponding generation problems are decidable. However, in general these
polynomials are neither associative nor commutative, and hence the generation problems for
such polynomials turn out to be nontrivial and exciting. For example, does GEN(x2 + 2y)
or GEN(x2y3) belong to NP? If so, are they NP-complete?
There are two main results in this section: for one, we show that ifp is not of the form

q(x) + ky whereq is nonlinear andk�2, then the generation problem belongs to NP.
Besides that, we present a proof of NP-completeness for polynomials of the formxaybc

wherea, b, c�1. Proving hardness is difficult already for such simple polynomials, since
we have to cope with the various different trees that generate one number. As a tool to
control the shape of generation trees we introduce(a, b)-weighted treeswhich are special
trees with additional information. In the proof we force the generation trees into the shape
of so-called complete(a, b)-weighted trees.
We do not know whether the generation problem belongs to NP, if the generating

polynomial is of the formq(x) + ky whereq is nonlinear andk�2. In this regard, as
an upper bound we can easily show that all bivariate polynomials with positive coef-
ficients have generation problems in NTIME-SPACE(2log

2 n, n logn). Our discussion in
Section 5 suggests that this class appears to be a class not far from NP. As a special
case of these polynomials, we considerp(x, y) = xc + ky wherec, k�1. The main
result of Section 5 shows that GEN(p) is NP-hard. Here the operationxc brings the
main difficulty for the proof. We have to find a way to encode information to num-
bers such that this information is not destroyed by taking the numbers to a high power.
This is not easy to solve, since already squaring a number heavily changes its (binary)
representation. There even exist sequential pseudo-random generators that make use of
this: the von-Neumann generator computes the next random number by taking the mid-
dle bits of the squared previous number. von-Neumann conjectured that this generator is
hard to break. We control this scrambling of bits by analyzing generalized sum-of-subset
problems

SOSc
df= {

(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n} (∑i ∈ I w
c
i = z

)}
.
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Weshow that for allc�1, SOSc is NP-complete and then reduce these problems toGEN(p).
Although all SOSc are just auxiliary problems in our proof, we feel that this new NP-
completeness result is interesting in its own right.
Finally, in Section6 we summarize our results and give a table that shows a convenient

overview of the upper and lower bounds of generation problems.

2. Preliminaries

Let N denote the natural numbers including 0. Fora�0 let bin(a) bea’s binary rep-
resentation (without leading zeros, ifa > 0), and denote the length of bin(a) by |a|. We
denote the number of elements in a setA with both, #A and|A|. For convenience we use
the operation mod in two ways: ina ≡ b (modm) (or a ≡ b(m) for short) it is used in the
usual way, while the expression(nmodm) denotes the remainder ofn divided bym.
We work with pairs(A,B) of disjoint languages (where for exampleA ∈ NP and

B ∈ coNP). Say that pair(A,B) reduces to pair(C,D), ((A,B)�pp
m (C,D)), if there exist

a polynomial-time computable functionf such that for allx,

x ∈A ⇒ f (x)∈C,

x ∈B ⇒ f (x)∈D.

Wewill writeA�pp
m (C,D) short for(A,A)�pp

m (C,D), and(A,B)�pp
mC short for(A,B)

�pp
m (C,C).
A finite tree is calledbinary tree, if everynode is either a leaf or hasexactly twosuccessors.

Let L(T ) be the set of leaves, rt(T ) be the root and Nd(T ) be the set of nodes of a treeT.We
characterize a path from the root to a node by a wordw ∈ {l, r}∗, wherel defines a left turn
andr defines a right turn. Let path(T )

df= {w : w is a path ofT }. Everyv ∈ path(T ) that
does not lead to a leaf node is calledinitial pathof T. In contrast, every path in path(T ) that
is not an initial path is afull path. Let ipath(T ) be the set of initial paths ofT and fpath(T )
be the set of full paths inT. Forq ∈ path(T ), let l(q) andr(q) be the number of left steps
and right steps, resp., inq. For a nodexofTwith pathv, let l(x)

df= l(v) (resp.,r(x)
df= r(v)).

The process of generating elements by an iterated application of a binary operation can
be visualized by ageneration tree. LetB ⊆ �∗ be the base set. Iff is a binary operation,
then a binary tree is calledf-generation tree from B for zif
• every leaf has a value fromB,
• every node that has successors with valuesx andy has valuef (x, y),
• the root of the tree has valuez.
Note thatz ∈ [B]f , if and only if there exists anf-generation tree fromB for z.

3. Generation problems for general operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable
operations. All of the corresponding generation problems are recursively enumerable and
we show that there are polynomial-time computable operations whose generation prob-
lems are undecidable. There remain undecidable problems even if we further restrict the
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operation’s resources like time and space. The reason is that even with restricted resources
it is possible to let a generation problem simulate grammatical derivation trees of arbitrary
formal languages. We achieve decidability when we demand the operation to be length-
monotonic. Hence, we study the complexity of various restrictions of length-monotonic
operations.

Theorem 1. GEN(◦) is recursively enumerable for every computable operation◦ : �∗ ×
�∗ → �∗.

Proof. Consider an enumeration of all◦-formulae, i.e., formulae built up fromwords in�∗
using the operation◦. For a given such formulaF(x1, . . . , xn) with x1, . . . , xn ∈ �∗, we
compute its valuezand output(x1, . . . , xn, z). This algorithm enumerates GEN(◦). �

We observe that polynomial-time computable operations are still too difficult for a
complexity-oriented examination of generation problems. For example, with such an oper-
ation we can simulate single steps of arbitrary Turing machines.

Theorem 2. There is an associative, commutative, polynomial-time computable operation
◦ : �∗ × �∗ → �∗ such thatGEN(◦) is m-complete for recursively enumerable sets.

Proof. Let� : �∗ → �∗ bea function that is recursive such thatD�
df= {x : �(x) is defined}

is the halting problem, and letM be a machine that computes�. We define◦ as follows: for
n,m1,m2�0 let

0n+11m1 ◦ 0n+11m2 df=
{
0n+11m1+m2 if M onn still runs afterm1 + m2 steps,
1 otherwise

and for all otherx, y ∈ �∗ let x ◦ y
df=1.

Observe, that◦ is commutative and◦ ∈ FP. For associativity letx, y, z ∈ �∗. In case that
there aren,m1,m2,m3�0 such thatx = 0n+11m1, y = 0n+11m2, z = 0n+11m3 andM on
ndoes not stop withinm1+m2+m3 we obtainx ◦ (y ◦z) = (x ◦y)◦z = 0n+11m1+m2+m3.
In all other cases we obtainx ◦ (y ◦ z) = (x ◦ y) ◦ z = 1.
Now, ifM onnstopswithinmsteps, then[{0n+111}]◦={0n+111,0n+112, . . . ,0n+11m−1,

1}. If M onn does not stop, then[{0n+111}]◦ = {0n+111,0n+112, . . .}. Hence,
n∈D� ⇔ M onn stops ⇔ 1∈ [{0n+111}]◦

⇔ (0n+11,1) ∈ GEN(◦). �

3.1. Length-monotonic polynomial-time operations

We have seen that in order to get decidable generation problems we have to restrict the
class of operations. Therefore, we demand that in the generation tree of somex, the lengths
of all intermediate results are bounded by|x|, the length of bin(x). This is equivalent to
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say that we restrict to operations◦ that satisfy|x ◦ y|� max(|x|, |y|). Call such opera-
tions length-monotonic. If |x ◦ y| = max(|x|, |y|), then the operation is calledminimal
length-monotonic. Generation trees of such operations can be exhaustively searched by an
alternating polynomial-space machine.

Theorem 3. GEN(◦) ∈ EXPTIME for every length-monotonic, polynomial-space com-
putable operation◦ : �∗ × �∗ → �∗.

Proof. Let◦ be a length-monotonic, polynomial-space computable operation. GEN(◦) can
be decided by the following alternating algorithm that uses at most polynomial space:

function GEN(x1, . . .,xm,z)
repeat

if z ∈ {x1, . . .,xm } then accept;
if |z| = 0 then reject;
existentially choose z1, z2 such that (z1 ◦z2) = z;
universally choose z from {z1,z2 }

forever

Since◦ is computable in polynomial space it is obvious that the above algorithm is an
alternatingpolynomial-spacealgorithm.Chandraetal.[7] proved that thesecanbesimulated
in deterministic exponential time.�

This exponential-time upper bound for length-monotonic, polynomial-space computable
operations is tight, even for polynomial-time computable operations. To see this we start
with a technical lemma which simplifies the argumentation. It shows that for certain setsA,
we can translate operations∗ : A×A → A to operations◦ : �∗ × �∗ → �∗, such that the
complexity of the generation problem and other properties are preserved. This is done by
an appropriate encoding of elements fromA.

Lemma 4. Let A1, . . . , Ak+l be finite sets, A
df=A∗

1×· · ·×A∗
k ×Ak+1×· · ·×Ak+l , and

let ∗ : A × A → A be a polynomial-time computable operation. Then there exists a
polynomial-time computable operation◦ : �∗ × �∗ → �∗ such that:
1. GEN(∗) � log

m GEN(◦).
2. If ∗ is commutative then◦ is commutative.
3. If ∗ is associative then◦ is associative.
4. If ∗ is minimal length-monotonic then◦ is minimal length-monotonic.

Proof. Let m�2 be such that|Ai |�2m for i = 1,2, . . . , k + l. Let hi : A∗
i → (�m)∗

be a continuation of a block encoding with block lengthm for i = 1,2, . . . , k + l. Let

d : �∗ → �∗ be a continuation of the homomorphism defined byd(0)
df=00 andd(1) df=11

on all binary words. Let code: A → �∗ be an encoding given by

code(x1, x2, . . . xk+l )
df= d(h1(x1))01d(h2(x2))01. . .01d(hk+l (xk+l )).
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Note that|code(u)| = 2m|u| + 2(k + l − 1) and that code is a logspace function. For
w1, w2 ∈ �∗, ◦ can be defined as

w1 ◦ w2
df=
{
code(u1 ∗ u2) if w1 = code(u1) andw2 = code(u2),
0max(|w1|,|w2|) otherwise.

Certainly, since∗ is computable in polynomial time, so is◦. Obviously, if∗ is commutative
then so is◦, and if∗ is associative then so is◦. Now let∗ be minimal length-monotonic.
If w1 = code(u1), w2 = code(u2), andu1 ∗ u2 = v then we conclude:

|w1 ◦ w2| = |code(u1 ∗ u2)| = |code(v)| = 2m|v| + 2(k + l − 1)
= 2m·max(|u1|, |u2|) + 2(k + l − 1)
= max(2m|u1| + 2(k + l − 1),2m|u2| + 2(k + l − 1))
= max(|code(u1)|, |code(u2)|) = max(|w1|, |w2|).

Otherwise,|w1 ◦ w2| = |0max(|w1|,|w2|)| = max(|w1|, |w2|). Hence,◦ is minimal length-
monotonic.
Finally, by definition of◦, v ∈ [{u1, . . . , um}]∗ if and only if code(v) ∈ [{code(u1), . . . ,

code(um)}]◦. This completes the proof.�

Theorem 5. There is a commutative, minimal length-monotonic, polynomial-time com-
putable operation◦ : �∗ × �∗ → �∗, such thatGEN(◦) is � log

m -complete forEXPTIME.

Proof. We follow an idea of Cook[8] to simulate deterministic exponential-time computa-
tions.Without loss of generality, a deterministic exponential-time one-tape Turing machine
M deciding a setA ⊆ �∗ can be normalized in such a way that on inputx = a1a2 . . . an it
makes 2p(|x|) sweeps, wherep is a suitable polynomial. For 0�2i < 2p(|x|), the(2i + 1)st
sweep is a right move from tape cell 1 (with the first symbol ofx) to tape celli + 2 within
i +1 steps, and the(2i +2)nd sweep is a left move from tape celli +2 to tape cell 1 within
i + 1 steps. Each of the turning points belongs to two sweeps.

sweep 2i -1
sweep 2i
sweep 2i+1
sweep 2i+2

sweep6

sweep 5
sweep 4
sweep 3
sweep 2
sweep 1

Turing tape
1 i i+2i+12 3 4
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Furthermore, letM have the tape alphabet�, the set of statesS, the initial states0, and the
accepting states1. In the case of acceptance the tape ofM is empty. IfM is in states and
readsa, then the next state is�(s, a), and the symbol printed is�(s, a).
We say that the quintuple(x, i, j, s, a) is correct if during theith sweep on inputx the

machineM prints the symbola in tape cellj and leaves that cell with states. One can
compute a correct(x, i, j, s, a) by knowing only two other correct quintuples, namely the
correct(x, i−1, j, s′, a′) and the correct(x, i, k, s′′, a′′)wherek ∈ {j −1, j +1}. The idea
of our operation is as follows: multiply(x, i − 1, j, s′, a′) with (x, i, k, s′′, a′′) and obtain
(x, i, j, s, a). In an accepting computation ofM onx (and only in this case) one generates
finally the correct(x,2p(|x|),2, s1,�).

To make this precise, letaj
df= � for all j > n. Furthermore we assume that, in a quin-

tuple(x, i, j, s, a) wherei, j ∈ {0,1, . . . ,2p(|x|)}, the numbersi andj are given in binary
presentation of length exactlyp(|x|) + 1. Now define the operation∗ as follows:
Right sweep, for 1�2i < 2p(|x|) andj = 1,2, . . . , i:

(x,2i, j + 1, s, a) ∗ (x,2i + 1, j, s′, b) df= (x,2i + 1, j + 1, �(s′, a), �(s′, a)).

Left sweep, for 1�2i + 1< 2p(|x|) andj = 1,2, . . . , i + 1:
(x,2i + 1, j, s, a) ∗ (x,2i + 2, j + 1, s′, b) df= (x,2i + 2, j, �(s′, a), �(s′, a)).

New tape cell right, for 1�2i + 1< 2p(|x|):
(x,2i + 1, i + 1, s, a) ∗ (x,0,0, s0,�)
df= (x,2i + 1, i + 2, �(s, ai+2), �(s, ai+2)).

Turning point left, for 1�2i < 2p(|x|):

(x,2i,1, s, a) ∗ (x,0,0, s0,�)
df= (x,2i + 1,1, s, a).

Turning point right, for 1�2i + 1< 2p(|x|):

(x,2i + 1, i + 2, s, a) ∗ (x,0,0, s0,�)
df= (x,2i + 2, i + 2, s, a).

If u ∗ v is defined in this way thenv ∗ u is defined in the same way. For remaining products
not yet defined, we define

(x, u, v, s, a) ∗ (x′, u′, v′, s′, a′) df= (0max(|x|+|u|+|v|,|x′|+|u′|+|v′|), �, �, s0,�).

Obviously,∗ is polynomial-time computable, minimal length-monotonic and commutative.
Startingwith(x,1,1, �(s0, a1), �(s0, a1))and(x,0,0, s0,�)exactly the correct quintuples
of the form (x, . . .) together with(0|x|+2p(|x|)+2, �, �, s0,�) and (x,0,0, s0,�) can be
generated. Hence,M acceptsx if and only if

((x,1,1, �(s0, a1), �(s0, a1)), (x,0,0, s0,�), (x,2p(|x|),2, s1,�)) ∈ GEN(∗),
consequentlyA � log

m GEN(∗). By Lemma4, we obtain a polynomial-time computable,
minimal length-monotonic and commutative operation◦ : �∗ × �∗ → �∗ such that
A � log

m GEN(◦). �
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3.2. Length-monotonic-associative polynomial-time operations

We have seen that in general, commutativity does not lower the complexity of the gener-
ation problem for length-monotonic, polynomial-time computable operations. In this sub-
section we show that associativity does. Here, we exploit that for associative operations
◦ we do not need to know the exact structure of an◦-generation tree forz: associativity
makes all generation trees with the same sequence of leaves equivalent with respect to the
generated element. We show that PSPACE is upper bound for all generation problems with
associative, polynomial-space computable operations and that it is lower bound even for
associative, polynomial-time computable operations.

Theorem 6. GEN(◦) ∈ PSPACEif ◦ : �∗ × �∗ → �∗ is length-monotonic, associative,
and polynomial-space computable.

Proof. The following algorithm decides GEN(◦) in polynomial space:
function GEN(z,x1, . . .,xn);

choose an i ∈ {1, . . .,n} nondeterministically;
z1 := xi;
while (z1 �= z) and (|z1| � |z|) do begin

choose an i ∈ {1, . . .,n} nondeterministically;
z1 := z1 ◦ xi

end;
if (z = z1) then accept else reject �

The polynomial-space bound is tight even for polynomial-time operations◦.

Theorem 7. There is a minimal length-monotonic and associative polynomial-time com-
putable operation◦ : �∗ × �∗ → �∗, such thatGEN(◦) is � log

m -complete forPSPACE.

Proof. At the beginning we want to remark, that much of the complexity of the following
construction stems from the possible associativity of the operation. LetL ⊆ �∗ be a
set that is� log

m -complete for PSPACE such that� /∈ L. By Lemma4, it suffices to prove
existenceof a finite alphabet�andaminimal length-monotonic andassociative polynomial-
time computable operation∗ : (�∗ ×�∗) × (�∗ ×�∗) → (�∗ ×�∗) such thatL � log

m

GEN(∗).
SinceL ∈ PSPACE, it follows [6] that there exists a polynomial-time computable func-

tion f : �∗ × N → A5 and a polynomialp such that for allx ∈ �∗,

x ∈L ↔ f (x,0) · f (x,1) · · · · · f (x,2p(|x|) − 2) = a0, (1)

where(A5, ·) is the group of even permutations on five elements with identity permutation
a0. Forx ∈ �∗, letKx

df=p(|x|) andMx
df=4Kx + 3. Fori = 0,1, . . . ,2Kx − 1, let b(i) be

the lengthKx binary representation ofi (xwill always be clear from the context).
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We consider the set

{(x,b(i) a b(j)) : 0� i < j < 2Kx , a ∈ A5} ⊆ {x} × (�Kx ·A5·�Kx )

with a multiplication∗ whose essential idea is given by the following equation:
(x,b(i) a b(j)) ∗ (x,b(j+1) b b(m)) = (x,b(i) a ·f (x, j)·b b(m)).

However, we need∗ to be defined in a more general way; the exact definition follows. From
Eq. (1) we obtain

x ∈L ↔ (x,0Kxa01
Kx ) ∈ [{(x,b(i)f (x, i)b(i+1)) : 0� i < 2Kx−1}]∗.

Since{(x,b(i)f (x, i)b(i+1)) : i < 2Kx−1} has exponentially many elements (in the
length ofx), this cannot be used as reduction function forL � log

m GEN(∗). So we have to
generate this set from a few basic pairs. For this we modify∗ as follows. We use a new
separation symbol# and, to achieve minimal length-monotonicity, a newpadding symbol

2. Foru ∈ {0,1,#}∗, let 〈u〉x df= u2Mx−|u| and forw ∈ {0,1,2,#}∗, letw ∈ {0,1,#}∗ be
the wordw without symbols 2. Define the following sets of words:

• Ax
df= ��Kx ,

• Bx
df=Ax#Ax ,

• Cx
df=Ax#�Kx#Ax ,

• Dx
df= {u#b(i1)c1b(i2)c2 . . . cs−1b(is)#u′ : s�2, u, u′ ∈Ax,0� i1 < · · · < is <

2Kx , c1, c2, . . . , cs−1∈A5 ∪ {#}, and(cj = #⇒ ij + 1= ij+1) for j = 1, . . . , s − 1},
• Gx

df=Ax ∪ Bx ∪ Cx ∪ Dx .

Let�
df= {0,1,2,#} ∪ A5 and definegx : ({0,1,#} ∪ A5)

∗ → ({0,1,#} ∪ A5)
∗ as follows:

1. gx(v)
df= v if v ∈Ax ∪ Bx ∪ Cx .

2. If v = u#b(i1)c1b(i2)c2 · · · cs−1b(is)#u′ ∈Dx then

gx(v)
df= u#b(i1)ab(is)#u

′,

wherea
df= b1·b2·. . .·bs−1, such that,bj = cj if cj ∈A5 andbj = f (x, ij ) otherwise.

3. gx(v)
df=### in all other cases, i.e., ifv /∈ Gx .

Finally, define∗ on�∗ × �∗ by

(x, v) ∗ (y,w)
df=


(�,2max{|x|+|v|,|y|+|w|}) if x �= y or x = � or y = � or one of

v,w is not in(Gx ∪ {###})∩ �Mx ,

(x, 〈gx(vw)〉x) otherwise.

Observe that∗ is minimal length monotonic, which is basically ensured by the padding
function〈·〉x .
We show the associativity for∗. For that, let firstr df= (x, r ′), s df= (y, s′), t df= (z, t ′)∈ �∗ ×

�∗ such that|{x, y, z}| > 1. Thenr ∗ (s ∗ t) = (�,2max{|x|+|r ′|,|y|+|s′|,|z|+|t ′|}) = (r ∗ s) ∗ t .
We obtain the same result, ifx = y = z and one ofr ′, s′, t ′ is not from(Gx ∪{###})∩�Mx .
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The remaining cases are such thatx = y = z andr ′, s′, t ′ ∈ (Gx ∪ {###}) ∩ �Mx . Here
it suffices to show

r ∗ (s ∗ t) = (x, 〈gx(r ′s′t ′)〉x). (2)

If one ofr ′, s′, t ′ is equal to ###, this is obvious.The sameholds in the casewheres′t ′ ∈Ax∪
Bx ∪ Cx . If s′t ′ = ###, thenr ∗ (s ∗ t) = (x, 〈gx(r ′s′t ′)〉x)=(x, 〈###〉x) df= � and we
are done.
If s′t ′ = u#b(i1)c1b(i2)c2 · · · cs−1b(is)#u′ ∈Dx . Then s ∗ t = (x, d) where d =

〈u#b(i1)ab(is)#u′〉x as in the second case of the definition ofgx . Assumer ′ = v ∈Ax

or r ′ = w#v ∈Bx ∪Cx ∪Dx . If |vu| > K thenr ∗ (s ∗ t) = � = 〈gx(r ′s′t ′)〉x . If |vu| < K

and r ′ /∈ Ax then againr ∗ (s ∗ t) = � = 〈gx(r ′s′t ′)〉x . If |vu|�Kx and r ′ ∈Ax we
haver ∗ (s ∗ t) = (x, 〈vu#b(i1)ab(is)#u′〉x) = (x, 〈gx(r ′s′t ′)〉x). The remaining cases
are wherer ′ = w#v ∈Bx ∪ Cx ∪ Dx and |vu| = Kx . Sinceu#b(i1) is a prefix of both
s′t ′ and gx(s′t ′), we haver ′gx(s′t ′)∈Dx if and only if r ′s′t ′ ∈Dx . If r ′s′t ′ /∈Dx , then
r ∗ (s ∗ t) = � = 〈g(r ′s′t ′)〉x , so letr ′s′t ′ ∈Dx . In this case the equivalence (2) can be
easily seen for all cases ofr ′.
The remaining case is wheres′t ′ /∈Gx ∪ {###}; we show thatr ′s′t ′ /∈Gx ∪ {###}.

Obviously,r ′s′t ′ �= ###.Suppose thatr ′s′t ′ ∈Gx . If r ′s′t ′ ∈Ax , thens′t ′ ∈Ax . If r ′s′t ′ ∈Bx ,
thens′t ′ ∈Ax∪Bx . If r ′s′t ′ ∈Cx , thens′t ′ ∈Ax∪Bx∪Cx . Thereforer ′s′t ′ = u#b(i1)c1b(i2)
c2 · · · cs−1b(is)#u′ ∈Dx . Sinces′t ′ /∈Gx andr ′ ∈Gx , there is ak such thatr ′ = u#b(i1)c1
b(i2)c2 . . . ck−1w, s′t ′ = w′ckb(ik+1) . . . cs−1b(is)#u′, whereww′ = b(ik), ck−1 = #,
andck ∈A5. Hence eithers′ or t ′ are not inGx . So if s′t ′ /∈ Gx , thenr ∗ (s ∗ t) = � =
(x, 〈gx(r ′s′t ′)〉x). This finishes the proof of associativity for∗.
Observe that(x, 〈u#b(i)ab(j)#v〉) is in [{(x, 〈0〉), (x, 〈1〉), (x, 〈#〉)}]∗ if and only if

i < j andf (x, i) · f (x, i + 1) · · · · · f (x, j − 1) = a. Consequently, we obtain

x ∈L ↔ (x, 〈#0Ka01K#〉) ∈ [{(x, 〈0〉), (x, 〈1〉), (x, 〈#〉)}]∗. �

Now let us additionally assume◦ to be commutative. Again, if we want to know whether
or not z ∈ [{x1, . . . , xn}]◦, the associativity enables us to ignore the◦-generation tree
and instead search for a word over{x1, . . . , xn}. Together with commutativity, we just
have to guess exponentsk1, . . . , kn and test whetherx

k1
1 ◦ · · · ◦ x

kn
n = z. If the op-

eration is computable in polynomial-time, then the exponentiations are computable in
polynomial-time, too (by squaring and multiplying), which yields the following
theorem.

Theorem 8. GEN(◦) ∈ NP for all length-monotonic, associative, and commutative poly-
nomial-time computable operations◦ : �∗ × �∗ → �∗.

Again, this upper bound is tight, i.e., there exist associative, commutative, and length-
monotonic polynomial-time computable operations whose generation problems are NP-
complete. Even the usual addition on natural numbers has this property.
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Theorem 9. GEN(+) is � log
m -complete forNP,where+ is the addition onN.

Proof. It is known that GEN(+) is NP-complete for the addition on integers[13]. This
proof exclusively uses natural numbers.�

4. Generation problems for polynomials

The previous section gave an overview over the complexity of generation problems
for polynomial-time computable operations. Now we want to have a look at the more
restricted class of generation problems whose operations are polynomials. The Davis–
Putnam–Robinson–Matiyasevich theorem [11] states that every recursively enumerable set
is range of a polynomial with integer coefficients. Based on this, there are such polynomials
where the generation problem is undecidable. To give an idea of this, take a polynomialp
with undecidable positive range and replace every variablex by x21 + x22 + x23 + x24. Take
another polynomialq that is capable to generate all negative numbers and negative numbers
only. Build a new polynomial out ofp andq with an additional variabley such that for
y = 0 the value ofq is calculated, and fory �= 0 the value ofp is calculated. In this way it is
possible to generate all negative numbers which in turn allow the generation of the positive
range ofp. However, to obtain this undecidability result, the polynomials must have nega-
tive coefficients and they usually contain a rather large number of variables. Therefore, we
concentrate on bivariate polynomials with positive coefficients. These are always length-
monotonic and hence, the corresponding generation problem is decidable. We show that
many of them are even in NP and all of them belong to NTIME-SPACE(2log

2 n, n logn). So
far we have no evidence against the conjecture that all these generation problems belong to
NP (see also the discussion in Section 5). However, we cannot prove this.
This section has two main results: first, we show that ifp is not of the formq(x) + ky

whereq is nonlinear andk�2, then the corresponding generation problem belongs to NP.
Second, we prove NP-completeness for polynomials of the formxaybc wherea, b, c�1.

4.1. The main case

Let us start our investigation with univariate polynomialsp, i.e.,p(x, y) = q(x) for a
suitable polynomialq.

Theorem 10. If p is a univariate polynomial, thenGEN(p) is inP.

Proof. If p(x, y) = q(x) = c, then we have[{a1, . . . , an}]p = {a1, . . . , an, c}. If p(x, y)
= q(x) = x + c, then[{a1, . . . , an}]p = {ai + kc : i = 1, . . . , n, k�0}. In all other cases
we haveq(x)�2x or q(x)�x2. It follows thate ∈ [{a1, . . . , an}]p ⇔ e ∈ {pk(ai) : i =
1, . . . , n, k = 0,1, . . . , |bin(e)| + 1} wherep0(x) df= x andpk+1(x)

df=p(pk(x)) for k�0.
So in all cases the membership to[{a1, . . . , an}]p can be easily verified in polynomial

time. �

A univariate polynomialp(x) is linear, if there area, c ∈ N such thatp(x) = ax + c.
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Theorem 11. If p is a bivariate polynomial that is not of the formp(x, y) = kx + q(y) or
p(x, y) = q(x) + ky, where q is nonlinear andk�2, thenGEN(p) ∈ NP.

Proof. We show thatpmust have one of the following properties:
1. p(x, y) = x + q(y) or p(x, y) = q(x) + y for some univariate polynomialq,
2. p(x, y) = ax + by + c for somea, b, c ∈ N such thata, b�2, and
3. p(x, y)�x · y for all x, y.
After this, the proof of the theorem is completed by the following three lemmata.
Assume that the polynomialp has none of the properties (1)–(3). Sincep does not fulfill

(3) there are univariate polynomialsq and r, such thatp(x, y) = q(x) + r(y). Since
x2+ y2�x · y at least one of the polynomialsq andr is linear. Consequently, there exist a
univariate polynomialqandank�0, such thatp(x, y) = kx+q(y)orp(x, y) = q(x)+ky.
Sincep does not fulfill (2), the polynomialq is not linear. Sincep does not fulfill (1), we
obtaink�2. �

Lemma 12. If p(x, y) = x +q(y) for some univariate polynomial q, thenGEN(p) ∈ NP.

Proof. It is sufficient to prove:

[{a1, . . . , ar}]p = {
aj +∑r

i=1 �i · q(ai) : j ∈ {1, . . . , r} and�1, . . . , �r ∈ N
}
.

The inclusion from right to left is obvious. For the other direction, we observe that{a1, . . . ,
ar} is included in the right-hand side (which is obvious) and that the right-hand side is closed
underp. For the latter let�i , 	i ∈ N, let s

df=∑r
i=1 (�i ·q(ai)), and lett df=∑r

i=1 (	i ·q(ai)),
for 1� i�r, andj, k ∈ {1, . . . , r}. Then for somec�0,

p(aj + s, ak + t) = aj + s + q(ak + t)

= aj + s + q(ak) + ct

= aj +
r∑

i=1
((�i + c	i ) · q(ai)) + q(ak). (3)

To see equality (3), observe that by binomial theorem, for alla, b�0,q(a+b) = q(a)+cb

for somec ∈ N. �

Lemma 13. If p(x, y) = ax + by + c for a, b, c ∈ N anda, b�2, thenGEN(p) ∈ NP.

Proof. Let T be ap-generation tree fore. Without loss of generality we can assume that
value 0 occurs only in the leaves of this treeT. Sincea, b�2, the depth ofT is bounded by
|bin(e)| + 1.
Let T be an arbitrary binary tree whose leaves have values from{a1, . . . , an}. For a full

pathq in T, choosei(q) ∈ {1, . . . , n} such that the leaf ofq has valueai(q). We obtain that
e ∈ [{a1, . . . , an}]p if and only if there exists a binary treeTwhose leaves have values from
{a1, . . . , an} such that

e = ∑
q ∈ fpath(T )

ai(q) · al(q) · br(q) + ∑
q ∈ ipath(T )

c · al(q) · br(q).
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For a binary treeT of depth bounded byd and fori, j ∈ {0, . . . , d} we define the charac-
teristics

sTi,j
df=#{q : q ∈ ipath(T ), l(q) = i andr(q) = j}

and

rTi,j
df=#{q : q ∈ fpath(T ), l(q) = i andr(q) = j}.

Note that therTi,j can be computed from thes
T
i,j by

• rT0,0 = 1− sT0,0,

• rT0,j+1 = sT0,j − sT0,j+1 for j ∈ {0, . . . , d},
• rTi+1,0 = sTi,0 − sTi+1,0 for i ∈ {0, . . . , d}
and

• rTi+1,j+1 = sTi,j+1 + sTi+1,j − sTi+1,j+1 for i, j ∈ {0, . . . , d}.

(∗)

Using these characteristics we obtain thate ∈ [{a1, . . . , an}]p if and only if there exist a
binary treeTof depthd� |bin(e)|+1 and a set of natural numbers{ri,j,k : i, j ∈ {0, . . . , d},
k ∈ {1, . . . , n}} such that∑n

k=1 ri,j,k = rTi,j and

e =
d∑

i=0

d∑
j=0

(
n∑

k=1
ri,j,k · ak

)
· ai · bj +

d∑
i=0

d∑
j=0

sti,j · c · ai · bj .

Observe that the characteristicssTi,j have the following properties.

• sT0,0�1,
• sT0,j+1�sT0,j for j ∈ {0, . . . , d − 1},
• sTi+1,0�sTi,0 for i ∈ {0, . . . , d − 1},
• sTi+1,j+1�sTi+1,j + sTi,j+1 for i, j ∈ {0, . . . , d − 1}
and

• sTi,d = sTd,j = 0 for i, j ∈ {0, . . . , d}.

(∗∗)

On the other hand, we can prove the following.

Claim. Consider arbitrary natural numberssi,j wherei, j ∈ {0, . . . , d}. If thesesi,j fulfill
(∗∗), then there exists a binary tree T such thatsTi,j = si,j for i, j ∈ {0, . . . , d}.

Proof of the claim. By induction onw(M)
df=∑d

i=0
∑d

j=0 si,j .
If w(M) = 0, then the tree with only one node fulfills the statement.
If w(M) > 0, then we haves0,0 > 0. Sincesi,d = sd,j = 0 for i, j ∈ {0, . . . , d} there

exists a pair(i, j) ∈ {0, . . . , d}2, such thatsi,j > 0 andsi+1,j = si,j+1 = 0. Let(i0, j0) be
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such a pair. DefineM ′ df= {s′
i,j : i, j ∈ {0, . . . , d}}, such thats′

i0,j0

df= si0,j0−1 ands′
i,j = si,j

for all other(i, j) ∈ {0, . . . , d}2.Obviously,M ′ fulfills (∗∗) andw(M ′) = w(M)−1.By the
induction hypothesis, there exists a binary treeT ′, such thatsT ′

i,j = s′
i,j for i, j ∈ {0, . . . , d}.

To know that there exists a full pathq in T ′, such thatl(q) = i0 andr(q) = j0 we have to
proverT

′
i0,j0

> 0. We do this by considering four cases.

If i0 = j0 = 0 thensT
′

0,0 = s′
0,0 < s0,0�1 and hencesT

′
0,0 = 0.

If i0 = 0 andj0 > 0 thensT
′

0,j0
= s′

0,j0
< s0,j0�s0,j0−1 = s′

0,j0−1 = sT
′

0,j0−1.
If i0 > 0 andj0 = 0 thensT

′
i0,0

= s′
i0,0

< si0,0�si0−1,0 = s′
i0−1,0 = sT

′
i0−1,0.

If i0 > 0 andj0 > 0 thensT
′

i0,j0
= s′

i0,j0
< si0,j0�si0−1,j0+si0,j0−1 = s′

i0−1,j0+s′
i0,j0−1 =

sT
′

i0−1,j0+sT
′

i0,j0−1.
Now choose a full pathq in T ′, such thatl(q) = i0 and r(q) = j0 and attach two

successors to it. For the binary treeT defined in such a way, we havesTi0,j0 = sT
′

i0,j0
+ 1 =

s′
i0,j0

+ 1 = si0,j0 and s
T
i,j = sT

′
i,j = s′

i,j = si,j for all other (i, j) ∈ {0, . . . , d}2. This
completes the proof of the claim.�

Consequently, we obtain thate ∈ [{a1, . . . , an}]p if and only if for d df= |bin(e)| + 1 and
i, j ∈ {0, . . . , d} there exist natural numberssi,j and there exists a set of natural numbers
{ri,j,k : i, j ∈ {0, . . . , d}, k ∈ {1, . . . , n}}, such that
1. thesi,j fulfill ( ∗∗),
2.
∑n

k=1 ri,j,k = ri,j for i, j ∈ {0, . . . , d} (where theri,j are computed from thesi,j as in
(∗)), and

3. e = ∑d
i=0

∑d
j=0

(∑n
k=1 ri,j,k · ak

) · ai · bj +∑d
i=0

∑d
j=0 si,j · c · ai · bj .

This shows GEN(p) ∈ NP. �

Lemma 14. If the polynomial p fulfillsp(x, y)�x · y for all x, y, thenGEN(p)∈NP.

Proof. Let A ⊆ N be finite. LetA′ df=A ∪ {p(c, c) : c ∈ {0} ∩ A}. Obviously, we have
[A]p = [A′]p and for everyz ∈ [A′]p there is ap-generation tree that has no nodev that
has only child nodes with value 0. If for everyx ∈ N (resp.,y ∈ N),
• p(x,0)�2x (resp.,p(0, y)�2y) or
• p(x,0)�x2 (resp.,p(0, y)�y2) or
• p(x,1)�2x (resp.,p(1, y)�2y) or
• p(x,1)�x2 (resp.,p(1, y)�y2),
then there is ap-generation tree forz fromA′ such that there are at most|z| nodes with left
(resp., right) child that has a value�2. (∗)
Let D be ap-generation tree fromA′ for z. We can assume that there are at most|z|

leavesv in D that have a value greater than 1 and there can at most be|z| nodes having
two children with values greater than 1. Furthermore, we can assume that there are at most
|z| nodesv in D, such that both children ofv are leaves with values from{0,1}, since the
value of theses nodes would be greater or equal to 2 (if the value of such a node were 0 or
1, the node would not be necessary). That means that ifD has exponentially many nodes,
then nearly every node (except polynomially many ones) (∗∗)
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• has one child with value�1 and another one that is no leaf, or
• is a leaf with value�1, and its parent’s other child is no leaf.
We consider four cases
• Let there bex1, . . . , x8 ∈ N such that (p(x1,0)�2x1 andp(x2,0)� x22 andp(x3,1)

�2x3 andp(x4,1)� x24) and (p(0, x5)�2x5 andp(0, x6)� x26 andp(1, x7)�2x7 and
p(1, x8)� x28). Thenp(x, y) = xy + c, wherec ∈ N. Note thatp(x,0) = p(0, y) = c.
Sincec∈A′ if 0 ∈A′, we can assume that there are no leaves with value 0. Furthermore,
q(x)

df= x + c = p(1, x) = p(x,1) for all x ∈ N. Note that

q(q(. . . q︸ ︷︷ ︸
k

(x) . . .)) = x + kc,

sok applications ofq can be guessed in one step. Using property (∗∗), we can guess a
polynomially sizedgeneration tree,whereeachnodeeither representsanormal generation
step ork�z steps of the above form.

• Let there bex1, . . . , x4 ∈ N, such that for allx ∈ Nwehave (p(x,0)�2x orp(x,0)�x2

orp(x,1)�2x orp(x,1)�x2) and (p(0, x1)�2x1 andp(0, x2)� x22 andp(1, x3)�2x3
andp(1, x4)� x24). Thenp(x, y) = xky + ∑n

i=1 bixi + d wherek�1, n, bi, d ∈ N

(1� i�n). Because of (∗) there can only be polynomially many nodes inD with a left
child that has a value greater than 1. So if there are exponentially many nodes inD, then
all of them except polynomially many ones have a left child with value�1 and a right
child that is not a leaf. Observe thatp(0, y) = d for all y, sowe can assume that there is no
left child labeled with 0 since if 0∈A′, so isd. Furthermore,p(1, y) = y +∑n

i=1 bi + d

and

p(1, p(1, . . . p︸ ︷︷ ︸
k

(1, y) . . .)) = y + k(
∑n

i=1 bi + d).

Therefore we can guess a polynomial-sized generation tree forzwhere each node is either
a normal generation step ork�z subsumed steps of the formp(1, y).

• Let there bex1, . . . , x4 ∈ N, such that for allx ∈ N we have (p(x1,0)�2x1 and
p(x2,0)� x22 andp(x3,1)�2x3 andp(x4,1)� x2) and (p(0, x)�2x or p(0, x)�x2

or p(1, x)�2x or p(1, x)�x2). Here a symmetrical argumentation holds.
• Let for all x ∈ N hold (p(x,0)�2x or p(x,0)�x2 or p(x,1)�2x or p(x,1)�x2)
and (p(0, x)�2x or p(0, x)�x2 or p(1, x)�2x or p(1, x)�x2). By (∗) there is a
polynomial sizedp-generation tree fromA′ for b that can be guessed and checked
in P. �

4.2. GEN(xaybc) isNP-complete

By Theorem11, if we consider a polynomial of the form
∑

a,b x
aybcab wherea, b�1,

then the generation problembelongs toNP.Here, we pick out those polynomials that consist
of only one term of the sum. For this special case we can show that GEN(xaybc) is NP-
complete ifc�1. For a = 1 or b = 1 this is easy to prove with a reduction from the
following problem:
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Definition 15.

1-IN-3-SAT
df= {H : H is a 3-CNF formula having an assignment

that satisfies exactly one literal in each clause}.

This problem is NP-complete.

Proposition 16. For a, c�1, GEN(xayc) is �p
m-complete forNP.

Proof. We reduce 1-IN-3-SAT to GEN(p), wherep(x, y) df= xayc. LetH be a 3-CNF for-
mula with clausesC1, . . . , Cm and variablesx1, . . . , xn. Let p1, p2, . . . be the

prime numbers larger thanc. Definea1
df=pa

m+1
∏

x1∈Cj
pa
j , b1

df=pa
m+1

∏
x1∈Cj

pa
j , for

2� i�n, ai
df=pm+i

∏
xi ∈Cj

pj , bi
df=pm+i

∏
xi ∈Cj

pj , z
df= cn−1 ·∏m+n

i=1 pa
i , andg(H)

df=
(a1, . . . , an, b1, . . . , bn, z). Note thatg is polynomial-time computable.
AssumeH ∈1-IN-3-SAT. Then there is an assignmentI : {x1, . . . , xn} → {0,1} that

satisfies exactly one literal in each clause. Therefore, we obtain
∏m+n

i=1 pa
i · cn−1 by a linear

generation tree that has leaf-valuescn, . . . , c1, whereci = ai if I (xi) = 1 andci = bi
otherwise. Henceg(H) ∈ GEN(p).
Assume thatg(H)∈GEN(p), hencez ∈ [{a1, . . . , an, b1, . . . , bn}]p. Every primepi

occurs exactlya times in the factorization ofz. Therefore, eitherai or bi (and not both)
has to be a leaf-value in the generation tree. Ifa > 1 then additionally the generation tree
has to be linear and the rightmost leaf has valuea1 or b1. If we can build a generation tree
for z, that contains each prime for a variable and each prime for a clause exactlya times,
it is possible to find an assignment, that satisfies exactly one literal in each clause. Hence,
the assignmentI such thatI (xi) = 1 if and only ifai is a leaf-value in the generation tree
satisfiesH in the sense of 1-IN-3-SAT. ThereforeH ∈ 1-IN-3-SAT. �

Now let us consider GEN(xaybc) for a, b > 1. In general, the crucial point in proving
hardness for generation problems is to cope with the various different trees that generate
the same number. In our proofs we force the generation trees to have a specific shape such
that the generation is possible only in a predefined way.
Consider anxaybc-generation tree. Clearly, the generated number is a product that con-

sists of variousmultiplicities ofcand base elements.As a tool to control thesemultiplicities
we introduce(a, b)-weighted trees, where wemark each node as follows. If- is the number
of left turns on the way from the root to a node, andr is the number of respective right turns,
then we mark the node witha- andbr . By controlling the marks of the leaves, we can force
anxaybc-generation tree into the shape of a complete(a, b)-weighted tree.

Definition 17. Let t be a binary tree.T = (t, g) is called(a, b)-weighted tree,a, b > 1, if
g is a marking-functiong : Nd(t) → N, such that
If x = rt(t), theng(x) = 1.
If x ∈Nd(t) has a left and a right successorxl and xr , theng(xl) = a · g(x) and
g(xr) = b · g(x).
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T is called balanced, if maxx∈L(t) g(x)� max(a, b) ·minx∈L(t) g(x).
T is called complete, if maxx∈L(t) g(x) < max(a, b) ·minx∈L(t) g(x).

From this definition it immediately follows that the marks have the desired properties.
We obtain the following connection to GEN(xaybc).

Property 18. Let a, b > 1. If T = (t, g) is an(a, b)-weighted tree, where t is anxaybc-
generation tree with valuesI (v) for all v ∈ L(t), then

I (rt(t)) = ∏
v∈L(t)

I (v)g(v) · ∏
v∈Nd(t)−L(t)

cg(v).

We want to remark that it is possible to define the notion of(a, b)-weighted trees for
a = 1 andb = 1. However, ifa = 1 andb = 1, then complete trees do not exist. In
contrast, for alla, b > 1 complete trees exist. Therefore, we requirea, b > 1.

Proposition 19. Leta, b > 1.For everyn�1 there exists a balanced(a, b)-weighted tree
that has n leaves.

Proof. Forn = 1 take the tree that consists only of the root.
For arbitraryn > 1, letT = (t, g) be a balanced(a, b)-weighted tree withn − 1 leaves.

Let x0 ∈ L(t) be a leaf with minimal weight, i.e.,g(x0) = minx∈L(t) g(x). Define the tree
t ′ by adding int successorsxl andxr to x0, and letg′ : Nd(t ′) → N by g′(x) df= g(x) for all

x ∈ Nd(t), g′(xl)
df= a · g(x0), andg′(xr)

df= b · g(x0). This defines an(a, b)-weighted tree
T ′ df= (t ′, g′) with

maxx∈L(t ′) g′(x) = max(maxx∈L(t) g(x),max(g′(xl), g′(xr)))
= max(maxx∈L(t) g(x),max(a, b) · g(x0))
= max(maxx∈L(t) g(x),max(a, b) ·minx∈L(t) g(x))
= max(a, b) ·minx∈L(t) g(x)
� max(a, b) ·minx∈L(t ′) g′(x). (4)

HenceT ′ is balanced. �

Nowwe show that for eachn�1 there exists a complete(a, b)-weighted tree with nearly
n leaves. Note that such a tree is polynomial-time constructible.

Proposition 20. Leta, b > 1.For everyn�1 there exists a complete(a, b)-weighted tree
with at least n and at most2n − 1 leaves.

Proof. Proposition19 gives a balanced(a, b)-weighted treeT with n leaves. If all leaves
have minimal weight, thenT is complete. Otherwise, there arek, 1�k�n − 1, leaves of
minimal weight. If we add two successors to each of these leaves, then the minimal weight
increases. So in inequality (4),� changes to<. So the resulting treeT ′ is complete.T ′ has
n − k + 2k = n + k leaves wheren�n + k�2n − 1. �
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Now we show that if the generation tree is not the desired complete tree, then at least one
leaf-value is taken to a power that is too large.

Proposition 21. Let a, b > 1. Let T = (t, g) be a complete(a, b)-weighted tree with n
leaves. IfT ′ = (t ′, g′) is an(a, b)-weighted tree with more than n leaves, then there exists
a leafy ∈ L(t ′) such that

g′(y) > maxx∈L(t) g(x).

Proof. Without loss of generality we can assumea�b. Fix a shortest way in terms of
deleting and adding leaves that transformst to t ′. We have to change at least one leaf
x0 ∈ L(t) to an inner node oft ′. Let xl andxr be the successors ofx0. We obtain

g′(xl) = a · g(x0)� max(a, b) ·minx∈L(t) g(x) > maxx∈L(t) g(x).

Hence, everyy ∈ t ′ that is reachable fromxl fulfills

g′(y)�g′(xl) > maxx∈L(t) g(x). �

Next we show that balanced(a, b)-weighted trees have a height which is bounded loga-
rithmically in the number of leaves.

Proposition 22. Let a�b > 1. Let T = (t, g) be a balanced(a, b)-weighted tree with n
leaves. If d denotes the maximal depth of a leaf of t, then

d� logb(a) · (1+ log2(n)).

Proof. Letm df= minv∈L(t) g(v).Hence,tcontainsacompletebinary treeofdepth� loga(m),
hence loga(m)� log2(n). T is balanced, sobd �am which is equivalent tod� logb(am).
Therefore,

d� logb(am) = logb(a) · loga(am)� logb(a) · (1+ log2(n)). �

Theorem 23. For a, b, c�1 andp(x, y) df= xaybc, GEN(p) is �p
m-complete forNP.

Proof. By Proposition16, we can assumea, b > 1. Containment in NP follows from
Theorem 11. We reduce 1-IN-3-SAT to GEN(p). LetH be a 3-CNF formula with clauses
C1, . . . , Cm and variablesx1, . . . , xn. Let p1, p2, . . . be the prime numbers larger thanc.

Defineai
df=pm+i

∏
xi ∈Cj

pj andbi
df=pm+i

∏
xi ∈Cj

pj (1� i�n). Let T = (t, g) be a
complete(a, b)-weighted tree withk leaves wheren�k�2n − 1 and L(t) = {v1, . . . , vk}
(such a tree exists by Proposition 20). Furthermore, letd be the maximal depth of a leaf of

t. Defineai
df=pm+i for i = n + 1, . . . , k,

B
df=
{
a′
i

df= a
adbd/g(vi )
i : 1� i�k

}
∪
{
b′
i

df= b
adbd/g(vi )
i : 1� i�n

}
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and

z
df=

m+k∏
i=1

padbd

i · ∏
v ∈Nd(t)−L(t)

cg(v).

Proposition22 shows that(B, z) is polynomial-time computable.
If H ∈ 1-IN-3-SAT, then there is an assignmentIH : {x1, . . . , xn} → {0,1} that satisfies

exactly one literal in each clause. We obtain

∏
IH (xi )=1

ai · ∏
IH (xi )=0

bi ·
k∏

i=n+1
pm+i =

m+k∏
i=1

pi.

We considert as anp-generation tree with values

It (vi)
df=


a′
i if i = 1, . . . , n andIH (xi) = 1,
b′
i if i = 1, . . . , n andIH (xi) = 0,
a′
i if i = n + 1, . . . , k.

By Property18,It (rt(t)), the value of the root, can be evaluated as follows:

It (rt(t)) = ∏
v∈L(t)

It (v)
g(v) · ∏

v ∈Nd(t)−L(t)
cg(v)

= ∏
IH (xi )=1

(a′
i )
g(vi ) · ∏

IH (xi )=0
(b′

i )
g(vi ) ·

k∏
i=n+1

(a′
i )
g(vi ) · ∏

v ∈Nd(t)−L(t)
cg(v)

= ∏
IH (xi )=1

aa
dbd

i · ∏
IH (xi )=0

ba
dbd

i ·
k∏

i=n+1
aa

dbd

i · ∏
v ∈Nd(t)−L(t)

cg(v)

=
( ∏
IH (xi )=1

ai · ∏
IH (xi )=0

bi ·
k∏

i=n+1
pm+i

)adbd

· ∏
v ∈Nd(t)−L(t)

cg(v)

=
m+k∏
i=1

padbd

i · ∏
v ∈Nd(t)−L(t)

cg(v) = z.

Hence(B, z) ∈ GEN(p).
Assume(B, z) ∈ GEN(p). So there exists an(a, b)-weighted treeT ′ = (t ′, g′), where

t ′ is ap-generation tree fromB for z. For eachv ∈ Nd(t ′) defineIt ′(v) as the value of node
v. Each element ofB has exactly one prime factor frompm+1, . . . , pm+k. Sincez has all
these prime factors at least once,t ′ must have at leastk leaves. Assumet ′ has more thank
leaves. By Proposition 21, there existsv ∈ L(t ′) such thatg′(v) > maxx∈L(t) g(x). It ′(v)
has exactly one prime factor frompm+1, . . . , pm+k; saypm+i with exponentadbd/g(vi).
Hence

p
adbd/g(vi )·g′(v)
m+i

is a factor ofIt ′(rt(t ′)). Fromadbd/g(vi) ·g′(v) > adbd it follows thatIt ′(rt(t ′)) �= z. Sot ′
has exactlyk leaves. Each primepm+1, . . . , pm+k must appear as a factor in a value of some
leaf. Therefore, besides thea′

j with n+ 1�j �k, eithera′
i or b

′
i is a value of a leaf (but not

both) fori = 1, . . . , n. DefineIH : {x1, . . . , xn} → {0,1} such thatIH (xi) = 1⇔df a
′
i is

a leaf-value oft ′. Observe thatIH showsH ∈ 1-IN-3-SAT. �
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5. The generation problemGEN(xc + ky)

So far we do not have upper bounds for generation problemswith polynomialsp(x, y) =
q(x) + ky, whereq is nonlinear andk�2. The obvious algorithm guesses and verifies
generation trees. How large are these trees? To answer this, observe that the trees are of
a special form: when we go from the root to the leaves iny-direction, then in each step,
the length of the value decreases by one bit. When we go inx-direction, then in each step,
the length is bisected. It follows that the size of such trees grows faster than any polynomial,
but not as fast as 2log

2 n. Therefore, GEN(p) ∈ NTIME(2log2 n). We do not have to guess
complete generation trees. If a subtree generates some valueb, then it suffices to storeb
instead of the whole subtree.We need to store a valueb every time we go inx-direction. So
we need space O(n logn). This shows the following.

Proposition 24. GEN(p) ∈ NTIME-SPACE(2log
2 n, n logn) if p(x, y) = q(x) + ky,

wherek�2 and q is a nonlinear polynomial.

Even more, because of the special form of a generation tree for such polynomials, the
generation problem can be solved by special alternating machines: somez can be gen-
erated viap from A if and only if there existz1, . . . , zn�z, such thatn� |z|, z = z1,
zn ∈A, and for all 1� i < n, zi = p(yi, zi+1) whereyi can be generated viap from
A and |yi |� 1

2|zi |. An alternating machine can check this predicate in polynomial time
with a logarithmic number of alternations. Furthermore, in existential parts the machine
guesses polynomially many bits. In contrast, in universal parts it guesses logarithmically
many bits.
This discussion shows that GEN(p) can be solved with quite restricted resources. How-

ever, we do not know whether GEN(p) belongs to NP. Standard diagonalizations show
that there exist oraclesA andB such that BPPA �NTIME(2log

2 n)A and coNPB �NTIME

(2log
2 n)B . Therefore, we should not expect GEN(p) to be hard for any class that contains

BPP or coNP. This rules out many reasonable classes above NP to be reducible to GEN(p).
We consider this as a hint that GEN(p) could be contained in NP, but we do not have a
proof for this. We leave this as an open question.
Nevertheless, in this section we prove lower bounds. Themain result, Theorem39, shows

that if p(x, y) = xc + ky wherec, k�1, then GEN(p) is �p
m-hard for NP. The proof is

difficult for two reasons which we want to explain forp(x, y) = x2 + 2y.
1. We have to encode NP-computations into generation problems. For this, we need to
construct an instance(B, z) of GEN(p) that represents information about a given NP-
computation. The elements ofBmust be chosen in away so that squaringwill not destroy
this information. This is difficult, since squaring a number heavily changes its (binary)
representation.

2. We construct(B, z) such that ifzcan be generated, thenxmust be chosen always from
B (and is not a generated number). So the generation tree is linear which makes it easier
to control because every value fromBhas to be taken to the power ofcexactly once. On
the other hand, the intermediate result is multiplied by 2 in every step, i.e. the number
generated so far is shifted to the left. We have to cope with this shifting.
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With regard to item 2, our construction makes sure that the size of the linear generation tree
is bounded. So the number of shifts is bounded. ForB we choose numbers that are much
longer than this bound such that each number is provided with a unique stamp. The stamps
make sure that there is at most one possible tree that generatesz. In particular, this fixes the
sequence of numbers fromB that are chosen forx. This keeps the shifting under control.
The problem in item 1 is more complicated and also more interesting. It comes down to

prove NP-hardness of the following extended sum-of-subset problem.

SOS2
df=
{
(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n}

(∑
i ∈ I w

2
i = z

)}
(In the proof we use a promise problem related to SOS2, but for simplicity we argue with
SOS2 in this sketch.) First, we reduce 1-IN-3-SAT to SOS= SOS1 and obtain an SOS
instancew = (w1, . . . , w2n, z). The reduction is such that eitherw /∈ SOS or there is a
selection of exactlyn weights which sum up toz. We choose a baseb larger than 2n and
2�iw

2
i . So in the system to baseb, z and allw

2
i fit into one digit. For eachwi , define the

following 6-digit numbers in the system to baseb.

ai
df= [11000wi]b,

ri
df= [10001wi]b.

Here[w]b denotes the number that is represented byw with respect to baseb (the exact
definition is given below). The set of allai and allri build the weights for the SOS2 instance
we want to construct. The intention is to use the weightai wheneverwi is used in the sum
that yieldsz, and to useri wheneverwi is not used. The squares ofai andri look as follows
with respect to baseb.

a2i
df= [ 1 2 1 0 0 2wi 2wi 0 0 0 w2i ]b,

r2i
df= [ 1 0 0 0 2 2wi 0 0 1 2wi w2i ]b.

Note thata2i andr
2
i have the same first digit, the same last digit, and the same digit at the

middle position. At all other positions, eithera2i or r
2
i has digit 0. In the sum for SOS2, for

every i, eitherai or ri is used. Therefore, in systemb, the last digit of this sum becomes
predictable: it must be

∑
i w

2
i . This is the most important point in our argumentation.

Also, we choose exactlynweightsai andnweightsri . With s1
df=∑

i wi , s2
df=∑

i w
2
i , and

z
df= s1 − z we can easily describe the destination number for the SOS2 instance.

z′ df= [2n 2n n 0 2n 2s1 2z 0 n 2z s2]b.
We obtain the instance(a1, r1, . . . , a2n, r2n, z′) which belongs to SOS2 if and only if
(w1, . . . , w2n, z) ∈ SOS. This shows NP-hardness for SOS2 and solves the difficulty men-
tioned in item 2.
We inductively use this technique to show that for allc�1, the following extended sum-

of-subset problem is NP-complete.

SOSc
df= {

(w1, . . . , wn, z) : ∃I ⊆ {1, . . . , n} (∑i ∈ I w
c
i = z

)}
.

We need SOSc as an auxiliary problem for generation problems. However, we feel that this
new NP-completeness result is interesting in its own right.
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5.1. Notations

In the proofs below we have to construct natural numbers that contain information about
NP computations. In addition, these numbers have to contain this information in a way
such that exponentiation will not destroy it. For this we need to consider numbers with
respect to several basesb. Therefore, we introduce the following notations. Forb�2 define
Ab = {0, . . . , b − 1} to be the alphabet that containsb digits. As abbreviation we write
A instead ofA2. For digitsa0, . . . , an−1∈Ab, let [an−1 · · · a0]b df=∑n−1

i=0 aibi . This means
that[an−1 · · · a0]b is the number that is represented byan−1 · · · a0 with respect to baseb.
We will consider vectors of weightsW = (w1, . . . , w2n) such that certain selections

of these weights sum up to given destination numbersz1, . . . , zc. We groupW into pairs
(w1, w2), (w3, w4), and so on. Each pair has a unique stampu in its binary representation
such that the destination numberzc shows the same stamp, but all other pairs have 0’s at this
position. This allows us to argue that if we want to reachzc, then from each pair we have
to use at least one weight. Moreover, in view of generation problems, we need the stamps
still working if the weights are multiplied by small numbers. Therefore, additionally we
demand that the stampu is embedded insdigits 0. We make this precise:

Definition 25. Let W = (w1, . . . , w2n) andZ = (z1, . . . , zc) wheren, c�1. Define
zc
df= (
∑

w ∈W wc) − zc. We call (W,Z) s-distinguishable, s�1, if all bin(wc
i ) have the

same lengthl wherel ≡ 1(c), and if for every 0�j < n there existt�1 andu∈1A∗,
such that
1. bin(zc),bin(zc),bin(wc

2j+1),bin(w
c
2j+2)∈A∗0su0sAt and

2. for all i �= j , bin(wc
2i+1),bin(w

c
2i+2)∈A∗0s0|u|0sAt .

Note that, ifc = 1 thenl ≡ 1(c) is always true and is therefore no restriction on the
length ofl.

5.2. NP-hardness of modified sum-of-subset problems

We want to show that forc, k�1, the generation problem GEN(xc + ky) is �p
m-hard

for NP. The proof is such that the NP-hardness of modified sum-of-subset problems is
shown first, and then this is reduced to the generation problems. Our argumentation for the
modified sum-of-subset problems is restricted to instances that meet several requirements.
Therefore, it is convenient to define these problems as pairs(Lc,s, Rc,s) of disjoint sets.

Definition 26. Let c, s�1.

Lc,s
df=
{
(W,Z) : W = (w1, . . . , w2n), Z = (z1, . . . , zc),

(W,Z) is ns-distinguishable, and

(∃I ⊆ {1, . . . ,2n} s.t. for 1� i�n holds 2i+1∈I ⇔ 2i+2 /∈I )

(∀m ∈ {1, . . . , c})
[∑
i ∈ I

wm
i = zm

]}
,
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Rc,s
df=
{
(W,Z) : W = (w1, . . . , w2n), Z = (z1, . . . , zc),

(W,Z) is ns-distinguishable, and

(∀I ⊆ {1, . . . ,2n})(∀m ∈ {1, . . . , c})
[∑
i ∈ I

wm
i �= zm

]}
.

Observe that forc, s�1, Lc,s ∩ Rc,s = ∅, Lc,s ∈ NP, andRc,s ∈ coNP. We show
NP-hardness forc = 1 first, and then inductively for higherc’s.

Lemma 27. For s�1, (L1,s , R1,s) is �pp
m -hard forNP.

Proof. For s�1, we show that 1-IN-3-SAT�pp
m (L1,s , R1,s) via reductionf. Let H be

a 3-CNF formula with clausesC1, . . . , Cm and variablesx1, . . . , xn wheren�2. For
0� i�n − 1 let

a
df= 0sn10sn,

ai
df= 0i(2sn+1)a0(n−i−1)(2sn+1),

w2i+1
df= [1aici1 . . . cim]2

and

w2i+2
df= [1ai c̄i1 . . . c̄im]2,

where

cij =
{
0n−11 if xi is a literal inCj ,

0n otherwise

and

c̄ij =
{
0n−11 if xi is a literal inCj ,

0n otherwise.

Finally, define the reduction asf (H)
df= ((w1, . . . , w2n), (z)) for d

df= n(2sn+ 1)+mn and

z
df= n2d + [an(0n−11)m]2.

Note that|bin(wi)| = d + 1. Letz df=∑2n
i=1wi − z and observe that

z = n2d + [an0nm]2 + 2 · [(0n−11)m]2.
Therefore,((w1, . . . , w2n), (z)) is ns-distinguishable.
LetH ∈ 1-IN-3-SAT. So there exists an assignment
 : {x1, . . . , xn} → {0,1} such that

each clause is satisfied by exactly one literal. Let

I
df= {2i + 1 : 0� i < n and
(xi) = 1} ∪ {2i + 2 : 0� i < n and
(xi) = 0}.

It follows
∑

i ∈ I wi = z and hence((w1, . . . , w2n), (z))∈L1,s .
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LetH /∈ 1-IN-3-SAT and suppose there existsI ⊆ {1, . . . ,2n} such thatz = ∑
i ∈ I wi .

For all i,wi > 2d . Also,z < (n+1)2d , since[an(0n−11)m]2 < 2d . Therefore,I contains at
mostnelements. On the other hand, for alli,wi < 2d +2d−n. Since(n−1)(2d +2d−n) <

n2d we obtain|I | = n.

For any word an−1 . . . a0∈A∗, let a[i] df= ai . Since ((w1, . . . , w2n), (z)) is ns-
distinguishable,I must contain exactly one element from each pair(w2i+1, w2i+2). For
everyk ∈ {0, . . . , m−1} there exists exactly onej ∈ I such thatwj [kn] = 1: otherwise, in
bin(

∑
i ∈ I wi) there is a 1 atpositionkn+ t where 1� t < n. This is impossible. Therefore,

if 
 is defined such that
(xi) = 1 ⇔ 2i+1∈ I , then
 satisfies exactly one literal in each
clause. This contradicts our assumption. Hence,((w1, . . . , w2n), (z))∈R1,s . �

So far we know that(L1,s , R1,s) is NP-hard. This is the induction base of our argu-
mentation. Now we turn to the induction step and show how to reduce hardness to pairs
(Lc,s, Rc,s) wherec > 0.

Lemma 28. For c, s�1, (Lc,2s+c, Rc,2s+c)�pp
m (Lc+1,s , Rc+1,s).

Proof. We describe the reductionf on input(W,Z) whereW = (w1, . . . , w2n) andZ =
(z1, . . . , zc). Letw = max(W)andchoosel′ ≡ 0(c+1)such thatb df=2l′ > 4n(c+1)!·wc+1.
All wi belong toAb. For 1�k�2n, define the following weights (whereameansaccepted
weight andr meansrejectedweight).

ak
df= [110c0wk]b,

rk
df= [100c1wk]b.

Fixanymsuch that 1�m�c+1. In the followingweshowhow todefine the right destination
numberym.After thatwedefinef (W,Z) = (W ′, Z′)whereW ′ = (a1, a2, r1, r2, a3, a4, r3,

r4, . . . , r2n−1, r2n) andZ′ = (y1, . . . , yc+1). By binomial theorem,

amk =
m∑
i=0

i∑
j=0

(
m

i

)(
i

j

)
wm−i
k · b(c+2)i+j , (5)

rmk =
m∑
i=0

i∑
j=0

(
m

i

)(
i

j

)
wm−i
k · b(c+2)j+i . (6)

Observe that in (5) each termb(c+2)i+j appears uniquely: if(c + 2)i + j = (c + 2)i′ + j ′,
then (sincej < c+2 andj ′ < c+2)j = j ′ andi = i′. Similarly, in (6) each termb(c+2)j+i

appears uniquely. Now the idea is, to letak(t) denote the coefficient ofbt in Eq. (5), and to
let rk(t) denote the coefficient ofbt in Eq. (6). First, we defineak(t) andrk(t) for 0� t�d,

whered
df= (c + 3)m, and then we show that this definition fits to our idea.

ak(t)
df=



(
m
i

)(
i
j

)
wm−i
k : if t = (c + 2)i + j for 0�j < i�m,

0 : if t = (c + 2)j + i for 0�j < i�m,(
m
i

)
wm−i
k : otherwise, i.e., ift = (c + 3)i,

(7)
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rk(t)
df=




0 : if t = (c + 2)i + j for 0�j < i�m,(
m
i

)(
i
j

)
wm−i
k : if t = (c + 2)j + i for 0�j < i�m,(

m
i

)
wm−i
k : otherwise, i.e., ift = (c + 3)i.

(8)

Note thatak(t) andrk(t) depend onm. We abstain from takingmas additional index, since
mwill always be clear from the context. Observe that the three cases in these definitions
are indeed disjoint. Soak(t) andrk(t) are well-defined. It follows thatak(t) andrk(t) are
the announced coefficients from Eqs. (5) and (6). Hence

amk =
d∑

t=0
ak(t) · bt

and

rmk =
d∑

t=0
rk(t) · bt .

All ak(t) and allrk(t) are less thanb/4n and therefore belong toAb. Hence,

amk = [ak(d) · · · ak(1)ak(0)]b (9)

and

rmk = [rk(d) · · · rk(1)rk(0)]b. (10)

Eqs. (7) and (8) tell us that these representations tobasebdiffer onlyat positionst /≡ 0(c+3).
In order to define the destination numberym, we show how to transfer a selection of

weightswk to a corresponding selection of weightsamk andr
m
k . Suppose

∑
wk = z1 where

the sum ranges over a suitable collection ofn weights. Now chooseamk for every weight
wk that is used (i.e.,accepted) in the sum

∑
wk; and choosermk for every weightwk that

is not used (i.e.,rejected) in this sum. The choice of whether to takeamk or r
m
k only matters

for positionst /≡ 0(c + 3). By Eqs. (7) and (8), at these positions, eitherrmk has digit 0 and

amk has digit
(
m
i

)(
i
j

)
wm−i
k , or amk has digit 0 andr

m
k has digit

(
m
i

)(
i
j

)
wm−i
k (note thati > 0

sincei �= j ). So when we consider the sum of all chosenamk andr
m
k at such a position, then

either we see digit(
m

i

)(
i

j

) ∑
k accepted

wm−i
k =

(
m

i

)(
i

j

)
zm−i

or we see digit(
m

i

)(
i

j

) ∑
k rejected

wm−i
k =

(
m

i

)(
i

j

)
zm−i ,
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wherez0
df= n andzi = ∑

w ∈W wi −zi as defined above. Thismotivates the following digits
of the destination numberym:

y(t)
df=




(
m
i

)(
i
j

)
zm−i : if t = (c + 2)i + j for 0�j < i�m,(

m
i

)(
i
j

)
zm−i : if t = (c + 2)j + i for 0�j < i�m,∑

w ∈W

(
m
i

)
wm−i : otherwise, i.e., ift = (c + 3)i.

Here again we abstain from takingmas index, sincemwill be clear from the context. Define
themth destination number as

ym
df= [y(d) · · · y(1)y(0)]b.

To finish f’s definition, let f (W,Z)
df= (W ′, Z′) whereW ′ = (a1, a2, r1, r2, a3, a4, r3,

r4, . . . , r2n−1, r2n) andZ′ = (y1, . . . , yc+1).

Claim 29. If (W,Z) is (2s + c)n-distinguishable, then f (W,Z) = (W ′, Z′) is 2ns-
distinguishable.

Proof. Fix m = c + 1 and letd = (c + 3)m. Observe that for everyk, ak(d) = rk(d) = 1.
By assumption,b = 2l

′
for l′ ≡ 0(c + 1). Hence one digit fromAb corresponds exactly

to l′ bits. By Eqs. (9) and (10), for everyk, |bin(ac+1k )| = |bin(rc+1k )| = d · l′ + 1. This
number is≡ 1(c + 1).
We need to understand the structure ofyc+1 = (

∑
w ∈W ′ wc+1)− yc+1, the complement

of yc+1. For this end, define

y(t)
df=




(
m
i

)(
i
j

)
zm−i : if t = (c + 2)i + j for 0�j < i�m,(

m
i

)(
i
j

)
zm−i : if t = (c + 2)j + i for 0�j < i�m,∑

w ∈W

(
m
i

)
wm−i : otherwise, i.e., ift = (c + 3)i.

Observe that for allt, y(t) + y(t) = ∑2n
k=1(ak(t) + rk(t)). Hence

[y(d) · · · y(1)y(0)]b + [y(d) · · · y(1)y(0)]b = ∑
w ∈W ′

wm

and therefore,

yc+1 = [y(d) · · · y(1)y(0)]b.
Choose anyj < n and considera2j+1 anda2j+2. By assumption,(W,Z) is (2s + c)n-
distinguishable. So there existt�1 andu∈1A∗ such that
1. bin(zc),bin(zc),bin(wc

2j+1),bin(w
c
2j+2)∈A∗0(2s+c)nu0(2s+c)nAt and

2. for all i �= j , bin(wc
2i+1),bin(w

c
2i+2)∈A∗0(2s+c)n0|u|0(2s+c)nAt .
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If one multiplies a binary number of the formA∗0i′u0i′At by m = c + 1�2c, then this
yields a number of the formA∗0i′−cu′0i′−cAt+c whereu′ ∈A|u|+c. So in our case, there
existt ′ �1 andu′ ∈1A∗ such that
1. bin(mzc),bin(mzc),bin(mwc

2j+1),bin(mwc
2j+2)∈A∗02snu′02snAt ′ and

2. for all i �= j , bin(mwc
2i+1),bin(mwc

2i+2)∈A∗02sn0|u′|02snAt ′ .
Let ta = c + 2. For alli, ai(ta) = mwc

i , ri(ta) = 0, y(ta) = mzc, andy(ta) = mzc. So for
t ′′ = t ′ + l′ · ta ,
1. bin(ym),bin(ym),bin(a

m
2j+1),bin(a

m
2j+2)∈A∗02snu′02snAt ′′ ,

2. for all i �= j , bin(am2i+1),bin(a
m
2i+2)∈A∗02sn0|u′|02snAt ′′ , and

3. for all i, bin(rm2i+1),bin(r
m
2i+2)∈A∗02sn0|u′|02snAt ′′ .

We obtain the analogous three statements forr2j+1 andr2j+2 by looking at the position
tr = 1. Here for alli, ai(tr ) = 0, ri(tr ) = mwc

i , y(tr ) = mzc, andy(tr ) = mzc. Hence
(W ′, Z′) is 2ns-distinguishable. �

Claim 30. If (W,Z)∈Lc,2s+c, thenf (W,Z) = (W ′, Z′)∈Lc+1,s .

Proof. ByClaim29,(W ′, Z′) is 2ns-distinguishable. LetI be as in the definition ofLc,2s+c,

and letI
df= {1, . . . ,2n} − I . Note|I | = |I | = n. We choose allai such thati ∈ I and allri

such thati ∈ I . Note that this collection of weights fromW ′ is suitable to show that(W ′, Z′)
belongs toLc+1,s (i.e., when numbering the weights ofW ′ from 1 to 4n, then the indices of
chosen weights form anI ′ where 2i + 1∈ I ′ ⇔ 2i + 2 /∈ I ′). Fix anym ∈ {1, . . . , c + 1}.
Our selection of weights induces the following sum:

z′ df= ∑
k ∈ I

amk + ∑
k∈I

rmk

= ∑
k ∈ I

[ak(d) · · · ak(1)ak(0)]b + ∑
k∈I

[rk(d) · · · rk(1)rk(0)]b.

We have seen that allak(t) and allrk(t) are less thanb/4n. So for everyt,

z′(t) df= ∑
k ∈ I

ak(t) + ∑
k∈I

rk(t)

is less thanb. This means that if we consider the weights to baseb and sum up digit by
digit, then there is no sum that is carried forward. It follows that

z′ = [z′(d) · · · z′(1)z′(0)]b.
From Eqs. (7) and (8) we obtain

z′(t) =



(
m
i

)(
i
j

)∑
k ∈ I w

m−i
k : if t = (c + 2)i + j for 0�j < i�m,(

m
i

)(
i
j

)∑
k∈I w

m−i
k : if t = (c + 2)j + i for 0�j < i�m,(

m
i

)∑
w ∈W wm−i : otherwise, i.e., ift = (c + 3)i.

So for allt, z′(t) = y(t) and therefore,z′ = ym. This shows(W ′, Z′)∈Lc+1,s . �
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Claim 31. If (W,Z)∈Rc,2s+c, thenf (W,Z) = (W ′, Z′)∈Rc+1,s .

Proof. By Claim 29, (W ′, Z′) is 2ns-distinguishable. Let us assume(W ′, Z′) /∈ Rc+1,s ,
i.e., there existsIa andIr , subsets of{1, . . . ,2n}, and there exists somem ∈ {1, . . . , c+1}
such that∑

k ∈ Ia

amk + ∑
k ∈ Ir

rmk = ym. (11)

Let ta = (c+2)(m−1). For allk, ak(ta) = mwk, rk(ta) = 0, andy(ta) = mz1. In Eq. (11),
we can consider the weights to baseb and can sum up digit by digit without obtaining a
sum that is carried forward. By looking at positionta we obtainy(ta) = ∑

k ∈ Ia
ak(ta)

and hence

z1 = ∑
k ∈ Ia

wk.

So we found a collection of weights fromWwhose sum isz1. This is a contradiction.

This complete the proof of Lemma28. �

Lemma 32. For c, s�1, (Lc,s, Rc,s) is �pp
m -hard forNP.

Proof. The proof is by induction onc. The induction base is by Lemma27 while the
induction step follows from Lemma 28.�

Theorem 33. For c�1, the following sum-of-subset problem is�p
m-complete forNP.

SOSc
df= {(a1, . . . , an, b) : ∃I ⊆ {1, . . . , n}(∑i ∈ I a

c
i = b)}.

Proof. Clearly,SOSc ∈NP.Forgiven(W,Z)whereW=(w1, . . ., w2n)andZ=(z1, . . ., zc)

let f (W,Z)
df= (w1, . . . , w2n, zc). Observe(Lc,1, Rc,1)�pp

mSOSc via f. So by Lemma32,
SOSc is NP-hard. �

5.3. NP-Hardness ofGEN(xc + ky)

Starting from Lemma 32 we reduce NP-hardness to generation problems. First, we show
this for c > 1 and then we treat GEN(x + ky) in a separate lemma.

Lemma 34. For c�2, k�1 ands df=5k2(c + 5), (Lc,s, Rc,s)�pp
mGEN(xc + ky).

Proof. We describe the reductionf on input(W,Z) whereW = (w1, . . . , w2n) andZ =
(z1, . . . , zc). We may assume that allwi andzj are divisible by 2cns . Otherwise, useW ′ =
(2cnsw1, . . . ,2cnsw2n) andZ′ = (2cnsz1,22cnsz2, . . . ,2ccnszc) instead ofW andZ. Let

l
df= |bin(wc

1)| and note thatl > cns. If k = 1, then we usea = 0 as auxiliary weight.
Otherwise, ifk�2, then we usea = 2(l−1)/c. Observe, that(l − 1) is always divisible by
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c, since(W,Z) is ns-distinguishable.

B
df= {a,2l−1 + 1} ∪ {w1k,w2k,w3k2, w4k2, . . . , w2n−1kn,w2nkn}, (12)

d
df= kcn(zc + 2l−1 + 1) + ac ·

c−1∑
i=1

ki ·
n−1∑
i=0

kic. (13)

If n2l−1�zc < n2l , thenf (W,Z)
df= (B, d), otherwisef (W,Z)

df= (∅,0). In the following
we show(Lc,s, Rc,s)�pp

mGEN(xc + ky) via f.
Case1: Assume(W,Z)∈Lc,s . Hence there exist weightsx1, . . . , xn ∈W , such that∑n
i=1 xci = zc, wherex1 ∈ {w1, w2}, x2 ∈ {w3, w4}, and so on. Therefore,n2l−1�zc <

n2l and sof (W,Z) = (B, d). We describe the generation ofd. Clearly,y0
df=2l−1+ 1 can

be generated. Forj �1, let

yj
df= kc · yj−1 + (kj xj )

c + ac ·
c−1∑
i=1

ki . (14)

If yj−1 can be generated, then so canyj : for k = 1 this is trivial. Fork�2, start withyj−1
and apply the generationynew = ac + k · yold for c − 1 times. Then apply the generation
ynew= (kj xj )

c + k · yold (note thatkjxj ∈B). This yieldsyj . Henceyn can be generated.
From Eq. (14) we obtain

yn = kcn
n∑

i=1
xcj + kcn(2l−1 + 1) + ac ·

c−1∑
i=1

ki ·
n−1∑
i=0

kic.

It follows thatd = yn and therefore,(B, d) ∈ GEN(xc + ky).
Case2: Assume(W,Z)∈Rc,s . If zc < n2l−1 or zc�n2l , thenf (W,Z) = (∅,0) /∈

GEN(xc+ky) andweare done. So let us assumen2l−1�zc <n2l andf (W,Z) = (B, d) ∈
GEN(xc + ky). In the remaining proof we will derive a contradiction which will prove the
lemma.
If k�2, then from Eq. (13) andzc < n2l we obtain

d = kcn(zc + 2l−1 + 1) + ac ·
c−1∑
i=1

ki ·
n−1∑
i=0

kic

< kcn(n2l + 2l−1 + 1) + ac · kc ·
n−1∑
i=0

kic

= (n2lkcn + 2l−1kcn + kcn) + ac ·
n−1∑
i=0

kckic

< (n + 1)2lkcn + ac ·
n∑

i=1
kic

< (n + 1)2lkcn + ackcn+1.

Hence

k = 1 ⇒ d < (n + 1)2l , (15)

k�2 ⇒ d < 2lkn(c+3). (16)
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Claim 35. There existm�1, y0∈B andx1, . . . , xm ∈B − {0,2l−1 + 1}, such that

d = kmy0 +
m∑
i=1

km−ixci . (17)

Proof. We have seen thatl > cns. From Eqs. (15) and (16) it follows thatd < 2l+ns−2 <
22l−2. For all x ∈B − {0}, |bin(xc)|� l. So if z can be generated and is not already inB,
then|bin(z)|� l and thereforez�2l−1. If we apply the generation rulexc + ky for x = z

and anyy, then, sincec�2, we obtainz′ �22l−2 > d which cannot be used to generate
d. Similarly, if we apply the generation rulexc + ky for x = 2l−1 + 1∈B and anyy,
then we obtainz′ �22l−2 > d which cannot be used to generated. Hence, there exists a
generation ofd such that in each step,x is chosen fromB − {0,2l−1 + 1}. Fromzc�2l−1
and Eq. (13) it follows thatd�2lkcn and henced /∈ B. Therefore,d can be generated in the
following linear way: there existm�1, y0∈B, andx1, . . . , xm ∈B − {0,2l−1 + 1} such
that if yi

df= xci + k · yi−1 for 1� i�m, thenym = d. This is equivalent to the statement in
the claim. �

Claim 36. 1. y0 = 2l−1 + 1.
2. If k = 1, thenm�2n.
3. If k�2, thenm = cn.

Proof. First,weshowm < ns/k2.Assumem�ns/k2 andk = 1.ByClaim35,d > m2l−1.
From Eq. (15) it follows thatd > 2l−1ns/k2�2l+1 ·n(c+5) > d which is a contradiction.
Assumem�ns/k2 andk�2. By Claim 35,d > 2l−1km−1. From Eq. (16) it follows that
d > 2lk(ns/k

2)−2�2lk5n(c+3) > d which is a contradiction. Therefore,

m < ns/k2. (18)

Assumey0 �= 2l−1+1, i.e.,y0∈B−{2l−1+1}. By assumption, allwi andzi are≡ 0(2cns).
So all elements inB − {2l−1 + 1} are≡ 0(2ns) (if k�2, thena = 2(l−1)/c�2ns). From
Claim 35 we obtaind ≡ 0(2ns). However, Eq. (13) says thatd ≡ kcn(2ns). Since 0<
kcn < 2kcn < 2ns we haved �≡ 0(2ns). This is a contradiction and we obtainy0 = 2l−1+1.
We have seen that all elements inB−{2l−1+1} are≡ 0(2ns). ByClaim 35,d ≡ km(2ns).

By Eq. (13),d ≡ kcn(2ns). By Eq. (18),km�2km < 2ns andkcn < 2ns . Therefore, ifk�2,
thenm = cn. If k = 1, then by Claim 35,d�(m + 1)2l−1. So by Eq. (15),m�2n. �

Claim 37. For every j, 1�j �n, there exists exactly one i such thatxi ∈ {w2j−1kj , w2j kj }.
If k�2, then this i is determined byi = jc.

Proof. Fix j. By assumption,(W,Z) isns-distinguishable. So there existt�1 andu∈1A∗
such that bin(zc),bin(wc

2j−1),bin(w
c
2j )∈A∗0nsu0nsAt and for alli �= j , bin(wc

2i−1),bin

(wc
2i )∈A∗0ns0|u|0nsAt . Let r

df=2ns + |u| + t . In the following calculation we are mainly

interested in the lowerr bits of allxci . If �
df= [u]2, then

(wc
2j−1 mod 2

r ) = �2ns+t + 	1 (19)
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and

(wc
2j mod 2

r ) = �2ns+t + 	2, (20)

where	1, 	2 < 2
t . We partition the set of indices{1, . . . , m}.

J1
df= {i : 1� i�m ∧ xi = w2j−1kj },

J2
df= {i : 1� i�m ∧ xi = w2j k

j },
J3

df= {1, . . . , m} − (J1 ∪ J2).

From Eq. (17) we obtain

d = ∑
i ∈ J1

km−i (w2j−1kj )c + ∑
i ∈ J2

km−i (w2j k
j )c + ∑

i ∈ J3

km−ixci + kmy0. (21)

Now we study Eq. (21) modulo 2r .We start with the first two sums and considerwc
2j−1 and

wc
2j modulo 2

r . By Eqs. (19) and (20), these terms consist of an upper part (i.e.,�2ns+t )
and of a lower part (i.e.,	1 or 	2). Let e1 (resp.,e2) denote the sum of the upper (resp.,
lower) parts:

e1
df= ∑

i ∈ J1

km−ikjc · �2ns+t + ∑
i ∈ J2

km−ikjc · �2ns+t , (22)

e2
df= ∑

i ∈ J1

km−ikjc	1 + ∑
i ∈ J2

km−ikjc	2. (23)

Moreover, lete3 denote the sum (this time modulo 2r ) of the last two terms in Eq. (21)

e3
df=
(( ∑

i ∈ J3

km−ixci + kmy0

)
mod 2r

)
. (24)

Clearly,d ≡ e1 + e2 + e3 (2r ). We argue that(d mod 2r ) = e1 + e2 + e3.
For all i ∈ J3, eitherxci = ac �= 0 or xci = x′kci′ , where bin(x′)∈A∗0ns0|u|0nsAt and

1� i′ �n. Therefore, for alli ∈ J3,

(xci mod 2
r ) < 2t kcn. (25)

Moreover,(y0 mod 2r ) = 1. Eqs. (24) and (25) allow an estimation ofe3.

e3�
∑
i ∈ J3

km−i2t kcn + km.

If k = 1, then by Claim36, e3�2n2t + 1. If k�2, thene3�2t kcnkm + km andm = cn.
So for allk,

e3 < 2
ns+t−1. (26)

Estimatee2 with help of Eq. (23) and Claim 36

e2�mkm−1kjc2t �25knc+t < 2ns+t−1. (27)
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Together with (26) this yields

e2 + e3 < 2
ns+t . (28)

Finally we turn toe1. Eq. (22) can be written as

e1 = �2ns+t kjc+m ∑
i ∈ J1∪J2

k−i . (29)

Therefore,e1 < 2|u|+ns+t+5knc�2r−1. Together with (28) we obtaine1+ e2+ e3 < 2r and
hence

(d mod 2r ) = e1 + e2 + e3. (30)

By Eq. (13), d ≡ kcn(zc + 1) (2r ). Recall that bin(zc)∈A∗0nsu0nsAt . Therefore,
(zc mod 2r )=�2ns+t + � where�<2t . Observekcn(�2ns+t + � + 1)<2kcn2|u|2ns+t+1�2r .
This yields

(d mod 2r ) = �2ns+t kcn + kcn(� + 1). (31)

Compare Eqs. (30) and (31). The termse1 and�2ns+t kcn are divisible by 2ns+t , while the
termse2+e3 andkcn(�+1) are less than 2ns+t . It follows thate1 = �2ns+t kcn and therefore,
by Eq. (29),∑

i ∈ J1∪J2
km−i = kc(n−j). (32)

Fork = 1 this implies|J1∪J2| = 1, while fork�2 this implies|J1∪J2|�1.Assumek�2
and leti′ be the maximum ofJ1∪ J2. The left-hand side of (32) is≡ knc−i′ (knc−i′+1). So,
it must be thatkc(n−j) < knc−i′+1 and therefore,knc−i′ = kc(n−j). HenceJ1 ∪ J2 = {jc}.
This proves Claim 37. �

Assumek = 1. By Claims 35–37, there existxi ∈ {w2i−1, w2i}, such that

d = (2l−1 + 1) +
n∑

i=1
xci . (33)

Together with Eq. (13) this showszc = ∑n
i=1 xci . So(W,Z) /∈ Rc,s which contradicts our

assumption.
Assumek�2. By Claim 37, for everyj, xjc = xj · kj wherexj ∈ {w2j−1, w2j }.

Moreover, it follows that for everyi, if i /≡ 0(c), thenxi = a. So Eq. (17) can be written as:

d = kmy0 +
n∑

j=1
km−jcxcjc + ∑

i∈{1,...,m},
i /≡0(c)

km−ixci (34)

= knc(ac + 1) + knc
n∑

j=1
xcj + ac

∑
i∈{1,...,nc},
i /≡0(c)

knc−i . (35)
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Observe that the right-most sum in (35) can be written as

knc − 1
k − 1 − kcn − 1

kc − 1 =
c−1∑
i=1

ki ·
n−1∑
i=0

kic.

So we can continue to transformd.

d = knc(ac + 1) + knc
n∑

j=1
xcj + ac ·

c−1∑
i=1

ki ·
n−1∑
i=0

kic.

Together with Eq. (13),

zc =
n∑

j=1
xcj . (36)

So again(W,Z) /∈ Rc,s which contradicts our assumption.�

Lemma 38. If p(x, y) = x + ky, where, k�1 thenGEN(p) is �p
m-complete forNP.

Proof. We have already seen the upper bound (Lemma12) and the lower bound for the
casek = 1 [13], so let us focus on the lower bound fork�2.We�pp

m -reduce(L1,2k, R1,2k)

to GEN(x + ky). LetW
df= (w1, . . . , w2n), Z

df= (z) such thatwi, z ∈ N (1� i�2n). Let
-
df= |bin(k�2ni=1wi)| andG df=2-+1. Define

v1
df= k(G + w1),

v2
df= k(G + w2),

vi
df= G + wi for 3� i�2n

and

z′ df= k(nG + z).

Now let(W,Z)∈L1,2k. Then there is anI = {i1, . . . , in} ⊆ {1, . . . ,2n} such that for alli ∈
{0, . . . , n−1}exactly oneof{2i + 1,2i + 2} is in I and∑i ∈ I wi = z.Assume thatij < it if
j < t . Thenp(p(. . . p(p(vi1, vi2), vi3), . . . , vin−1), vin) = k(G+wi1)+k

∑n
j=2G+wij =

k(nG + z) = z′.
Now let(W,Z)∈R1,2k andassume that(v1, . . . , v2n, z′) ∈ GEN(p).Observe thatvi �G

for all i ∈ {1, . . . ,2n}. LetT be a generation tree forz′ from {v1, . . . , v2n} with m leaves.
Then obviouslyz′ �

∑
q ∈ fpath(T ) kr(q)G. Since for every leaf inTexcept one there is a path

qwith r(q)�1 we havenkG+G > nkG+kz = z′ �(m−1)kG+G and thereforem�n.
Suppose there is ani ∈ {0, . . . , n−1} such that neitherv2i+1 norv2i+2 is a value of a leaf in
T. We know that(W,Z) is 2kn distinguishable. AddingG to awj (1�j �2n) andnG to z
does not interfere with the distinguishing gaps of the values by the choice ofG. Multiplying
someof the valueswithk, decreases the size of the distinguishing gapsbyatmost"logk+1#.
Hence there is au∈1A∗ and at�1 such that bin(z′)∈A∗0knu0knAt and for allj �= i,
both bin(v2j+1) and bin(v2j+2) are inA∗0kn0|u|0knAt . Since in every step of the generation
the size of the distinguishing gap is reduced by at most"logk + 1# and since there are at
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mostn − 1 steps in the whole generation process,z′ cannot be generated. Hence, for all
i ∈ {0, . . . , n−1} exactly one element of{v2i+1, v2i+2} is a value of a leaf inTandm = n. If
therewere apathq inTwith r(q) > 1 thennkG+G > z′ �k2G+(n−2)kG+G�nkG+G

(∗) would hold. Therefore fpath(T ) = {ln−1} ∪ {lir : 0� i�n − 2}. Sincev1, v2�kG the
value of the leaf with the pathln−1 has to be one of{v1, v2} otherwise again(∗)would hold.
So there are{i1, . . . , in} such thati1 ∈ {1,2} and

z′ = p(p(. . . p(p(vi1, vi2), vi3), . . . , vin−1), vin)

= k(G + wi1) + k
∑n

j=2G + wij

= k(nG +∑n
j=1wij )

= k(nG + z)

and therefore
∑n

j=1wij = z which is a contradiction. Hence(v1, . . . , v2n, z′) /∈ GEN(p).
�

We combine the auxiliary results proved so far and formulate the main result of this
section that follows from Lemmata32, 34, and 38.

Theorem 39. For c, k�1, GEN(xc + ky) is �p
m-hard forNP.

6. Conclusion

We summarize our results on the complexity of GEN(f ) in the following table.

Operation Lower bound Thm Upper bound Thm

Arbitrary Recursively 2 Recursively 1
enumerable enumerable

Length-monotonic EXPTIME 5 EXPTIME 3
Length-monotonic EXPTIME 5 EXPTIME 3
and commutative
Length-monotonic PSPACE 7 PSPACE 6
and associative
Length-mon., assoc., NP 9 NP 8
and commutative
All polynomials NP 9 NP 11
�= q(x) + ky

x + y NP 9 NP 8
x · y NP 16 NP 8
xaybc NP 23 NP 11

All polynomials NP 39 NTIME(2log
2 n) 24

= q(x) + ky

xc + ky NP 39 NTIME(2log
2 n) 24
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Every lower bound is given by the fact that there exists anf from the considered class of
operations whose generation problem is complete for the respective class. All operations
are polynomial-time computable.
The gap between NP and NTIME(2log

2 n) in the last rows of the table below calls the
attention to an interestingopenquestion: doesGEN(q(x)+ky)belong toNP ifq is nonlinear
andk�2? Since the generation trees for these polynomials may be of super-polynomial
size, the obvious algorithm of guessing and verifying the tree is not applicable. Also, we
could not find more compact representations as in Theorem11. There are generation trees
where almost all nodes take different values. Therefore it may be possible that we really
have to calculate all of them. Perhaps there are special polynomials of the formq(x) + ky

for which the closure is very regular, as in Theorem 11, case (1)? Another possibility to
solve the problem could be to have a closer look at the restricted alternating machines we
describe in Section 5. What are the exact capabilities of these machines?
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