provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

SCIENOE@DIRE°T° Theoretical
Computer Science

Theoretical Computer Science 345 (2005) 260—295
www.elsevier.com/locate/tcs

Generation problems
E. Bohler, C. GlaRér B. Schwarz, K.W. Wagner

Lehrstuhl fur Informatik IV, Universitat Wurzburg, 97074 Wurzburg, Germany

Abstract

Given a fixed computable binary operatibrmve study the complexity of the following generation
problem: the input consists of strings, .. ., a,, b. The question is whethdr is in the closure of
{a1, ..., ay} under operatiomh

For several subclasses of operations we prove tight upper and lower bounds for the generation
problems. For example, we prove exponential-time upper and lower bounds for generation problems
of length-monotonic polynomial-time computable operations. Other bounds involve classes like NP
and PSPACE.

Here, the class of bivariate polynomials with positive coefficients turns out to be the most interesting
class of operations. We show that many of the corresponding generation problems belong to NP.
However, we do not know this for all of them, e.qg., i+ 2y this is an open question. We prove NP-
completeness for polynomiat§ y”c wherea, b, ¢ > 1. Also, we show NP-hardness for polynomials
like x2 4+ 2y. As a by-product we obtain NP-completeness of the extended sum-of-subset problem
SOS ={(wg, ..., wn,2) : I S{1,..., n}(} ;c; wi =2)} foranyc>1.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Computational complexity; Closures; Polynomials; SOS problem

* A preliminary version of this paper appeared as extended abstract in MFC$5}004
* Corresponding author.
E-mail addresseshoehler@informatik.uni-wuerzburg.dg. Bohler),glasser@informatik.uni-wuerzburg.de
(C. GlaRer), schwarzb@informatik.uni-wuerzburg.dé8. Schwarz), wagner@informatik.uni-wuerzburg.de
(K.W. Wagner).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.07.011

https://core.ac.uk/display/81133072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:boehler@informatik.uni-wuerzburg.de
mailto:glasser@informatik.uni-wuerzburg.de
mailto:schwarzb@informatik.uni-wuerzburg.de
mailto:wagner@informatik.uni-wuerzburg.de

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 261
1. Introduction

No, this paper is not about problems between generatiddewever, genealogy presents
an example that explains the matter we are interested in. There is hardly any other prehistoric
guestion where scientists grope in the dark as in the following: are Neanderthals completely
extinct or are there traces of them left in some of us? To examine whether a person, e.g.,
one of the authors, is not a descendant of a Neanderthal, one would usually build the whole
family tree of the author and check whether every leaf of the tree is labeled \witm
sapiensThis becomes a generation problem in the following way. We go back to the time
where Neanderthals artdomo sapienstill lived segregated from each other. It is well-
known that it is the operation of marriage (in a very natural sense) that produces children.
We start with this first generation éfomo sapienand apply this operation to obtain their
children. Then we apply the marriage operation again and again, until we reach today’s
people. Now we see whether our author has been generated.

Similar generation problems are for example
e Doesb belong to the closure dti1, . . ., a,} under pairwise addition? This is equivalent

to a modification of the sum-of-subset problem where factors other than 0 and 1 are

allowed. It can be shown that this is NP-complgt8].

e Does the empty clause belong to the closure of the clajgsgs. ., ¢, } under the rule

of the resolution proof system. This problem is coNP-complete.

e Does a given element of a monoid belong to the submonoid that is generated by a
given set?

The complexity of generation problems has been investigated earlier, especially for groups.

Generation problems for matrix groufds 3], for finite groups, where the group operation

is given by a multiplication table [4], and for permutation groups [2,10,12] have been

examined.

In this paper, we investigate sets that are generated by arbitrary computable binary oper-
ations. For a fixed such operation we study the complexity of the question:

Does a given string b belong to the set that is generated from sttings. ., a,,}?

To make this precise, |e&X = {0, 1} be the alphabet and Iétbe a computable binary
operation o™, i.e., f : 2* x X* — X*.ForB C X*, let[B] y be thef-closure ofB, i.e., the
smallest set that contaifsand that is closed undérFor fixedf we define the generation
problem.

Generation problem GEN(f)
INPUT: a1, ..., a,, b e X*
QUESTION:ISbin [{a1, ..., an}]¢?

Equivalently we can use this definition in the context of natural numbers, since these can be
identified in the standard way with*. For convenience we write operations like addition
in infix form.

In Section 3, we observe that generation problems for computable operations are recur-
sively enumerable, and there exist associative, commutative, polynomial-time computable

1 Regardless of the different ages of the authors.

262 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

operations whose generation problems are many-one complete for recursively enumer-
able sets. There remain undecidable problems even if we further restrict the operation’s
resources like time and space. However, we achieve decidability when we demand the
operation to be length-monotonic which means that in the generation tree ofxstinee
lengths of all intermediate results are bounded by the length tfthe operations are
length-monotonic and polynomial-time computable, all generation problems are solvable
in exponential time and there are also such operations for which the generation prob-
lem is hard for EXPTIME. We study the complexity of various restrictions of these op-
erations. If additionally the operation is associative, then the corresponding generation
problem belongs to PSPACE, and is even PSPACE-complete for suitable operations. If
we further restrict the operations to be commutative, then we obtain generation prob-
lems that belong to NP, and some of them are even NP-complete (e.g., the usual integer
addition).

The most interesting operations we consider in this paper are bivariate polynomials with
positive coefficients which are studied in SectbiBuch polynomials are length-monotonic
and hence, the corresponding generation problems are decidable. However, in general these
polynomials are neither associative nor commutative, and hence the generation problems for
such polynomials turn out to be nontrivial and exciting. For example, does(&EN2y)
or GEN(x2y3) belong to NP? If so, are they NP-complete?

There are two main results in this section: for one, we show thaisifnot of the form
q(x) + ky whereq is nonlinear andt > 2, then the generation problem belongs to NP.
Besides that, we present a proof of NP-completeness for polynomials of thexforta
wherea, b, ¢ > 1. Proving hardness is difficult already for such simple polynomials, since
we have to cope with the various different trees that generate one number. As a tool to
control the shape of generation trees we introduc®)-weighted treesvhich are special
trees with additional information. In the proof we force the generation trees into the shape
of so-called completé:, b)-weighted trees.

We do not know whether the generation problem belongs to NP, if the generating
polynomial is of the formg(x) 4+ ky whereq is nonlinear and >2. In this regard, as
an upper bound we can easily show that all bivariate polynomials with positive coef-
ficients have generation problems in NTIME—SPA((Z'EQZ", nlogn). Our discussion in
Section 5 suggests that this class appears to be a class not far from NP. As a special
case of these polynomials, we consiggrc, y) = x¢ + ky wherec, k>1. The main
result of Section 5 shows that GEP) is NP-hard. Here the operatiort brings the
main difficulty for the proof. We have to find a way to encode information to num-
bers such that this information is not destroyed by taking the numbers to a high power.
This is not easy to solve, since already squaring a number heavily changes its (binary)
representation. There even exist sequential pseudo-random generators that make use of
this: the von-Neumann generator computes the next random number by taking the mid-
dle bits of the squared previous number. von-Neumann conjectured that this generator is
hard to break. We control this scrambling of bits by analyzing generalized sum-of-subset
problems

SOS L {(wr, ..., we2) IS L.} (Ko wf =2)).

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 263

We show that foralt > 1, SOS is NP-complete and then reduce these problems toGEN
Although all SO$ are just auxiliary problems in our proof, we feel that this new NP-
completeness result is interesting in its own right.

Finally, in Section6 we summarize our results and give a table that shows a convenient
overview of the upper and lower bounds of generation problems.

2. Preliminaries

Let N denote the natural numbers including 0. Gt 0 let bin(a) be a’s binary rep-
resentation (without leading zerosf> 0), and denote the length of lin) by |a|. We
denote the number of elements in a Aatith both, #4 and|A|. For convenience we use
the operation mod in two ways: in= b (modm) (or a = b(m) for short) it is used in the
usual way, while the expressign modm) denotes the remainder nfdivided bym.

We work with pairs(A, B) of disjoint languages (where for example € NP and
B € coNP). Say that paitA, B) reduces to paifC, D), (A, B) <I(C, D)), if there exist
a polynomial-time computable functidrsuch that for alk,

xeA = f(x)eC,
xeB = f(x)eD.

We will write A <W(C, D) shortfor(A, A) <P(C, D), and(A, B) <hPC short for(A, B)
<M(C,O).

Afinite treeis calledbinary tree if every node is either a leaf or has exactly two successors.
Let L(T) be the set of leaves(ff) be the root and N@") be the set of nodes of a tréeWe
characterize a path from the root to a node by a word {/, r}*, wherel defines a left turn

andr defines a right turn. Let patif) ﬂ{w : wis a path off'}. Everyv € path(T) that

does not lead to a leaf node is calladial path of T. In contrast, every path in path) that

is not an initial path is &ll path. Let ipath(T') be the set of initial paths af and fpati{7’)

be the set of full paths ifi. Forg € path(T), letl(¢) andr(q) be the number of left steps

and right steps, resp., @ For a nodex of T with pathv, let/(x) df [(v) (resp.y(x) el r(v)).
The process of generating elements by an iterated application of a binary operation can

be visualized by generation treeLet B C X* be the base set. ffis a binary operation,

then a binary tree is calldegeneration tree from B for if

e every leaf has a value from,

e every node that has successors with valuasdy has valuef (x, y),

e the root of the tree has valuze

Note that; € [B], if and only if there exists afigeneration tree frorB for z

3. Generation problems for general operations

Since we are mostly interested in complexity issues, we restrict ourselves to computable
operations. All of the corresponding generation problems are recursively enumerable and
we show that there are polynomial-time computable operations whose generation prob-
lems are undecidable. There remain undecidable problems even if we further restrict the

264 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

operation’s resources like time and space. The reason is that even with restricted resources
it is possible to let a generation problem simulate grammatical derivation trees of arbitrary
formal languages. We achieve decidability when we demand the operation to be length-
monotonic. Hence, we study the complexity of various restrictions of length-monotonic
operations.

Theorem 1. GEN(o) is recursively enumerable for every computable operatiorz™ x
> - XF,

Proof. Consider an enumeration of aiformulae, i.e., formulae built up from words k¥
using the operation. For a given such formul& (x1, ..., x,) with x1, ..., x, € 2%, we
compute its value and output(xy, . .., x;, z). This algorithm enumerates GE&. O

We observe that polynomial-time computable operations are still too difficult for a
complexity-oriented examination of generation problems. For example, with such an oper-
ation we can simulate single steps of arbitrary Turing machines.

Theorem 2. There is an associatiyveommutativepolynomial-time computable operation
o: 2% x X* — X* such thatGEN(o) is m-complete for recursively enumerable sets

Proof. Lety : 2* — X* beafunctionthatisrecursive such tlimgi {x : @(x) is defined
is the halting problem, and I1& be a machine that computesWe define as follows: for
n,mq, mp=>0 let

gi+Lgm o gr+gme O grtlymitmajf pp onn still runs afterny + my steps
1 otherwise

and for all other, y € X* letx o y 4.

Observe, that is commutative and € FP. For associativity let, y, z € 2*. In case that
there arer, m1, mo, m3>0 such that = 0*+t1171, y = #1172 7 = 0*+11"3 andM on
ndoes not stop withim + m» +m3 we obtainc o (yoz) = (xoy) oz = Qrtlmitmatms,
In all other cases we obtaio (yoz) = (xoy)oz = 1.

Now, if M onnstops withirmsteps, thep{0*+111}],={0"*+111, o*+112, . ort+l1m-1,
1}. If M onndoes not stop, theff0" 111}], = {0*+t111, 071112, .. }. Hence,

neD, & Monnstops & 1le[{0"!1ly],
& (0"11,1) e GEN(o). O

3.1. Length-monotonic polynomial-time operations

We have seen that in order to get decidable generation problems we have to restrict the
class of operations. Therefore, we demand that in the generation tree oksi@éengths
of all intermediate results are bounded |y, the length of biiix). This is equivalent to

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 265

say that we restrict to operationsthat satisfy|x o y|> max(|x|, |y|). Call such opera-

tions length-monotoniclf |x o y| = max(|x|, |y|), then the operation is calledinimal
length-monotonicGeneration trees of such operations can be exhaustively searched by an
alternating polynomial-space machine.

Theorem 3. GEN(o) € EXPTIME for every length-monotonjpolynomial-space com-
putable operation : 2* x X* — X*,

Proof. Leto be alength-monotonic, polynomial-space computable operation(gEisn
be decided by the following alternating algorithm that uses at most polynomial space:

function GEN(x1, ...,xm,z)
repeat
if z € {x1, ...,xm} then accept;
if |z| = O then reject;

existentially choose z1, z2 such that (z1 0z2) = z;
universally choose z from {z1,z2 }
forever

Sinceo is computable in polynomial space it is obvious that the above algorithm is an
alternating polynomial-space algorithm. Chandra §7gproved that these can be simulated
in deterministic exponential time.[J

This exponential-time upper bound for length-monotonic, polynomial-space computable
operations is tight, even for polynomial-time computable operations. To see this we start
with a technical lemma which simplifies the argumentation. It shows that for certaip,sets
we can translate operations A x A — A to operations : 2* x X* — X*, such that the
complexity of the generation problem and other properties are preserved. This is done by
an appropriate encoding of elements frém

Lemma 4. Let A1, ..., Ay be finite setsA df Al X - X AP X A1 X - - X Ay, @nd

let+ : A x A — A be a polynomial-time computable operation. Then there exists a
polynomial-time computable operation X* x X* — X* such that

1. GEN&) <99 GEN(o).

2. If xis commutative thea is commutative

3. If % is associative then is associative

4. If xis minimal length-monotonic thenis minimal length-monotonic

Proof. Letm>2 be such thatA;|<2" fori = 1,2,...,k + 1. Leth; : A} — (2")*
be a continuation of a block encoding with block lengtifor i = 1,2,...,k +[. Let

d : 2* — X* be a continuation of the homomorphism defined/i69) a 00 andd (1) at 11
on all binary words. Let codeA — 2* be an encoding given by

codexy, x2, ... Xi41) g d(h1(x1))01d (h2(x2))01. .. 01d (hiqi (Xkg1)).

266 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Note that|cod€u)| = 2m|u| + 2(k + [— 1) and that code is a logspace function. For
w1, w2 € 2*, o can be defined as

df | codeuy * up) if wy = codgui) andw, = codguy),
Wi1owz2=1 gmaxiwil.lwz) otherwise.

Certainly, sincex is computable in polynomial time, sodsObviously, ifx is commutative
then so is, and if x is associative then so is Now letx be minimal length-monotonic.
If wy = codduq), wy = codguy), andui * up = v then we conclude:

|lwi o wy| = |codeur * uz)| = |cod&v)| = 2m|v| + 2(k +1 — 1)
= 2m-max(|ua|, luz|) + 2k +1 — 1)
= max@mluy| + 2(k +1 — 1), 2m|uz| + 2(k + 1 — 1))
= max(|codgu1)|, |cod&uz)|) = max(|wil, [wa|).

Otherwise,|wy o wp| = |0M&wil.w2D| = max(|wq|, |wz|). Hence,o is minimal length-
monotonic.

Finally, by definition ofo, v € [{u1, ..., un}1« if and only if cod&v) € [{codduy), ...,
cod€u,,)}].. This completes the proof.(d

Theorem 5. There is a commutativeninimal length-monotonjgpolynomial-time com-
putable operation : X* x X* — X* such thalGEN(o) is <'m°9 -complete foEXPTIME.

Proof. We follow an idea of Cook8] to simulate deterministic exponential-time computa-
tions. Without loss of generality, a deterministic exponential-time one-tape Turing machine
M deciding a se#A C X* can be normalized in such a way that on input ajaz...a, it
makes 2(*D sweepswherep is a suitable polynomial. ForQ2i < 2°(*D the(2i + 1)st
sweep is a right move from tape cell 1 (with the first symbak)ab tape celk + 2 within

i + 1 steps, and thei + 2)nd sweep is a left move from tape cielt 2 to tape cell 1 within

i + 1 steps. Each of the turning points belongs to two sweeps.

Turing tape | | | | | | | | |
12 34 i i+li+2

sweep 1
sweep 2
sweep 3
sweep 4
sweep 5
sweeps

sweep 2-1
sweep 2

sweep 2+1
sweep 2+2

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 267

Furthermore, leM have the tape alphabdt the set of state§ the initial statesg, and the
accepting state;. In the case of acceptance the tapdvois empty. IfM is in states and
readsa, then the next state is(s, @), and the symbol printed i&(s, a).

We say that the quintuplex, i, j, s, a) is correctif during theith sweep on inpux the
machineM prints the symboh in tape cellj and leaves that cell with state One can
compute a corredtx, i, j, s, a) by knowing only two other correct quintuples, namely the
correct(x, i —1, j, s’, a’) and the correatx, i, k, s”, a”’) wherek € {j — 1, j + 1}. The idea
of our operation is as follows: multiplgc, i — 1, j, s, a’) with (x, i, k, s”, a’") and obtain
(x,1, j,s,a). In an accepting computation bf on x (and only in this case) one generates
finally the correctx, 2°(<D 2, 51,).

To make this precise, let; 9 for all Jj > n. Furthermore we assume that, in a quin-
tuple (x, i, j, s, a) wherei, j € {0,1, ..., 2°(*D} the number$ andj are given in binary
presentation of length exactpy(|x|) + 1. Now define the operaticaas follows:

Right sweep, for K2i < 2P(*D andj = 1,2, ..., i:
(x,2i, j+1,5,a)*(x,2i +1,j,5,b) df (x,2i+1,j+1, 00, a), s, a)).
Left sweep, for K2i +1 < 2P*Dandj =1,2,...,i 4+ 1:
(x,2i+1,j,s,a)*(x,2i +2,j+1,5,b) da (x,2i +2,j,0(s,a), (s, a)).

New tape cell right, for £ 2i 4+ 1 < 2°(*D:
x,2i+1i+15,a)*(x,0,0,sg,)
M, 20 41,0 42,005, ais2), A(s, air2)).

Turning point left, for 1< 2i < 2P(1*D:
(x.2i,1,5.a) % (x,0,0, 50,) L (x, 2 + 1,1, 5.).
Turning point right, for & 2i + 1 < 2P(xD:
(x,2i+1,i +2,s,a)*(x,0,0,so,D)g(x,Zi—i—Z,i +2,5,a).

If u v is defined in this way thenx u is defined in the same way. For remaining products
not yet defined, we define

df ’ ’ ’
('xa u,v,s, a) * (-x/v I/l/, U/, S/, a/) = (OmM‘x|+lu‘+|U‘»|x e+ Da &, €, 50, D)

Obviously,* is polynomial-time computable, minimal length-monotonic and commutative.
Starting with(x, 1, 1, a(so, a1), A(s0, a1)) and(x, 0, 0, sg, [1) exactly the correct quintuples

of the form (x, ...) together with(0¥I+2P(KD+2 ¢ ¢ 59,) and (x, 0, 0, so, J) can be
generated. Henc®] acceptxif and only if

((x, 1,1, a(s0, a1), A(s0, a1)), (x, 0,0, s0,), (x, 2P 1D 2 51, 00)) € GEN(%),

consequentlyA glﬁgGEN(*). By Lemma4, we obtain a polynomial-time computable,
minimal length-monotonic and commutative operation X* x 2* — X* such that

A<99GEN©). O

268 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

3.2. Length-monotonic-associative polynomial-time operations

We have seen that in general, commutativity does not lower the complexity of the gener-
ation problem for length-monotonic, polynomial-time computable operations. In this sub-
section we show that associativity does. Here, we exploit that for associative operations
o we do not need to know the exact structure ofoageneration tree foz. associativity
makes all generation trees with the same sequence of leaves equivalent with respect to the
generated element. We show that PSPACE is upper bound for all generation problems with
associative, polynomial-space computable operations and that it is lower bound even for
associative, polynomial-time computable operations.

Theorem 6. GEN(o) € PSPACEIf o : 2* x X* — X™* is length-monotonicassociative
and polynomial-space computable

Proof. The following algorithm decides GEN) in polynomial space:

function GEN(z,x1, .. Xn);

choose an i € {1, ...,n} nondeterministically;

z1 = Xi

while (z1 # 2z) and (|z1] < |z|) do begin
choose an i € {1, ...,n} nondeterministically;
z1 =71 oxi

end;

if (z = z1) then accept else reject O

The polynomial-space bound is tight even for polynomial-time operations

Theorem 7. There is a minimal length-monotonic and associative polynomial-time com-
putable operation : 2* x 2* — X*, such thatGEN(o) is <!Sg -complete foPSPACE.

Proof. At the beginning we want to remark, that much of the complexity of the following
construction stems from the possible associativity of the operationLLet >~* be a
set that isg'mOg -complete for PSPACE such thatt L. By Lemma4, it suffices to prove
existence of afinite alphabgtand a minimal length-monotonic and associative polynomial-
time computable operation : (Z* x 4%) x (2* x 4*) — (2* x 4*) such thatL <',29
GENC(x).

SinceL € PSPACE, it follows [6] that there exists a polynomial-time computable func-
tion f : 2* x N — As and a polynomiap such that for alk € X*,

xel < f(x,00- fx,1) - f(x, 2P0 —2) = g, 1)

where(As, -) is the group of even permutations on five elements with identity permutation

ag. Forx € * let K, gp(|x|) andM, ﬁ4Kx +3.Fori =0,1,...,2K — 1, lethi) be
the lengthK, binary representation of(x will always be clear from the context).

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 269

We consider the set
{(r.b@ab(j)) : 0<i < j < 2%, a € As) € {x) x (2. 45-25)
with a multiplicationx whose essential idea is given by the following equation:
(x, b@@) a b(j)) * (x, b(j+1) bb(m)) = (x,bG) a- f(x, j)-bb(m)).

However, we need to be defined in a more general way; the exact definition follows. From
Eq. (1) we obtain

xeL < (x,08001%%) e [{(x, b(i) f (x,)b +1) : 0<i < 2K+—1)],.

Since{(x, b(i) f(x,i)b(i +1)) : i < 2K<—1} has exponentially many elements (in the
length ofx), this cannot be used as reduction functionlﬂo{',,,og GEN(%). So we have to
generate this set from a few basic pairs. For this we modi@g follows. We use a new
separation symba#¥ and, to achieve minimal length-monotonicity, a neadding symbol

2. Foru € {0, 1, #*, let (u), Tu2¥:—lul and forw e {0, 1, 2, #*, letw e {0, 1, #* be

the wordw without symbols 2. Define the following sets of words:

o A, dt Sy

e B, =A,#A,,

o O, LA uxKena,,

o Dy T puttb(iycib(in)es . . . cs_1bli#u' = s>2,u,u' € Ay, 0<i1 < - < iy <
2K",Cl,6‘2,...,CS_1€A5U{#}, and(cj =#=1ij +1=i./+1)fOI’j =1,...,s =1},

e 6, %A, UB,UC, UD,.

Let 42 (0, 1, 2, #) U A5 and definez, : ({0, 1, # U As)* — ({0, 1, #} U As)* as follows:

1. g, Tyifvea, UB UC,.

2. If v =u#b(i1)cib(i2)co - - - cs_1b(is)#u’ € D, then

gx () L uttbiy)abiy)#u’,

wherea gbybz-. ..-bs_1,suchthatp; = c; if ¢; e Asandb; = f(x,i;) otherwise.

3. g:(v) I sttt in all other cases, i.e.,if¢ G,.
Finally, definex on 2* x 4* by

« | @ 2max{ixl+ L Iyl+wlly - jf x £ y orx = g or y = ¢ or one of
(x,v) x (y, w) = T, wis notin(G, U {##4) N AMx,
(x, (gx(VW))yx) otherwise.

Observe that: is minimal length monotonic, which is basically ensured by the padding
function (-) .
We show the associativity fer. For that, let firsk df (x,7), s el (y,s),t da (z,t)eX*x
A* suchthat{x, y, z}| > 1. Thenr * (s xt) = (8,gmi’q"‘_“"","'y"“‘s/"|Z|+|’/‘}) = (r#*s)*t.
We obtain the same resultif= y = z and one of, s/, ¢’ is not from(G , U {###) N AMx .

270 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

The remaining cases are such that y = z andr’, s’, 1’ € (G, U {###) N A4Mx. Here
it suffices to show

ra (s xt) = (x, (g (r's't))x). (2

Ifone ofr’, s/, ' is equal to ###, this is obvious. The same holds in the case whegeA U

By UCy. If 57 = ###, thenr x (s % 1) = (x, (gx(75'7))0)=(x, (###) T o and we
are done.

If s’ = u#b(i1)cib(io)ca - --cs_1b(is)#u’ € D,. Thens xt = (x,d) whered =
(uth(iy)ab(is)#u') as in the second case of the definitionggf Assumer’ = v e A,
orr’ = wHv e By UC, U Dy. If [vu| > K thenr (s xt) = o = (g (r's’t"))x. If lvu| < K
andr’ ¢ A, then againv = (s xt) = o = (g, (r's't)).. If Jvu| <K, andr’ € A, we
haver * (s x 1) = (x, (vu#tb(i1)ab(i;)#u')y) = (x, (g« (r's’t’))x). The remaining cases
are where”’ = w#v e B, U C, U D, and|vu| = K,. Sinceu#h(i1) is a prefix of both
s't" and g, (s't"), we haver’g,(s't') € D, if and only if r’s't' € D,. If r's't' ¢ Dy, then
rx(s*t) = o= (gr's't)y, so letr's’t’ € D,. In this case the equivalenc®)(can be
easily seen for all cases of

The remaining case is wherér’'¢G, U {###4; we show thatr's't' ¢ G, U {###.
Obviously;’s't’ # ###. Supposethats't’ € G,.If r's't’ € A, ,thens't’ € A,. If r's't’ € By,
thens’t’ € A UB,.If r's’t’ € Cy,thens’t’ € A,UB,UC,. Therefore’s’t’ = u#h(i1)c1b(iz)
ca---cs_1b(is)#u’ € D,. Sinces’t’ ¢ G, andr’ € G, there is & such that’ = u#b(i1)c1
b@i2)co. .. cr_1w, st = werb(igs1) . .. cs—1b(s)#u’, whereww’ = b(iy), ck—1 = #,
andc, € As. Hence eithes’ or 7 are not inG,. So ifs't’ ¢ G, thenr x (s xt) = a =
(x, (g« (r's’t")),). This finishes the proof of associativity fer

Observe thatx, (u#b(i)ab(j)#v)) is in [{(x, (0)), (x, (1)), (x, (#))}]« if and only if
i<jandf(x,i)- f(x,i+1----- f(x,j — 1) = a. Consequently, we obtain

xeL < (x, #0%aol®#) e [{(x, (0), (x, (1), (x, #}s. O

Now let us additionally assumeto be commutative. Again, if we want to know whether
or notz € [{x1,...,x,}]o, the associativity enables us to ignore thigeneration tree
and instead search for a word oV, ..., x,}. Together with commutativity, we just
have to guess exponents, ..., k, and test whethelfcll‘1 0---0 xff" = z. If the op-
eration is computable in polynomial-time, then the exponentiations are computable in
polynomial-time, too (by squaring and multiplying), which yields the following
theorem.

Theorem 8. GEN(o) € NP for all length-monotonicassociativeand commutative poly
nomial-time computable operations 2* x X* — X*,

Again, this upper bound is tight, i.e., there exist associative, commutative, and length-
monotonic polynomial-time computable operations whose generation problems are NP-
complete. Even the usual addition on natural numbers has this property.

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 271
Theorem 9. GEN(+) is <',29—complete folNP, where+ is the addition or\.

Proof. It is known that GEN-+) is NP-complete for the addition on integdfs3]. This
proof exclusively uses natural numberg.]

4. Generation problems for polynomials

The previous section gave an overview over the complexity of generation problems
for polynomial-time computable operations. Now we want to have a look at the more
restricted class of generation problems whose operations are polynomials. The Davis—
Putnam—Robinson—Matiyasevich theorem [11] states that every recursively enumerable set
is range of a polynomial with integer coefficients. Based on this, there are such polynomials
where the generation problem is undecidable. To give an idea of this, take a polypomial
with undecidable positive range and replace every variablex? + x2 + x2 + x2. Take
another polynomiaj that is capable to generate all negative numbers and negative numbers
only. Build a new polynomial out op andqg with an additional variable such that for
y = 0 the value ofyis calculated, and foy # O the value opis calculated. In this way it is
possible to generate all negative numbers which in turn allow the generation of the positive
range ofp. However, to obtain this undecidability result, the polynomials must have nega-
tive coefficients and they usually contain a rather large number of variables. Therefore, we
concentrate on bivariate polynomials with positive coefficients. These are always length-
monotonic and hence, the corresponding generation problem is decidable. We show that
many of them are even in NP and all of them belong to NTIME-SP(Q’?EZ", nlogn). So
far we have no evidence against the conjecture that all these generation problems belong to
NP (see also the discussion in Section 5). However, we cannot prove this.

This section has two main results: first, we show thatig not of the formg(x) + ky
whereq is nonlinear and > 2, then the corresponding generation problem belongs to NP.
Second, we prove NP-completeness for polynomials of the fdrfic wherea, b, ¢ > 1.

4.1. The main case

Let us start our investigation with univariate polynomigls.e., p(x, y) = ¢(x) for a
suitable polynomiad.

Theorem 10. If p is a univariate polynomiatthenGEN(p) is in P.

Proof. If p(x,y) = q(x) = ¢, then we havé{ay, ..., a,}l, = {a1, ..., an, c}. If p(x,y)
=qx) =x+c,then{ay,...,a,}lp ={a; +kc:i=1,...,n, k>0}. Inall other cases
we haveg (x)>2x or ¢(x) > x2. It follows thate € [{a1, coaplp S eepa) i =
1,...,n,k=0,1,...,|bin(e)| + 1} wherepo(x) X x andpr1(x) X p(pr(x)) for k >0.

So in all cases the membership[{ay, ..., a,}1, can be easily verified in polynomial
time. O

A univariate polynomiap(x) is linear, if there areu, ¢ € N such thatp(x) = ax + c.

272 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Theorem 11. If p is a bivariate polynomial that is not of the forpt(x, y) = kx + ¢(y) or
p(x,y) = q(x) + ky, where q is nonlinear anél>2, thenGEN(p) € NP.

Proof. We show thap must have one of the following properties:

1. p(x,y) =x+q(y)or p(x,y) = q(x) + y for some univariate polynomiaj,

2. p(x,y) = ax + by + ¢ for somea, b, ¢ € N such thau, »>2, and

3. p(x,y)=x-yforallx, y.

After this, the proof of the theorem is completed by the following three lemmata.
Assume that the polynomialhas none of the properties (1)—(3). Siqpeoes not fulfill

(3) there are univariate polynomiatgandr, such thatp(x,y) = g(x) + r(y). Since

x2+ y2>x - y atleast one of the polynomiadgandr is linear. Consequently, there exist a

univariate polynomiatjand ark > 0, such thap (x, y) = kx+q(y) or p(x, y) = q(x)+ky.

Sincep does not fulfill (2), the polynomiad is not linear. Sincep does not fulfill (1), we

obtaink>2. O

Lemma 12. If p(x, y) = x +¢q(y) for some univariate polynomial thenGEN(p) € NP.
Proof. Itis sufficient to prove:

Ha,....ap={aj + Y10 -qla): je{l,....r}andoy, ..., 0 € N}.

The inclusion from right to left is obvious. For the other direction, we observddhat. .,
ar}isincludedin the right-hand side (which is obvious) and that the right-hand side is closed
undermp. For the latter let;, f§; € N, lets a Y i1 (% -q(a;)), and let at Yoioq (Bi-qla)),
for1<i<r,andj, k € {1,...,r}. Then for some >0,

plaj+s,ar+t)=a; +s+qax +1)
=aj+s+q(a) +ct
=aj+ Zl((“i +cBy) - q(ai) + qlar). ()

To see equality3), observe that by binomial theorem, for@llb >0, g (a +b) = g(a) +cb
forsomec e N. O

Lemma 13. If p(x, y) = ax + by + cfora, b,c € N anda, b>2,thenGEN(p) € NP.

Proof. Let T be ap-generation tree foe. Without loss of generality we can assume that
value 0 occurs only in the leaves of this tfeeSincea, b > 2, the depth of is bounded by
|bine)| + 1.

Let T be an arbitrary binary tree whose leaves have values fram. ., a,}. For a full
pathqgin T, chooseé (¢) € {1, ..., n} such that the leaf af has valuez;). We obtain that

e € [{ay, ..., ay}], ifand only if there exists a binary trdewhose leaves have values from
{a1, ..., a,} such that
e = > aig - a'@ L pra@ Y e al@ . pr@

q € fpath(T) q €ipath(T")

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 273

For a binary tred of depth bounded byl and fori, j € {0, ..., d} we define the charac-
teristics

st L#q - g € ipath(T), 1(g) = i andr(q) = j)

and
df . .
rl =#q : q € fpath(T), I(q) = i andr(q) = j}.
Note that the;/; can be computed from the ; by

T __ T
®rgo= 1- 50.0°

r — T T .
® roj+1 =75, S0 +1 forj€f{0,....d},

T _ T T . "
®rit10="50Sit10 fori€f{0,....d} (%)

and

T

T _ T T ..
Fiv1j+1 = Sijer tSine " Sy fOrije{0,....d}

Using these characteristics we obtain that [{a1, ..., a,}], if and only if there exist a
binary treeT of depthd < |bin(e)| + 1 and aset of natural numbdrs ; . : 7, j € {0, ..., d},
ke{l,....,n}}suchthaly }_,rijx = r and

d d n .) d d .))
=2 . (Zri,j,kﬂk)'a’-b“rzZsi,j'c-a’-b/.
i=0,j=0 i=0;=0

Observe that the characteristbc,% have the following properties.

° SOTO<1
. soj+1<soj forje{0,...,d -1},
° gs fori € {0,...,d — 1},
H—lO { . } (%)
° l+1]+1§sl+lj +s”+1 fori,je€{0,...,d -1}
and
os/y=s;,=0 fori,je{0,....d}.
On the other hand, we can prove the following.
Claim. Consider arbitrary natural numbers ; wherei, j € {0, ..., d}. If theses; ; fulfill

(xx), then there exists a binary tree T such thl%i} =y fori, j €{0,...,d}.

Proof of the claim. By induction onw (M) ¥ Z?:o Z?:o Si -

If w(M) = 0, then the tree with only one node fulfills the statement.

If w(M) > 0, then we havegg > 0. Sinces; ¢y = s4,; = 0fori, j € {0, ..., d} there
exists a paili, j) € {0, ..., d}? suchthas; ; > 0ands;+1,; = s; j+1 = 0. Let(io, jo) be

274 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

such apair. DefinM’ﬁ{s;’j :1,j €{0,...,d}},such tharl’ /o_S’O Jo 1andslqu =i
forallother(i, j) € {0, ..., d}2. Obviously,M’ fulfills (xx) andw(M") = w(M)—1.Bythe
induction hypothesis, there exists a binary tfégsuch tharfj’. = s[J fori, j €{0,...,d}.
To know that there exists a full pathin 77, such thai(g) = ig andr(g) = jo we have to

proverl0 0> 0. We do this by considering four cases.

!
If io = jo = 0 thens{ y = s o < so0<1and hencel = 0.
. . T/
If zo_Oandjo>Othensoj0 ?0]0<SOJO§VOJO 1_sto 1= 9010 1-

If lo>0and]0—0then€l O—Yl 0 < Sig,0< Sig— 10—510 10= l€ 1.0°

7/
If ig > Oandjo > Othens! . = sl’O jo < Sio.jo < Sio—1, jotSio, jo—-1 =

i, jo
T/
Sio— 1Jo+slo Jo—1]
Now choose a full patty in 7/, such that/(¢) = ip andr(g) = jo and attach two

successors to it. For the binary tréelefined in such a way, we hav% 0= S:o pTl=

St o+ 1 = sig.jp ands] . = sT = s/ ; = s;; for all other (i, j) € {0,...,d)2. This
completes the proof of tf/1e cIa|m o

’ ’ _
io—l,jo_’_sio,jo—l -

Consequently, we obtain thate [{a1, ..., a,}], if and only if fora & |b|n(e)| +1land
i,j €{0,...,d}there exist natural numbexgj and there exists a set of natural numbers
{rijk:i,je{0,...,d},ke{l,...,n}}, suchthat
1. thes; ; fulfill (sx),

2. %% ri,jk =rijfori, j €{0,...,d} (where the; ; are computed from the ; asin

(%)), and
3. e=31 o o(Xhearijh-ar)-a b+ 303 gsij-c-al b,

This shows GENp) € NP. O

Lemma 14. If the polynomial p fulfillsp(x, y) >x - y for all x, y, thenGEN(p) € NP.

Proof. Let A € N be finite. LetA/ﬂA U {p(c,c) : ¢ € {0} N A}. Obviously, we have
[A], = [A'], and for every: € [A'], there is ap-generation tree that has no nodéhat
has only child nodes with value 0. If for evetye N (resp.,y € N),
e p(x,0)>2x (resp.,p(0, y) >2y) or
o p(x,0)>x2 (resp.,p(0, y) > y?) or
e p(x,1)>2x (resp.,p(1, y) =2y) or
o p(x, D=7 (resp.p(l, y)>y?),
then there is @-generation tree farfrom A’ such that there are at mdst nodes with left
(resp., right) child that has a value?2. (%)
Let D be ap-generation tree fromi’ for z. We can assume that there are at mopt
leavesv in D that have a value greater than 1 and there can at most bedes having
two children with values greater than 1. Furthermore, we can assume that there are at most
|z| nodesv in D, such that both children af are leaves with values frof®, 1}, since the
value of theses nodes would be greater or equal to 2 (if the value of such a node were 0 or
1, the node would not be necessary). That means tiahis exponentially many nodes,
then nearly every node (except polynomially many ones) xk) (

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 275

e has one child with value 1 and another one that is no leaf, or

o is a leaf with value< 1, and its parent’s other child is no leaf.

We consider four cases

e Let there bexy, ..., xg € N such that p(x1, 0) # 2x1 and p(x2, 0) # x3 and p(x3, 1)
2xzandp(xa, 1) # x2) and (p(0, x5) # 2xs andp(0, x¢) # x5 andp(L, x7) # 2x7 and
p(1, xg) }xé). Thenp(x, y) = xy + ¢, wherec € N. Note thatp(x, 0) = p(0, y) = c.
Sincec € A’ if 0 € A/, we can assume that there are no leaves with value 0. Furthermore,

q(x)gx +c¢=p(,x)=px,1) forall x € N. Note that

q(q(...q(x)...)) =x+ke,
——
k

sok applications ofg can be guessed in one step. Using propet#),(we can guess a
polynomially sized generation tree, where each node either represents a normal generation
step ork < z steps of the above form.

e Lettherebey, ..., xs € N, suchthatforalk € N we have p(x, 0)>2x or p(x, 0) >x?
orp(x, 1)>2xor p(x, 1) = x?)and (p(0, x1) # 2x1 andp(0, x2) # x5 andp (1, x3) # 2x3
and p(1, x4) }xﬁ) Thenp(x, y) = xky + Yo bix' +d wherek>1,n,b;,d € N
(1<i <n). Because ofx) there can only be polynomially many nodesDrwith a left
child that has a value greater than 1. So if there are exponentially many nddgthan
all of them except polynomially many ones have a left child with vatue and a right
child thatis not a leaf. Observe that0, y) = d for all y, so we can assume that there is no
left child labeled with O since if @ A, so isd. Furthermorep(1, y) = y+ > /1 bi +d
and

p(L,p,...p(L,y)..)) =y + k(X b +d).
————
k

Therefore we can guess a polynomial-sized generation tregvioere each node is either
a normal generation step bk z subsumed steps of the forp(1, y).

e Let there bexi,..., x4 € N, such that for allk € N we have p(x1, 0) %2 2x1 and
p(x2,0) % x:f, and p(xz, 1) # 2x3 and p(xa, 1) # x?) and (p(0, x) >2x or p(0, x) >x?
or p(1, x)>2x or p(1, x) >x?). Here a symmetrical argumentation holds.

e Let for allx € N hold (p(x,0)>2x or p(x,0)>x? or p(x,1)>2x or p(x, 1) >x?)
and (p(0, x)>2x or p(0,x)>x2 or p(1,x)>2x or p(1,x)>x2). By (x) there is a
polynomial sizedp-generation tree fromd’ for b that can be guessed and checked
inP. O

4.2. GEN(x%y®¢) is NP-complete

By Theoreml1, if we consider a polynomial of the forjn, , x%ybe,, wherea, b>1,
then the generation problem belongs to NP. Here, we pick out those polynomials that consist
of only one term of the sum. For this special case we can show that @E&Rt) is NP-
complete ifc>1. Fora = 1 orb = 1 this is easy to prove with a reduction from the
following problem:

276 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Definition 15.

1-IN-3-sAT ¥ {H : H is a 3-CNF formula having an assignment
that satisfies exactly one literal in each clause}.

This problem is NP-complete.

Proposition 16. For a, c>1, GEN(x?yc) is <m-complete foNP.

Proof. We reduce 1-IN-3-SAT to GE{), wherep(x, y) ﬁx“yc. LetH be a 3-CNF for-
mula with clausesCy,...,C, and variablesxy,...,x,. Let pi, p2,... be the

.) df df
prime numbers larger than Defineay = py, ;]'[x1ecj PG b1=pyyg]'[HGC], p§, for

2<i<n, q ngJri [, ec; Pj» bi g1!7m+i Hx—,.ec, Pj» gLt [T p¢, andg(H) il
(a1, ...,ay, b1, ..., by, 7). Note thatg is polynomial-time computable.

AssumeH € 1-IN-3-SAT. Then there is an assignmdnt {x1, ..., x,} — {0, 1} that
satisfies exactly one literal in each clause. Therefore, we oﬁﬁ_[ﬁf pi- "1y alinear
generation tree that has leaf-valugs. .., c1, wherec; = q; if I(x;) = 1 andc¢; = b;
otherwise. Hencg(H) € GEN(p).

Assume thaig(H) e GEN(p), hencez € [{a1,...,as, b1, ..., by}],. Every primep;
occurs exactha times in the factorization of. Therefore, eithet; or b; (and not both)
has to be a leaf-value in the generation tree. ¥ 1 then additionally the generation tree
has to be linear and the rightmost leaf has valyer b;. If we can build a generation tree
for z, that contains each prime for a variable and each prime for a clause eadictlgs,
it is possible to find an assignment, that satisfies exactly one literal in each clause. Hence,
the assignmentsuch that/ (x;) = 1 if and only ifg; is a leaf-value in the generation tree
satisfiesH in the sense of 1-IN-3-SAT. Thereforé € 1-IN-3-SAT. [

Now let us consider GEN“y’¢) for a, b > 1. In general, the crucial point in proving
hardness for generation problems is to cope with the various different trees that generate
the same number. In our proofs we force the generation trees to have a specific shape such
that the generation is possible only in a predefined way.

Consider an®y?c-generation tree. Clearly, the generated number is a product that con-
sists of various multiplicities of and base elements. As a tool to control these multiplicities
we introducga, b)-weighted treesvhere we mark each node as followst 1§ the number
of left turns on the way from the root to a node, ansithe number of respective right turns,
then we mark the node withf andb”. By controlling the marks of the leaves, we can force
anx?y®c-generation tree into the shape of a complete)-weighted tree.

Definition 17. Lett be a binary treel’ = (¢, g) is called(a, b)-weighted treeq, b > 1, if
gis a marking-functiorg : Nd(r) — N, such that
If x =rt(¢), theng(x) = 1.
If x e Nd(¢) has a left and a right successgrand x,, theng(x;) = a - g(x) and
g(xy) =b-g(x).

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 277

T is called balanced, if max) g(x) < max(a, b) - Min e) g(x).
T is called complete, if max|) g(x) < max(a, b) - MiNgeL 1) g(x).

From this definition it immediately follows that the marks have the desired properties.
We obtain the following connection to GEN y¢).

Property 18. Leta, b > 1.1f T = (¢, g) is an (a, b)-weighted treewhere t is anc®y’c-
generation tree with values(v) for all v € L(z), then

Ity = 1 1. [.
vel () veNd(@)—L(r)

We want to remark that it is possible to define the notior{cgfp)-weighted trees for
a = 1 andb = 1. However, ifa = 1 andb = 1, then complete trees do not exist. In
contrast, for allz, b > 1 complete trees exist. Therefore, we requiré > 1.

Proposition 19. Leta, b > 1. For everyn > 1 there exists a balance@, b)-weighted tree
that has n leaves

Proof. Forn = 1 take the tree that consists only of the root.

For arbitraryn > 1, letT = (¢, g) be a balancet, b)-weighted tree witle — 1 leaves.
Letxg € L(z) be a leaf with minimal weight, i.eg(xg) = minycL () g(x). Define the tree
¢ by adding int successors; andx, to xg, and letg’ : Nd(z') — N by g’(x) a g(x) for all
x € Nd(t), g'(x)) g, g(x0), andg’(x,) ay,. g(xp). This defines aria, b)-weighted tree
7' % (' ¢y with

maXe (1) &' (x) = max(max.eL) &(x), max(g'(x1), &' (x,)))

max(max,eL () g(x), maxa, b) - g(xo0))

max(MaXceL () g(x), max(a, b) - MiNyeL 1) g(x))

= maxa, b) - Minyc (1) g(x)

< max(a, b) - Minge (1) &' (x). 4)

HenceT” is balanced. O

Now we show that for each> 1 there exists a complete, b)-weighted tree with nearly
n leaves. Note that such a tree is polynomial-time constructible.

Proposition 20. Leta, b > 1. For everyn > 1 there exists a complete, b)-weighted tree
with at least n and at mo&: — 1 leaves

Proof. Propositionl9 gives a balance@:, b)-weighted treel with n leaves. If all leaves

have minimal weight, theil is complete. Otherwise, there dtel<k<n — 1, leaves of
minimal weight. If we add two successors to each of these leaves, then the minimal weight
increases. So in inequality (4% changes ta<. So the resulting tre€’ is completeT” has
n—k+2k=n+kleaveswherae<n +k<2n—-1. O

278 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Now we show that if the generation tree is not the desired complete tree, then at least one
leaf-value is taken to a power that is too large.

Proposition 21. Leta,b > 1. LetT = (t, g) be a completéa, b)-weighted tree with n
leaves. IfT" = (¢, g’) is an(a, b)-weighted tree with more than n leayésen there exists
aleafy € L(¢') such that

g (y) > maxeL) g(x).
Proof. Without loss of generality we can assumg b. Fix a shortest way in terms of
deleting and adding leaves that transforirte . We have to change at least one leaf
xo € L(r) to an inner node of . Letx; andx, be the successors of. We obtain

g'(x1) = a- g(xo) > maxa, b) - MiNceL () g(X) > MaXeeL () g(x).
Hence, every < ¢’ that is reachable frong fulfills

g =g (x1) > Maxeer (1) g(x). 0

Next we show that balanced, b)-weighted trees have a height which is bounded loga-
rithmically in the number of leaves.

Proposition 22. Leta>b > 1.LetT = (¢, g) be a balanceda, b)-weighted tree with n
leaves. If d denotes the maximal depth of a leaf thfetn

d< log,(a) - (1 +logy(n)).

Proof. Letm & minyeL) g (v). Hencet contains a complete binary tree of depthog,, (m),
hence log(m) < log,(n). T is balanced, s6? <am which is equivalent tal < log, (am).
Therefore,

d < log,(am) = log,(a) - log, (am) < log,(a) - (1 + l0g,(n)). O

Theorem 23. Fora, b, c>1and p(x, y) gx“ybc, GEN(p) is gﬂ]-complete folNP.

Proof. By Propositionl6, we can assume, b > 1. Containment in NP follows from
Theorem 11. We reduce 1-IN-3-SAT to GEN. Let H be a 3-CNF formula with clauses

C1,...,Cy and variablesy, .. ., x,. Let p1, p2, ... be the prime numbers larger than
, df df .

Definea; = pm+i [y, ec, Pj @dbi = pm+i[[xec; pj (1<i<n). LetT = (1, g) be a

complete(a, b)-weighted tree wittk leaves where <k <2n — 1 and L(¢) = {vy, ..., vt}

(such a tree exists by Proposition 20). Furthermore] ket the maximal depth of a leaf of
) df .
t. Definea; = pp4i fori =n+1,... k,

dpd . dpd .
g {aﬁﬁa? b /g 1<i<k}u{b;2b;‘ b/g (i) 1<i<n}

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 279

and
m+k
ST T
i=1 veNd(r)—L (1)

Proposition22 shows thatB, z) is polynomial-time computable.
If H € 1-IN-3-SAT, then there is an assignmégt: {x1, ..., x,} — {0, 1} that satisfies
exactly one literal in each clause. We obtain

m+k

k
ai- [l bi-]I Pm—b—i:‘l_[lpb
i=

IH(X,')ZJ. IH(X,')ZO i=n+1
We considet as anp-generation tree with values

aj ifi=1... nandly(x) =1,

LonE 1 e ifi=1... . nandly@) =0,
a fi=n+1,.. .,k

1

By Propertyl8, I; (rt(¢)), the value of the root, can be evaluated as follows:

Lty = [1 L35 M ®

velL () veNd@)—L ()
k
— l—[(a{)g(vi) . l—[(b{)g(vi) . 1—[(a{)g(vi) . 1—[8
1 l l
I (x)=1 Iy (x;)=0 i=n+1 veNd(t)—L ()
= 1 & 1 . ﬁ a?v .)
1 1 1
Iy (xi)=1 Iy (xi)=0 i=n+1 veNd(r)—L()
a‘p?
k
= [T a- TI bi-] pPmsi : [1 s
I (xi)=1 Iy (x;)=0 i=n+1 veNd(@)—L(¢)
m—+k drd
—]—[piab . I1 W — 4.
i=1 veNd(®)—L ()

Hence(B, z) € GEN(p).

Assume(B, z) € GEN(p). So there exists au, b)-weighted treel”’ = (¢/, g’), where
¢ is ap-generation tree frorB for z. For eachy € Nd(¢") definel, (v) as the value of node
v. Each element oB has exactly one prime factor fropy,+1, ..., pm+k. Sincez has all
these prime factors at least oncemust have at leastleaves. Assumg has more thak
leaves. By Proposition 21, there exist& L (') such thatg’(v) > maxceL) g(x). Iy (v)

has exactly one prime factor froph, 11, . . ., Pmk; SaY pm+i With exponenu?b?/g(v;).
Hence

a’b? /g(vi)-g' (v)

m+i
is a factor ofl, (rt(¢")). Froma®b? /g (v;) - g’ (v) > a?b? it follows thatl, (rt(t)) # z. Sor’
has exactlk leaves. Each primg,, 11, - .., pm+kx Must appear as a factor in a value of some

leaf. Therefore, besides thé with n + 1< j <k, eithera; or b; is a value of a leaf (but not
both) fori = 1,...,n. Definely : {x1,...,x,} = {0, 1} such thatly (x;) = 1 <¢f a! is
a leaf-value of’. Observe thaly showsH € 1-IN-3-SAT. O

280 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295
5. The generation problemGEN(x€ + ky)

So far we do not have upper bounds for generation problems with polynoptials) =
q(x) + ky, whereq is nonlinear andk >2. The obvious algorithm guesses and verifies
generation trees. How large are these trees? To answer this, observe that the trees are of
a special form: when we go from the root to the leaveg-direction, then in each step,
the length of the value decreases by one bit. When we galirection, then in each step,
the length is bisected. It follows that the size of such trees grows faster than any polynomial,
but not as fast as®’”. Therefore, GENp) € NTIME (2°9°"). We do not have to guess
complete generation trees. If a subtree generates somelyatuen it suffices to storb
instead of the whole subtree. We need to store a \a&wery time we go irx-direction. So
we need space @logn). This shows the following.

Proposition 24. GEN(p) € NTIME-SPACE(Z'OQZ",nIogn) if p(x,y) = qx) + ky,
wherek >2 and q is a nonlinear polynomial

Even more, because of the special form of a generation tree for such polynomials, the
generation problem can be solved by special alternating machines: zoamebe gen-
erated viap from A if and only if there existy, ..., z, <z, such that:<|z|, z = z1,
€A, and for all I<i < n, z; = p(yi, zi+1) Wherey; can be generated via from
A and |yi|<%|z1|. An alternating machine can check this predicate in polynomial time
with a logarithmic number of alternations. Furthermore, in existential parts the machine
guesses polynomially many bits. In contrast, in universal parts it guesses logarithmically
many bits.

This discussion shows that GEP) can be solved with quite restricted resources. How-
ever, we do not know whether GEN) belongs to NP. Standard diagonalizations show

that there exist oraclesandB such that BPP ¢ NTIME (2°9°)4 and coNF ¢ NTIME

(2'092")3. Therefore, we should not expect GEN to be hard for any class that contains

BPP or coNP. This rules out many reasonable classes above NP to be reducible(jo) GEN

We consider this as a hint that GEP) could be contained in NP, but we do not have a

proof for this. We leave this as an open question.

Nevertheless, in this section we prove lower bounds. The main result, Th88rasmows

that if p(x, y) = x¢ + ky wherec, k >1, then GENp) is <h-hard for NP. The proof is

difficult for two reasons which we want to explain fptx, y) = x2 + 2y.

1. We have to encode NP-computations into generation problems. For this, we need to
construct an instanag, z) of GEN(p) that represents information about a given NP-
computation. The elementsBinust be chosen in a way so that squaring will not destroy
this information. This is difficult, since squaring a number heavily changes its (binary)
representation.

2. We constructB, z) such that ifzcan be generated, themust be chosen always from
B (and is not a generated number). So the generation tree is linear which makes it easier
to control because every value frarhas to be taken to the poweroéxactly once. On
the other hand, the intermediate result is multiplied by 2 in every step, i.e. the number
generated so far is shifted to the left. We have to cope with this shifting.

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 281

With regard to item 2, our construction makes sure that the size of the linear generation tree
is bounded. So the number of shifts is bounded.B-@are choose numbers that are much
longer than this bound such that each number is provided with a unique stamp. The stamps
make sure that there is at most one possible tree that generlt@articular, this fixes the
sequence of numbers froBithat are chosen fot. This keeps the shifting under control.

The problem in item 1 is more complicated and also more interesting. It comes down to
prove NP-hardness of the following extended sum-of-subset problem.

SO&E {(wl,...,wn,z):EII - {1,...,n}(zi€,wi2=z>}

(In the proof we use a promise problem related to g8t for simplicity we argue with
SOS in this sketch.) First, we reduce 1-IN-3-SAT to S@SSOS and obtain an SOS
instancew = (w1, ..., w2, z). The reduction is such that either ¢ SOS or there is a
selection of exactlyr weights which sum up ta. We choose a badelarger than 2 and
2% wl?. So in the system to basg z and allwi2 fit into one digit. For eachw;, define the
following 6-digit numbers in the system to bdse

a; £ [110000;15,
r: 11000,

Here[w], denotes the number that is representedvbyith respect to bask (the exact
definition is given below). The set of al] and allr; build the weights for the SQSnstance

we want to construct. The intention is to use the weigiwhenevem; is used in the sum
that yieldsz, and to use; whenevetw; is not used. The squaresdfandr; look as follows

with respect to baske.

401 21002 2w 00 0 wll,

2%01 00022 0 01 2 wl.

Note thata,.2 andrl.2 have the same first digit, the same last digit, and the same digit at the
middle position. At all other positions, eithef orri2 has digit 0. In the sum for SQ$Sfor
everyi, eitherqa; or r; is used. Therefore, in systelm the last digit of this sum becomes
predictable: it must bé_, wiz_ This is the most important point in our argumentation.

Also, we choose exactly weightsa; andn weightsr;. With s, da Do wi, 82 df D wl.z, and
Zg s1 — z we can easily describe the destination number for the S@$ance.

z’g[Zn 2nn 02129 2z 0n 27 s2lp.

We obtain the instanceas, r1, ..., az,, r2,, z2) which belongs to SOSif and only if
(w1, ..., w2y, z) € SOS. This shows NP-hardness for $S@8d solves the difficulty men-
tioned in item 2.

We inductively use this technique to show that forcall 1, the following extended sum-
of-subset problem is NP-complete.

SOSﬂ {(wi, ... we2) AT {1} (X wf =2)}.

We need SOSas an auxiliary problem for generation problems. However, we feel that this
new NP-completeness result is interesting in its own right.

282 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

5.1. Notations

In the proofs below we have to construct natural numbers that contain information about
NP computations. In addition, these numbers have to contain this information in a way
such that exponentiation will not destroy it. For this we need to consider numbers with
respect to several basesTherefore, we introduce the following notations. Bgt 2 define
Ap = {0,...,b — 1} to be the alphabet that contaibgligits. As abbreviation we write
Ainstead ofA,. For digitsag, ..., a,_1 € Ap, let[a,_1---aolp a ;?:‘01 a;b'. This means
that[a,_1 - - - agl, is the number that is representeddyy 1 - - - ag with respect to bask.

We will consider vectors of weight® = (ws, ..., w2,) such that certain selections
of these weights sum up to given destination numhers. ., z.. We groupW into pairs
(w1, w2), (w3, wa), and so on. Each pair has a unique stanipits binary representation
such that the destination numhegrshows the same stamp, but all other pairs have Q’s at this
position. This allows us to argue that if we want to reaghthen from each pair we have
to use at least one weight. Moreover, in view of generation problems, we need the stamps
still working if the weights are multiplied by small numbers. Therefore, additionally we
demand that the stampis embedded i digits 0. We make this precise:

Definition 25. Let W = (w1, ...,w2,) andZ = (z1,...,z.) Wheren, c>1. Define
Ze df Qwew W) — z.. We call (W, Z) s-distinguishables > 1, if all bin(w{) have the
same length wherel = 1(c), and if for every 6<j < n there existt >1 andu € 1A*,
such that
1. bin(z.), bin(z,), bin(ngH), bin(w§j+2) € A*0°*u0* A" and
2. foralli # j, bin(ws,; 1), bin(ws; , ») e A*0° 0o AL,

Note that, ifc = 1 thenl = 1(c) is always true and is therefore no restriction on the
length ofl.

5.2. NP-hardness of modified sum-of-subset problems

We want to show that foe, k > 1, the generation problem GEN + ky) is <h-hard
for NP. The proof is such that the NP-hardness of modified sum-of-subset problems is
shown first, and then this is reduced to the generation problems. Our argumentation for the
modified sum-of-subset problems is restricted to instances that meet several requirements.
Therefore, it is convenient to define these problems as pairs, R.) of disjoint sets.

Definition 26. Letc, s >1.

df
LC,S: {(Wv Z) : W: (wlv'--ywzn)s Z: (le'-~azc‘)s

(W, Z) is ns-distinguishable, and
@1 c{l,...,2n}st.forl<i<nholds 2+1el & 2i+2¢1)

(Vme{l,...,c})[z w;"=zm:|},

iel

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 283

Re, 2 {(W, Z): W= (w1, .., wa), Z =1, 20),
(W, Z) is ns-distinguishable, and
~VIC{1,...,2a)(Yme{l,...,¢c})) I:Z w;" ;ézm:“.

iel
Observe that for,s>1, L. s N R,y = ¥, L.y € NP, andR.; € coNP. We show
NP-hardness far = 1 first, and then inductively for highefs.

Lemma 27. For s >1, (L1, Ry) is <ht-hard for NP.

Proof. For s>1, we show that 1-IN-3-SARFP(L1, R1) via reductionf. Let H be
a 3-CNF formula with clause€’s, ..., C,, and variablesx, ..., x, wheren>2. For
o<ig<n—1let

aLom10m,
a; & Qi @n+D 4 on—i=D@sn+D)

df
w2i+1 = [laici1...ciml2

and

df _ _
woir2=[1a;ci1...ciml2,

where
oo — [0 ifxiis aliteralin;,
v o otherwise

and
.. _ [0 ifxis aliteralinC;,
v o otherwise.

Finally, define the reduction g&(H) el (wq, ..., w2, (2)) ford a n(2sn + 1) +mn and

2 Zn2? (@ (01"
Note that|bin(w;)| = d + 1. Letzﬂ 25221 w; — z and observe that
7=n24 4 [d"0"]5 + 2 [(0" 1)1,

Therefore((wy, ..., w2,), (z)) is nsdistinguishable.
Let H € 1-IN-3-SAT. So there exists an assignmeént {x1, ..., x,} — {0, 1} such that
each clause is satisfied by exactly one literal. Let

19421 4+ 1:0<i <nandd(x) = 1)U (2 +2:0<i < n and®(x;) = 0}.

It follows), . ; w; = z and hencé(ws, ..., w2,), (2)) € L1 .

284 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Let H ¢ 1-IN-3-SAT and suppose there exigts {1, ..., 2n} suchthat =}, . ; w;.
Foralli, w; > 2¢.Also,z < (n+1)2¢, since[a" (0" ~11)"], < 2¢. Therefore| contains at
mostn elements. On the other hand, forially; < 2¢ +29-"_ Since(n — 1)(2¢ +2¢7") <
n2? we obtain|/| = n.

For any word a,_1...ap0€ A*, let ali] ﬁa,-. Since (w1, ..., w2), (z)) IS ns
distinguishable] must contain exactly one element from each gaig; 1, wo;12). For
everyk € {0, ..., m — 1} there exists exactly onge I such thatw;[kn] = 1: otherwise, in
bin(}_; . ; wi) there B a 1 apositionkn + where 1<t < n. This isimpossible. Therefore,
if @isdefined suchthak(x;) =1 < 2i + 1€ I, thend satisfies exactly one literal in each
clause. This contradicts our assumption. Herigey, . .., w2,), (z)) € R1s. O

So far we know tha{L1 s, R1) is NP-hard. This is the induction base of our argu-
mentation. Now we turn to the induction step and show how to reduce hardness to pairs
(L¢s, Res) wherec > 0.

Lemma 28. For ¢, s =1, (L¢,251cs Re 25+¢) <M (Letts, Ress)-

Proof. We describe the reductidron input(W, Z) whereW = (w1, ..., wz,) andZ =
(21, ..., z.). Letw = max(W)and choosg = 0(c+1) suchthab & 2! > 4n(c+1)1-we+L.
All w; belong toA,. For 1<k < 2n, define the following weights (wheemeansaccepted
weight andr meangejectedweight).

ax 2 (1100w,

Tk g [100° 1w]p.

Fixanymsuch that K m < c+1. Inthe following we show how to define the right destination
numbery,, . Afterthatwe defing’ (W, Z) = (W', Z")whereW'’ = (a1, az, r1, r2, as, as, r3,

Fdy ...y F2n—1,r2y) @NdZ" = (y1, ..., ye+1). By binomial theorem,
m i (m i . . L
Rk (i >< .)w;g e p A, (5)
i=0,j=0\"1 J
m o (MmN (T i (et2)jti
=2 L b : (6)
i=0j=0\1 J

Observe that ing) each ternb(¢t2i+J appears uniquely: ifc + 2)i + j = (¢ + 2)i’ + j/,
then (sincg < c+2and;j’ < c+2)j = j'andi = i’. Similarly, in (6) each term(¢+2j+i
appears uniquely. Now the idea is, todgtr) denote the coefficient df in Eq. (5), and to
let (1) denote the coefficient @f in Eq. (6). First, we definey (r) andr (¢) for 0<r <d,

whered af (c + 3)m, and then we show that this definition fits to our idea.

(N Ewi™ o ifr=(c+2i+jfor0<j <i<m,
df .
ar(t) = 0 : ifr=(+2j+ifor0<j <i<m, (7)

(Mwp~t . otherwise, i.e., it = (c + 3)i,

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 285

0 : fr=(+2i+jfor0<j <i<m,

O (M(wp= W= (c+2)j+iforo<j <i<m, (8)

(Mwy~" . otherwise, i.e., it = (c + 3)i.

1

Note thatay () andry (t) depend om. We abstain from takingras additional index, since

m will always be clear from the context. Observe that the three cases in these definitions
are indeed disjoint. Say (r) andr(¢) are well-defined. It follows that, (r) andr,(r) are

the announced coefficients from Eg5) and (6). Hence

d
al =Y a(t) - b
=0
and
d
rit =3 k() b
t=0

All a;(r) and allrg (¢) are less thah/4n and therefore belong td,. Hence,

ai' = lax(d) - - - ax(Dax (0)]p ©)
and

rit = [ri(d) - - re(Dre(0)1p. (10)

Egs.) and (8) tellusthat these representations to bdgéer only at positions = 0(c+3).

In order to define the destination numbegy, we show how to transfer a selection of
weightsw to a corresponding selection of weighf$ andr;". Suppose wy = z1 where
the sum ranges over a suitable collectiomafeights. Now choose;" for every weight
wy that is used (i.eacceptedlin the sum}_ wy; and choose;” for every weightw; that
is not used (i.e rejected in this sum. The choice of whether to takg or ;" only matters
for positionst O(c + 3). By Egs. (7) and (8), at these positions, eithjérhas digit 0 and
ag has digit("?) (:)wy' ™', ora}* has digit 0 andy" has digit("}) (;)w{ " (note that > 0
sincei # j). So when we consider the sum of all choggnandr;" at such a position, then
either we see digit

(1)0), Zit = (7))

or we see digit

m [i m i
V() 2ot = (1) ()
(l)<])krejected k l J "

286 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

wherezg a nandz; =), cw w! —z; as defined above. This motivates the following digits
of the destination number,:

(’j’)(;’.)zm_,» s ifr=(c+2)i+jfor0<j <i<m,
y(t)ﬂ (’?)(;‘)_m—i ifr=(c+2)j+ifor0<j <i<m,
> (Mw™" : otherwise, i.e., it = (c + 3)i.

Here again we abstain from takingas index, sincenwill be clear from the context. Define
themth destination number as

Y ZLy(d) - y(D)y(O)ls.

To finish f's definition, let f(W, Z) & (W', Z') where W' = (a1, az, r1, r2, as, aa, rs,
r47 AR] r2}’l717 r2n) andzl = (yl’ R) }’c+1)

Claim 29. If (W, Z) is (25 + c)n-distinguishable then f(W,Z) = (W', Z') is 2ns
distinguishable

Proof. Fixm = ¢+ 1 and letd = (c + 3)m. Observe that for evetl, ay(d) = ri(d) = 1.
By assumptionp = 2" for I’ = 0(c + 1). Hence one digit fromi,, corresponds exactly
to !’ bits. By Egs. 9) and (10), for ever, [bin(a{™)| = |bin(t™)| = d - I’ + 1. This
number is= 1(c + 1).

We need to understand the structurgof, = (3, c w» w1 — ye11, the complement
of y.4+1. For this end, define

(’7)(;)2,,,,,» s ifr=(c+2)i+jfor0<j <i<m,
oLl (N o fr=(c+2)j+iforo<)j <i<m,
> (M)wmt . otherwise, i.e., it = (c+ 3)i.
wew

Observe that for all, y(7) + y(t) = Z,f’;l(ak(t) + r¢(¢)). Hence

@ - yDyOl + @ - YDyOl = 3 w”

wew

and therefore,
Yer1 =) - - YD)y (O)]p.

Choose anyj < n and considet:z; 1 andaz;». By assumption(W, Z) is (25 + c)n-
distinguishable. So there exist 1 andu € 1A* such that

1. bin(z,), bin(z.), bin(ws; , 1), bin(ws; ,,) € A*Q&s+n,0@s+an At gnd

2. foralli # j, bin(w$; ;). bin(ws, , ,) € A*Q@FenQlulg@s+an Ar,

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 287

If one multiplies a binary number of the fora0”'u0” A’ by m = ¢ + 1< 2°, then this
yields a number of the formd*0" —<u'0" ~¢ A'*+< whereu’ € AI*¢. So in our case, there
existr’ > 1 andu’ € 1A* such that

1. bin(mzc), bin(mz.), bin(mws; 1), bin(mws ;) € A*0*"u'0%" A" and

2. foralli # j, bin(mws,), bin(mws, ,,) € A*0*"01027 A",

Lett, = c + 2. For alli, a; (t,) = mwy, ri(ty) = 0, y(ty) = mz., andy(t,) = mz.. So for
t = t/—}—l/ e

1. bin(y,), bin(y,,), bin(agf’/+l), bin(ag‘Hz) € A*0Zn, /02 Al

2. foralli # j, bin(ajy:_). bin(aj, ,) € A*0%"0" 102" A”" and

3. foralli, bin(rg 1), bin(ry: , ,) € A*02m0 1027 AT

We obtain the analogous three statements-for, andrz;,» by looking at the position
tr = 1. Here for alli, a;(t,) = 0, ri(t,) = mwy{, y(t,) = mz., andy(t,) = mz.. Hence
(W', Z") is 2ns-distinguishable. O

Claim 30. If (W, Z) € Le.2g1c, then f(W, Z) = (W', Z') € Ley1.

Proof. By Claim29,(W’, Z') is 2ns-distinguishable. Letbe as in the definition df . 2.,

and letT £ {1, ..., 21} — I. Note|I| = [T| = n. We choose ali; such that I and allr;
suchthat € 1. Note that this collection of weights frobi’ is suitable to show thaW’, Z’)
belongs td_.+1 s (i.e., when numbering the weights Bf from 1 to 4, then the indices of
chosen weights formai where 2+ 1el’ & 2i +2 ¢ I’). Fixanym € {1, ..., c + 1}.
Our selection of weights induces the following sum:

P W
kel kel
= > [ar(d) - ar(DarO)]p + Y [re(d) - - - r(Dr(0) 1.
kel kel

We have seen that alf (r) and allr, (¢) are less thah/4n. So for everyt,

O a0+ X @

kel kel

is less tharb. This means that if we consider the weights to blassd sum up digit by
digit, then there is no sum that is carried forward. It follows that

7 =@ (D7 0)]p.

From Egs. {) and (8) we obtain

() ke wi™ o ifr=(c+2i+jforo<j <i<m,
dO =1 () Tpqwi™ ¢ ifr=(c+2)j+iforo<j <i<m,
(") peww™ " : otherwise, i.e., it = (c + 3)i.

So for allt, /(1) = y(¢) and therefore;’ = y,,. This showsW’, 2"y e Lo415,. O

288 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295
Claim 31. If (W, Z) € R¢ 254c, thenf(W,Z) = (W', Z") € Rey1-

Proof. By Claim 29, (W', Z’) is 2ns-distinguishable. Let us assuni®’’, Z’) ¢ R.i1,

i.e., there exist$, andl,, subsets ofl, ..., 2n}, and there exists some € {1, ...,c+ 1}
such that
>oap+ X = yme (11)
kel, kel

Lett, = (c+2)(m —1). Forallk, ar(t,) = mwg, rr(t,) = 0, andy(t,) = mz1. In Eq. (1),
we can consider the weights to basand can sum up digit by digit without obtaining a
sum that is carried forward. By looking at positignwe obtainy(z,) = Zkela a(ty)
and hence

71 = E: Wy

kel,

So we found a collection of weights frol whose sum ig1. This is a contradiction.
This complete the proof of Lemn28. O
Lemma 32. Forc, s >1, (Lc, R..;) is <hf-hard for NP.

Proof. The proof is by induction or. The induction base is by Lemn®2v while the
induction step follows from Lemma 28.0

Theorem 33. For ¢ > 1, the following sum-of-subset problemiﬁ]-complete folNP.
df .
SOS ={(a1,....an,b) : 31 C{1,....,n}(X_;c;af =Db)}.

Proof. Clearly, SOS e NP. ForgivenW, Z)whereW=(w1, ..., wz,) andZ=(z1, ..., Z¢)

let (W, Z) % (wy, ..., wan, z). Observe(L 1, Re.1) <PPSOS viaf. So by LemmaB2,
SOS is NP-hard. O

5.3. NP-Hardness dBEN(x¢ + ky)

Starting from Lemma 32 we reduce NP-hardness to generation problems. First, we show
this forc > 1 and then we treat GEN + ky) in a separate lemma.

Lemma 34. For ¢ >2,k>1ands 2 5k2(c + 5), (Le.s, Re.s) <PPGENKE + ky).

Proof. We describe the reductidron input(W, Z) whereW = (w1, ..., wp,) andZ =
(z1, ..., zc). We may assume that all; andz; are divisible by 2**. Otherwise, uséV’ =
(25 wq, ..., 2 wy,) and Z/ = (2MSzq, 22Nz, . 2957) instead ofW and Z. Let
lﬂ [bin(w{)| and note that > cns. If k = 1, then we use = 0 as auxiliary weight.
Otherwise, ifk >2, then we use = 2¢~D/c, Observe, that/ — 1) is always divisible by

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 289

¢, since(W, Z) is nsdistinguishable.

BY (a, 271 £ 1) U {wik, wok, wak?, wak?, ..., won_1k", wonk"}, (12)
c—=1 . n-1 |

ALk 42 Y ra YK Y K (13)
=1 i=0

If n2'-1< 7z, < n2l, then (W, 2) X (B,), otherwisef (W, 2) & (@, 0). In the following
we show(L. s, R..;) <IGEN(x¢ + ky) viaf.

Casel: Assume(W, Z) € L. ;. Hence there exist weightsy, ..., x, € W, such that
Y1 x¢ = zo, wherexy € {w1, wo}, x2 € {ws, wa}, and so on. Therefore2'~1<z, <
n2! and sof (W, Z) = (B, d). We describe the generationafClearly, yo do-14 1can
be generated. Fgr>1, let

. el
Vi Tk yi g+ Kxp) 4 YK (14)
i=1

If y;_1 can be generated, then so ggnfor k = 1 this is trivial. Fork > 2, start withy; _;
and apply the generatiomew = a“ + k - yoig for ¢ — 1 times. Then apply the generation
ynew = (k/x ;)¢ + k - yoid (note thatk’/x; € B). This yieldsy,. Hencey, can be generated.
From Eg. (4) we obtain

n c=1 n=1
Y =k Y XK@ D et YK Y K
i=1 i=1 i=0

It follows thatd = y, and therefore(B, d) € GEN(x¢ + ky).

Case2: Assume(W, Z) € R.;. If z. < n2=Y or z.>n2', then f(W, Z) = (4, 0) ¢
GEN(x¢+ky) and we are done. So letus assurBe 1 <z, <n2' andf (W, Z) = (B, d) €
GEN(x¢ + ky). In the remaining proof we will derive a contradiction which will prove the
lemma.

If k>2, then from Eq.13) andz. < n2' we obtain

c—1 n—1
d=kcn(Zc+21_l+l)+aC~ Zkt . Z Kic
i=1 i=0
n—1
<k"m2 +27 4 D) +at kY K
i=0

n—1 .
— (nzlkcn + 21—1kcn +kcn) +a- Z kCKi€
i=0

n.
<+ D2k +a¢- Y K€
i=1
< (n + 1)21kcn +Clckcn+l.
Hence

k=1=d<mn+12, (15)
k=22 = d < 2K, (16)

290 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295
Claim 35. There existn >1, yo€ B andx, ..., x, € B — {0, 2/~1 + 1}, such that

m .
d=k"yo+ > k" 'x;. a7
i=1

Proof. We have seen that> cns From Egs. 15) and (16) it follows thatl < 2/*"5-2 <
222 For allx € B — {0}, |bin(x®)| >1. So if zcan be generated and is not alreadijn
then|bin(z)| >1 and therefore >2'~1. If we apply the generation rule’ + ky for x = z
and anyy, then, since->2, we obtain;’>2%-2 > 4 which cannot be used to generate
d. Similarly, if we apply the generation rulef + ky for x = 2/~1 + 1€ B and anyy,
then we obtairy’ >2%-2 > 4 which cannot be used to generateHence, there exists a
generation ofi such that in each stepjs chosen fromB — {0, 2/~1 + 1}. Fromz. >2/~1
and Eq. (13) it follows that >2'k“"* and hence ¢ B. Therefored can be generated in the
following linear way: there existt > 1, yo € B, andxz, ..., x, € B — {0, 2/~1 4+ 1} such

that if y; ﬁxic + k - yi—1 for 1<i <m, theny,, = d. This is equivalent to the statement in
the claim. O

Claim 36. 1.yp =2/"1 4+ 1.
2. If k =1,thenm<2n.
3. If k>2,thenm = cn.

Proof. First,we shown < ns/k? Assumen >ns/k?andk = 1.By Claim35,d > m2'~1.
From Eq. (15) it follows thadl > 2/~ 1ns/k?>2*1.n(c +5) > d which is a contradiction.
Assumem >ns/k? andk >2. By Claim 35,4 > 2!~1k”~1. From Eq. (16) it follows that
d > 2'ks/k=2 5 2lk5n(e+3) - g which is a contradiction. Therefore,

m < ns/k. (18)

Assumeyp # 2'"1+1,i.e.,y0 € B—{2'~1+1}. By assumption, alb; andz; are= 0(2°").
So all elements iB — {2!~1 + 1} are= 0(2") (if k>2, thena = 2¢~D/c>2"5) From
Claim 35 we obtaind = 0(2"). However, Eq. (13) says that = k" (2"%). Since 0<
ke < 2ken 215 we haved # 0(2™). This is a contradiction and we obtaig = 2/~ 1 +1.
We have seen that all elementsin- {2/ ~1 + 1} are= 0(2"%). By Claim 354 = k™ (2").
By Eq. (13),d = k" (2"%). By Eq. (18) k™ < 28 < 2" andk" < 2. Therefore, ifk >2,
thenm = cn. If k = 1, then by Claim 35¢ > (m + 1)2'~1. So by Eq. (15)m<2n. O

Claim 37. Foreveryj 1< j <n,there exists exactly one i such thate {wp;_1k/, wo;k’}.
If k>2,then thisiis determined hy= jc.

Proof. Fixj. By assumption(W, Z) is ns-distinguishable. So there exist 1 andu € 1A*
such that biiz,), bin(ng_l), bin(ng) € A*0™u0" A" and for alli # j, bin(ws; _,), bin
(ws,;) € A*0" 0O A, Letr & ons + lu| + t. In the following calculation we are mainly
interested in the lowarbits of all x{. If « a [1]2, then

(wy;_q mod 2) = o2™F + (19)

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 291

and
(wg; mod 2) = a2t 4 By, (20)

wherefy, i, < 2'. We partition the set of indiced, ..., m}.
BE G 1<i<m A x; = woj_1kI},
LG 1<i<m Ax; = wakl),
BYA L m = (LU).

From Eg. 7) we obtain

d= Y K" (waj_1k)) + Y K" (waik)) + X K" xS + kM yo. (21)
ielp ield ielJs
Now we study Eq.21) modulo 2. We start with the first two sums and consiait%i1 and
ng modulo 2. By Egs. (19) and (20), these terms consist of an upper parto®&)
and of a lower part (i.e 81 or 5). Let ey (resp.,e2) denote the sum of the upper (resp.,
lower) parts:
df

1= Z km—ikjc L g 2ns+ + Z km—ikjc . OcZnS_H, (22)
iely ielJy

e X S kmigicp 4+ Y KMTikicp,, (23)
iely i€l

Moreover, letez denote the sum (this time modul6)df the last two terms in Eq2()
egg ((> k'"_ixi” —l—kmyo) mod Z) . (24)
ielJs

Clearly,d = e1 + e2 + e3 (2"). We argue thatd m_od 2Z)=e1+ex+e3.
For alli € J3, eitherxf = a® # 0 orx{ = x'k", where birix’) € A*0"0“/0"* A’ and
1<i’<n. Therefore, for all € J3,

(x{ mod 2) < 2'k“". (25)
Moreover,(yo mod 2') = 1. Egs. 24) and (25) allow an estimation ef.

€3< Z km—iztkcn _‘_km.

ielJs

If k = 1, then by ClainB6, e3<2n2" + 1. If k> 2, thenez <2k k™ + k™ andm = cn.
So for allk,

ez < 215H—L (26)
Estimatee, with help of Eq. 23) and Claim 36

e gmk’”‘lkjcz’ <25knc+t < 2ns+t—l. (27)

292 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

Together with 26) this yields
e2 +e3 < 25 (28)
Finally we turn toe;. Eq. 22) can be written as

ep = 2T Jerm S~ (29)

ieJiUJy

Thereforegy < 2ultnsti+5kne <or—1 Together with 28) we obtaire; + es +e3 < 2" and
hence

(dmod 2) = ey + e2 + e3. (30)

By Eq. (13),d = k“(zc + 1) (2"). Recall that biliz.) € A*0"u0" A’. Therefore,
(ze mod 2)=u2"+" 4 y wherey<2'. Observec (a2t 4y 4 1) <2ken plulpns+i+1 < or
This yields

(d mod 2) = a2k 4 k" (y 4 1). (31)

Compare Egs.30) and (31). The termg anda2"t k" are divisible by 25!, while the
termses +e3 andk” (y+1) are less than2*. It follows thate; = «2™ k" and therefore,
by Eq. (29),

KT =k, (32)
ieJiUJ2

Fork = 1thisimplies|J1 U J2| = 1, while fork > 2 this implies|J1 U J2| > 1. Assumek > 2
and leti’ be the maximum ofi; U J». The left-hand side of2) is= k"<~ (k"<~i'+1). So,
it must be thak<"—/) < knc=i"+1 and thereforek~" = k=) HenceJ1 U J» = {jc}.
This proves Claim 37. [J

Assumek = 1. By Claims 35-37, there exist € {wy;_1, wy;}, such that
n
d=@ 1+ 14+ Y % (33)
i=1

Together with Eq.13) this shows. = Y"7_; X;.So(W, Z) ¢ R, which contradicts our
assumption.

Assumek >2. By Claim 37, for everyj, x;c = X; - k/ whereX; € {wg;_1, wo;}.
Moreover, it follows that for every; if i % 0(c), thenx; = a. So Eq. (17) can be written as:

n) ,
d — kmyo + Z km—]cx;'c + Z km—lxiC (34)
j=1 ie{d,...m},
i#0(c)
n i
= k" (a¢ 4+ 1) + k"¢ Z f(; +a° Z Jne—i (35)
Jj=1 ie{l,...,nc},

i £0(c)

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 293

Observe that the right-most sum B5) can be written as
K“—1 k"—-1 -

1 ; nil ie
— = k' - k'c.
k=1 k=1 i=1 =0

So we can continue to transforn
n c—1 n-1 |
nc Cc nc —=C C 1 ic
d=k"®W+1)+k ij—{—a -Zk -Zk .
j=1 i=1 i=0

Together with Eq.13),

n

j=1
So againW, Z) ¢ R, which contradicts our assumptiont]

Lemma 38. If p(x, y) = x + ky, where k >1thenGEN(p) is <h-complete folNP.

Proof. We have already seen the upper bound (LeniZrand the lower bound for the
casek = 1[13], so let us focus on the lower bound for 2. We < fP-reduce(L1 2, R1.2t)

t0 GENGx + ky). Let W Z (w1, ..., wan), Z¥ (2) such thatw;, z € N (1<i <2n). Let
¢ L bin(kz2 ;)| andG L 241, Define

f
01 L k(G + wy),
f
2 L k(G + wo),
v X6 4w for3<i<on
and
T kG +2).

Now let(W, Z) € L1 2. Thenthereisan = {i1, ..., iy} € {1,..., 2n}suchthatforall €
{0, ..., n—1}exactlyoneof2i + 1, 2i + 2}isinland)_; . ; w; = z.Assumethat; < i, if
Jj <t.Thenp(p(... p(p(vi, viy), Vig), - - -, Vi,_4), Vi,) = k(G+wj)+k Z';Zz G+tuw;; =
k(nG +z) =27

Now let(W, Z) € Ry 2 and assumethéty, . . ., vz, z') € GEN(p). Observethat; > G
foralli € {1,...,2n}. LetT be a generation tree faf from {vy, ..., v2,} with mleaves.
Then obviously' >3, ¢ tpatnr) k@ G. Since for every leaf iif except one there is a path
gwith r(g) >1we haveikG + G > nkG +kz = 7' > (m — 1)kG + G and thereforen <n.
Suppose thereis adre {0, ..., n — 1} such that neither,; ;1 norvy; 2 is a value of a leaf in
T. We know that(W, Z) is 2kn distinguishable. Adding to aw; (1< j <2n) andnGto z
does not interfere with the distinguishing gaps of the values by the cho@awbfltiplying
some of the values witky decreases the size of the distinguishing gaps by at ffoost + 1 .
Hence there is @ € 1A* and ar >1 such that bitt’) € A*0* 40" A" and for all j # i,
both bin(vz;+1) and bin(vy; 4 2) are iNA*0F0l0F" A*. Since in every step of the generation
the size of the distinguishing gap is reduced by at milmgfk + 1] and since there are at

294 E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295

mostn — 1 steps in the whole generation processsannot be generated. Hence, for all
i €{0,...,n—1}exactlyoneelement by .1, vy12}isavalue ofaleafiandm = n. If
there were a pathin Twith r(¢) > 1themkG+G > 7/ >k?G+(n—2)kG+G >nkG+G
() would hold. Therefore fpatll’) = {I"~1} U {Ir : 0<i <n — 2}. Sincevy, v2 >kG the
value of the leaf with the paizl"i‘1 has to be one dfv1, v2} otherwise agaiit«) would hold.
So there ar¢iq, ..., i,} such that, € {1, 2} and

7 =p(p(... p(p(ig, Vip), Vig),s - -+, Vi 1), Vi)
=k(G 4+ wi,) +k Z’;zz G + w;
=k(nG + Z'}-Zl wi;)
=k(nG +2)

-»v2n,2') ¢ GEN(p).

and therefor{:'}:1 wi; =2 which is a contradiction. Henaeq, . .
: . -

We combine the auxiliary results proved so far and formulate the main result of this
section that follows from Lemmat2, 34, and 38.

Theorem 39. For ¢, k >1, GEN(x® + ky) is <h-hard for NP.

6. Conclusion

We summarize our results on the complexity of GENin the following table.

Operation Lower bound Thm Upper bound Thm

Arbitrary Recursively 2 Recursively 1
enumerable enumerable

Length-monotonic EXPTIME 5 EXPTIME 3

Length-monotonic EXPTIME 5 EXPTIME 3

and commutative

Length-monotonic PSPACE 7 PSPACE 6

and associative

Length-mon., assoc., NP 9 NP 8

and commutative

All polynomials NP 9 NP 11

#q(x) +ky

x+y NP 9 NP 8

X-y NP 16 NP 8

xybe NP 23 NP 11

All polynomials NP 39 NTIME2°Y") 24

=q(x)+ky

x¢+ky NP 39 NTIME(2'°92") 24

E. Bohler et al. / Theoretical Computer Science 345 (2005) 260—-295 295

Every lower bound is given by the fact that there exist$ itnm the considered class of
operations whose generation problem is complete for the respective class. All operations
are polynomial-time computable.

The gap between NP and NTIMP_*OQZ”) in the last rows of the table below calls the
attention to an interesting open question: does GEMN) +ky) belong to NP ifjis nonlinear
andk >27? Since the generation trees for these polynomials may be of super-polynomial
size, the obvious algorithm of guessing and verifying the tree is not applicable. Also, we
could not find more compact representations as in Thedrkrithere are generation trees
where almost all nodes take different values. Therefore it may be possible that we really
have to calculate all of them. Perhaps there are special polynomials of the foym ky
for which the closure is very regular, as in Theorem 11, case (1)? Another possibility to
solve the problem could be to have a closer look at the restricted alternating machines we
describe in Section 5. What are the exact capabilities of these machines?

References

[1] L. Babai, Trading group theory for randomness, in: Proc. 17th Annu. ACM Symp. on Theory of Computing,
1985, pp. 421-429.
[2] L. Babai, E. Luks, A. Seress, Permutation groups in NC, in: Proc. 19th Annu. ACM Conf. Theory on
Computing, 1987, pp. 409-420.
[3] L. Babai, E. Szemerédi, On the complexity of matrix group problems, in: 25th Annu. Symp. on Foundations
of Computer Science, 1984, pp. 229-240.
[4] D.M. Barrington, P. Kadau, K. Lange, P. McKenzie, On the complexity of some problems on groups input
as multiplication tables, J. Comput. System Sci. 63 (2001).
[5] E. Bohler, C. GlaRer, B. Schwarz, K.W. Wagner, Generation Problems, 29th Internat. Symp. on Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 3153, Springer, Berlin, 2004,
pp. 392—-403.
[6] J.-Y. Cai, M. Furst, PSPACE survives constant-width bottlenecks, Internat. J. Found. Comput. Sci. 2 (1991)
67-76.
[7] A.K. Chandra, D. Kozen, L.J. Stockmeyer, Alternation, J. ACM 28 (1981).
[8] S.A. Cook, Characterizations of pushdown machines in terms of time bounded computers, J. ACM 18 (1971).
[10] M. Furst, J. Hopcroft, E. Luks, Polynomial time algorithms for permutation groups, in: 21th Annu. Symp.
on Foundations of Computer Science, 1984, pp. 36—41.
[11] Y.V. Matiyasevich, Enumerable sets are diophantine, Dokl. Akad. Nauk. SSSR 191 (1970) 279-282.
[12] C.C. Sims, Computational methods in the study of permutation groups, Comput. Problems Abstract Algebra
(1970) 169-183.
[13] P. van Emde Boas, Complexity of linear problems, Proc. Fund. Comput. Theory Conf. (1979) 117-120

