
MATHEMATICS

Sofling arrays by means of swaps

Proceedings A 86 (2), June 20, 1983

by N.G. de Bruijn

Eindhoven University of Technology, Dept. of Mathematics & Computing Science,
P.O. Box 513, Eindhoven, the Netherlands

Communicated at the meeting of January 31, 1983

ABSTRACT

As a preparation to the study of a particular sorting machine, the sorting of arrays by sequences
of swaps is treated in this paper. In particular it is shown that if a sequence of “miniswaps” sorts
the worst possible arrangement of an array, then it sorts every arrangement of that array. The case
of permutation arrays was treated before by R.W. Floyd.

1. INTRODUCTION

If (o(l), o(n)) is an array of real numbers, say, and if 1 I i < j 5 n, then the
swap S, is the operation that sorts the pair (cl(i), a(j)). That is, if o(j) < a(i) it
interchanges the entries a(i) and a(j), and if a(i) ~o$j) it leaves them un-
touched.

We consider a particular kind of sorting programs consisting of sequences of
swaps only. Such a sequence is given by a sequence of pairs (i,j), and the
sequence is fixed before the actual sorting starts. (One can also think of sorting
programs where the selection of the next pair (i, j) depends on what happened
during the execution of the previous swaps, or even on comparison of pairs
(cr(i),a(j)) without actually swapping these entries, but these kinds of sorting
are not to be considered in this paper.)

We shall make a further restriction: the swaps will be required to be mini-
swaps, which means that always j = i + 1.

A previous paper [2] devoted to such swap sorting programs exclusively dealt
with the sorting of arrays where a(i) #a(j) for i# j, in particular permutation
mappings. For the applications we now have in mind (see [3]) that restriction is

125

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81133056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

inadequate. In particular we have to deal with arrays of length 3n, which
contain a minimal value m at least n times and a maximal value A4 also at least n
times. Such a restricted kind of arrays can be sorted by shorter swap sequences
than those needed in the general case.

The main result of this paper is Theorem 4.1. It says that if a sequence of
miniswaps sorts the anti-sorted arrangement of a given content then it sorts
every arrangement of that content (for the notions used in this sentence we refer
to section 2). The special case of permutation arrays is due to R.W. Floyd (see
[4], section 5.3.4, problem 36, p. 241; solution p. 640; two further proofs are
presented in [2]). The proof of Theorem 4.1 will follow the idea of one of the
proofs given in [2] for Floyd’s theorem.

In section 5 we present a generalization of Floyd’s theorem in a different
direction. It is restricted to permutation arrays again, but it admits both mini-
swaps and minicoswaps.

2. SORTING OF ARRAYS

Let W be a linearly ordered set, and let n be a positive integer. Then M(W, n)

denotes the set of all mappings of W into { 1, . . . , n}. With a E M(W, n) we can
associate the array (a(l), . . . , a(N)).

IfwE W,a~M(W,n)thenthenumberofi~{l,...,n}witha(i)=wiscalled
thefrequency of w in a. If both a and /3 are in M(W, n) we say that a and /I have
the same content if every w E W has in a the same frequency as in /3.

If n is a positive integer then P(n) will denote the set of all bijective mappings
71 of (1 , . . . ,N} into itself. The elements of P(n) are called permutations. If
R E p(n) the array (n(l), . . . , n(n)) is called a permutation array.

If a E M(W, n), rr E P(n) then the composite mapping an is called a rearrange-
ment of a. It has the same content as a.

There is at least one rr E P(n) such that the composite mapping an is sorted,
i.e. a(n(i)) I a(rc(j)) for all i, j with 1 pi< j 5 n. Since an has the same content
as a, the sorted rearrangement an is uniquely determined, in spite of the fact
that there may be more than one possibility for II (this happens if at least one
WE W has frequency > 1 in a).

If a E M(W, n) there is also at least one z E P(n) such that an is anti-sorted,
i.e. a(n(i))za(n(j)) for all i,j with 1 si<jsn.

If a EM(W, n), and if i, j satisfy 1 pi< jl n, we can define a mapping y as
follows: y(k) = a(k) for all k which differ from both i and j,

y(i) = min (a(i), a(j)), r(j) = max (a(i), a(j)).
This y will be denoted by $a. It is not to be considered as the composition of
mappings Sti and a: the SC is not defined as a mapping W+ W. We have to
consider S, as an operator that maps M(W, n) into itself.

This operator S, is called a swap. Obviously Siia has the same content as a.
If 1 li< n, j= i+ 1 we call S, a miniswap, and denote it by S;.
If 1 si, <j, sn, 1 I iN<jNsn then the composition

(2.1) silj, **a SiNjN

126

(which is again an operator that maps M(W,n) into M(W,n)) is called a
composite swap operator. The case N=O is included, which means that the
identity operator is also considered as a composite swap operator. If all factors
in (2.1) are miniswaps, i.e. ji = il + 1 ,..., jN=iN+ 1, then (2.1) is called a
composite miniswap operator.

If T is a composite swap operator and a E M(W, n), then Ta E M(W, n), and
Ta has the same content as a.

If Ta is sorted then we say that T sorts a.

3. A PARTIAL ORDER IN M(W, n)

Let W be a linearly ordered set, and let n be a positive integer. If a and /I are
in M(W, n) we write a I /I if and only if there exists a composite swap operator T
such that a= Tfi.

This is a partial order relation. Transitivity is trivial, so it suffices to show
that if both a 5 /I and p I a then a = /I. A way to prove this is to consider the
number of inversions. An inversion of a is a pair i, j with 1 li<jln and
a(j) > a(i). It is easy to show that if S is a swap then Sa has fewer inversions
then a.

We can show that miniswaps preserve this partial order. We first show

THEOREM 3.1. Let 1 Ik<hln, 1 lien, aEM(W,n). Then SiSkhoISia.

PROOF. If the sets {i, i + l} and {k, h} are equal we have SiSkha = $a. If these
sets are disjoint then SiSk,,a= S&a which is l&a by the definition of I.

If &a = a we have SiSkha = &a; if Sio = a we use the fact that S&o I a by
the definition of 4, and again we get S&,oISia.

The remaining cases are easily checked by inspection. In each case we see that
we get from &a to S&o by one or two swaps. For example, if i= k, i+ 1 <h,
a(h) I a(i + 1) I a(i) then SiSkho shows the values a(h), a(i+ l), a(i) at i, i + 1, h,
respectively, and Sio shows the values a(i+ l), a(i), a(h). We get from the latter
to the former by two swaps, viz. SiSi+ i,h.

REMARK. In Theorem 3.1 we cannot replace the miniswap by an arbitrary
swap. See [2], Remark 7.2.

THEOREM 3.2. Miniswaps preserve the partial order. That is, if both a and /3
are in M(W, n), and p I a, 1 I i < n then Sip 5 So.

PROOF. Since we can get from /l to a by a sequence of swaps it suffices to
consider the case where p = &a. Here we can apply Theorem 3.1.

4. COMPOSITE MINISWAP OPERATORS THAT SORT EVERY REARRANGEMENT

Let S be a composite miniswap operator. In order to check that it sorts all
arrays of a given content it suffices to check that it sorts the anti-sorted array
with that same content. This is shown in the following theorem.

127

THEOREM 4.1. Let W be a linearly ordered set, and a E M(W, n). Let a0 and al
be the sorted and the anti-sorted array with the same content as a. Let T be a
composite miniswap operator such that Tal = a+ Then Ta= Q.

PROOF. We can obviously get from a to a,, by a sequence of swaps. From this
it can be derived that we can get from al to a by a sequence of swaps: take p,
defined by p(i) = a(n + 1 - i), get from p to Do by a sequence of swaps, and this
can be reinterpreted as the passage of ai to a by a sequence of swaps.

So a I al. If T is a composite miniswap operator we get Ta I Tal by repeated
application of Theorem 3.2. Since Tal = & we infer that Ta cannot have more
inversions than ao. Since cro has none, the theorem follows.

EXAMPLE. We present a case that has something of the flavour of the example
to be treated in section 5. We omit the cases n = 1 and n = 2 which are trivial and
exceptional.

Let n be a positive integer, n ~2, let q be the largest odd number not ex-
ceeding n, and r the largest even number not exceeding n. Define the operators
Q,R, T,, T,, by

Q=S,S& . . . &-,, R=S,S& . . . Sr-,,

T,=R, T2=QR, T3=RQR, T4=QRQR, T,=RQRQR ,....

We can show that T, sorts al. We shall not present a formal proof of this,
but just show what happens in the cases n = 6 and n = 7. If we observe along
which lines the numbers move in figs. 1 and 2, we understand the patterns for
general n. The top line in the diagram presents the array we start from, the next
line is obtained from this line by application of R, the third one from the second
by Q, etc.

Figure 1 Figure 2

These sorting programs were presented in [4]. (Excercise 37, section 5.3.4; the
solution refers to H. Seward (1954), A. Grasselli and to Kautz et al.)

128

5. A SPECIAL KIND OF ARRAYS

In this section we take a particular kind of arrays that will play a role in the
proof (see (31) that a certain sorting machine invented by Armstrong and Rem
(see [l]) sorts the way they claim.

We take n > 1, and we consider arrays of length 3n with values in some
linearly ordered set IV. W has a minimal element m and a maximal element h4,
and the elements of the array satisfy

(5.1)
1

a(l)= . . . =a(n)=m, mrcr(n+l)~...~cr(2n)~M,

a(2n+l)=...=o(3n)=M.

We shall describe a composite miniswap operator that sorts every rearrange-
ment of a. As in section 4, let q be the largest odd number not exceeding n, and
r the largest even number not exceeding n. We define

Q=SZn+ZSZn+4 *a* ~Zn+g-1,R=~zn+~Szn+3 -** Szn+r-1

(where Q is the identity if n = 2), and

Kj=SiS;+1 . . . Szn (i= l,..., 2n).

With these abbreviations it will turn out that

(5.2) (Q&)R(Q&n - I JR a.. (QK~)R(QKI)

sorts every rearrangement of (5.1). But in order to prove a related statement
(see (5.4)) we shall economize a bit on (5.2) by deleting some factors that will
turn out to be superfluous anyway. The fact that these factors can be deleted
corresponds to the triangles of m’s and M’s in the upper right and lower right
corners of fig. 3, where swaps have no effect.

We define, for m=0,...,4n-2

(5.3) Z,=l7. J~Z~j~OAO<m-2j<nAj~m+l-2n 2n+m-2j. S

We agree that (5.3) represents the identity operator when the product is empty
(i.e. when m = 0 or m = 4n - 2). And we note that the factors in the product
commute, since generally S,S, =S,S, if [p-q) > 1. Therefore we do not have
to prescribe the order of the factors in (5.3). We also note that if in (5.3) we
would delete the restrictions jr 0 and jl m + I - 2n we would have 2, = Q or R
according to m even or odd.

As a refinement of the statement about (5.2) we now claim that

(5.4) @4, - 2KZn)Z4n - 3 -. . (zZKZ)& (ZOKI)

sorts every rearrangement of a (if a satisfies (5.1)). By Theorem 4.1 it suffices
to check that it sorts the anti-sorted rearrangement of a. We can prove this by
describing how the various entries move in a pattern we depict in fig. 3 for the
case n =4 with the entries m, m, m, m, a, b, c, d, M, M, M, M where
m I a I b I c 5 d 5 M. At the end of each line the operation that produces the
next line is shown.

129

YMMMd c b a mmmm
/

MMMMd c b a mmmm
\/

mMMMMd’c
\\\\\ \ b’a ~!II!II!I h M M M ‘M ‘d ‘c ‘b ‘a ni h &

Illlllll
mMMMMd c x II x II

b ma mm b ma mm
J

r”“\\\b ,x, I mmMMMMd c

I I I I 1 I I I x x”
mmMMMMdc mbma

mmmmabc

IIIII~IlxlI

Figure 3

ZoKl

4

Z2K2

23

Z4K3

Z5

Z6K4

27

&KS

z9

ZlOK6

ZlI

Z12K7

213

Z14Ks

It would not be hard to describe the equivalent of fig. 3 for the case of general
n in formal terms. What happens in the last n columns is closely related to figs.
1 and 2.

We shall now use the sorting property of (5.4) in order to show the sorting
property of a different expression that we need in a particular application (see
[3]). Take the miniswaps

and let V denote the product of these in any arbitrary order (but in all cases
where V occurs this is the same order). Then we claim that

(5.5) K2,, VK2, _ , . . . VK3 VK, VK1

sorts every rearrangement of a (if (Y satisfies (5.1)). In order to show this it
suffices to prove that (5.5) can be written in the form

(5.6) TXU

130

where X stands for (5.4), and T and I/ are products of miniswaps. Actually X
sorts every rearrangement /3 of a, so X sorts U,,, so XU sorts 8, whence TXU
sorts p.

To facilitate the discussion we write (0) instead of any Ki, and (k) instead of
S2n+k (if k>O). So in (5.5) we have 2n (O)‘s, 2n- 1 (Q’s (for each k>O). In (5.4)
there are 2n (O)‘s, 2n - 1 (l)‘s, n + 1 (n - l)‘s, and such that between two
consecutive (0)‘s there is a product of (Q’s with k>O. Let us describe the
situation for n = 7. Reading from left to right we have in the intervals between
consecutive (0)‘s: (l)(2); (l)(3)(2)(4); eight times the group (l)(3)(5)(2)(4)(6);
(1)(3)(5)(W); (l)(3)(2); (1).

If) k - h 1 > 1 then (k) and (h) commute. Therefore we are not interested in
the position of such (k) and (h) with respect to each other. So if it comes to
essentials, we describe (5.4) as: 2n (O)‘s, between each pair of consecutive (0)‘s
just one (1); between each pair of consecutive (1)‘s just one (2), between
each pair of consecutive (n - 2)‘s just one (n - 1).

We can recognize this structure in (5.5) too. First mark the (1)‘s in the Vs.
To the right of the (1) in the rightmost V there may occur (k)‘s with k> 1. We
shift them to the right (they commute with the (0)) and put them into U. Simi-
larly, the (Q’s with k> 1 occurring to the left of the leftmost (1) are shifted to
the left into T. There remain 2n - 2 (2)‘s, and again we shift all (Q’s with k > 2
occurring to the right of this group into U, and those to the left of this group
into T. Now there remain 2n - 3 (3)‘s between the remaining (2)‘s, etc.

Proceeding this way, we finally get (5.5) in the form (5.6), (with an X that
represents the same operator as (5.4)), and that guarantees that (5.5) sorts every
rearrangement of a.

5. ANOTHER GENERALIZATION OF FLOYD’S THEOREM

As said in section 1, we get Floyd’s theorem from Theorem 4.1 if we restrict
the arrays to permutation arrays. We shall now show a generalization in a
different direction.

First we introduce the word coswap (see [2]): If 1 sp < q 5 n, 5~ P(n), then
o = Cpg rr is obtained from n by sorting the values p and q: if a and b are such
that r(a) =p, n(b) = q, then o(min (a, b)) =p, o(max (a, b)) = q, o(k) = n(k) if
n(k) is different from both p and q. Such an operation is called a coswap. A
minicoswap is a coswap C,, with q=p+ 1, and will be abbreviated as C,.

THEOREM 5.1. If Mr, . . . , MN are miniswaps or minicoswaps, (i.e. elements of
theset (Sr,Sz ,.,., S,,-r,Ci ,..., C,-r})andtheproductMi ,..., MNsortstheanti-
sorted permutation array, then it sorts every permutation array.

PROOF. In section 7.1 of [2] it was remarked that minicoswaps preserve the
partial order. Therefore the proof of theorem 4.1 (which is, in the case of
permutation arrays, identical to the first one of the two proofs given for Floyd’s
theorem in [2]) can still be used for mixed products of miniswaps and mini-
coswaps.

131

REFERENCES

1. Armstrong, P.N. and M. Rem - A serial sorting machine. Comput. and Elect. Engng. 9,
53-58 (1982).

2. Bruijn, N.G. de - Sorting by means of swappings. Discrete Math. 9, 333-339 (1974).
3. Bruijn, N.G. de - A sorting machine. Proc. Kon. Ned. Akad. v. Wetensch. A 86 (=Inda-

gationes Mathematicae 45), 2, 133-137 (1983).
4. Knuth, D.E. - The Art of Computer Programming. Vol. 3: Sorting and Searching. Addison-

Wesley, Reading, Mass., 1973.

132

