Compact and Weakly Compact Homomorphisms between Algebras of Continuous Functions

MIKAEL LINDSTRÖM

Department of Mathematics, Åbo Akademi, SF-20500 Åbo, Finland

AND

JOSE LLAVONA

Facultad de Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Submitted by Richard M. Aron

Received September 20, 1990

In this note we study the relationship between compactness and weak compactness of a continuous homomorphism \(\phi \) from \(C_c(S) \) into \(C_c(T) \) and the associated continuous function \(\varphi: T \to S \), where \(S \) and \(T \) are completely regular Hausdorff spaces.

\[C_c(S) \to C_c(T) \]

1. INTRODUCTION AND PRELIMINARIES

The purpose of this note is to study compact and weakly compact homomorphisms between algebras of continuous functions. As the main result it is shown that if a continuous homomorphism \(\phi: C_c(S) \to C_c(T) \) is weakly compact, where \(S \) is a completely regular Hausdorff space and \(T \) a connected completely regular Hausdorff \(k_R \)-space, then the associated function \(\varphi: T \to S \) is constant. This result is an extension of a result proved by H. Kamowitz in [5]. Also R. Singh and W. Summers [8] have obtained results in this direction, but only for compact Hausdorff spaces. Further we prove that if \(S \) is an extremally disconnected completely regular Hausdorff space and \(T \) is a completely regular Hausdorff space satisfying the first axiom of countability, then every continuous homomorphism \(\phi: C_c(S) \to C_c(T) \) is compact.

Throughout this note we let \(S \) and \(T \) denote completely regular Hausdorff spaces. The collection of all continuous functions from \(T \) into a locally convex space \(E \) endowed with its compact-open topology is denoted
by $C(\tau, E)$. Further we denote by $C_c^0(\tau)$ the algebra of all continuous scalar-valued functions on τ, endowed with its compact-open topology. Recall that a subset H of $C_c^0(\tau, E)$ is called equicontinuous at $t_0 \in \tau$, if for every neighbourhood W of zero in E there exists a neighbourhood U of t_0 in τ such that $f(t) - f(t_0) \in W$ for all $t \in U$ and $f \in H$. We say that H is 	extit{equicontinuous on} τ, if it is equicontinuous at every point of τ.

In [6] J. Llavona and J. Jaramillo have shown that $A: C_c^0(S) \to C_c^0(T)$ is a continuous homomorphism iff there is a continuous function $\varphi_A: \tau \to S$ such that $A(f) = f \circ \varphi_A$ for all $f \in C(S)$, and if S is a real-compact, then every homomorphism between $C_c^0(S)$ and $C_c^0(T)$ is automatically continuous.

In order to obtain a characterization of compact homomorphisms from $C_c^0(S)$ into $C_c^0(T)$ we will need the following compactness criteria of Arzelà-Ascoli type. This result can be found in [7].

Proposition 1. Let E be a quasi-complete locally convex space and T a completely regular Hausdorff k_r-space. Then a subset H of $C_c^0(\tau, E)$ is relatively compact iff (i) H is equicontinuous on τ and (ii) $H(t)$ is relatively compact in E for every $t \in \tau$.

2. Compact and Weakly Compact Homomorphisms

Let us now begin to examine the relationship between compactness and weak compactness of A and the associated functions φ_A.

Given two locally convex spaces E and F. In this note we call a continuous linear function $f: E \to F$ compact (respectively weakly compact), if it maps bounded subsets of E into relatively compact (respectively relatively weakly compact) subsets of F. Note that for every compact (respectively weakly compact) function f from a quasi-normable locally convex space E into a Banach space F there exists a zero neighbourhood U in E such that $f(U)$ is relatively compact (respectively relatively weakly compact) in F.

Further notice that $C_c^0(S)$ is always a quasi-normable locally convex space, when S is a completely regular Hausdorff space.

Using nets, it is easily seen that a subset H of $C(\tau)$ is equicontinuous on τ if for every $t \in \tau$, every net $t_v \to t$ in τ implies that $\sup_{f \in H} |f(t_v) - f(t)| \to 0$. This observation is needed in the following result.

Proposition 2. Let S and T be completely regular Hausdorff spaces and assume also that T is a k_r-space. A continuous homomorphism $A: C_c^0(S) \to C_c^0(T)$ is compact iff for every $t \in T$, every net $t_v \to t$ in T implies that $\sup_{f \in B} |f(\varphi_A(t_v)) - f(\varphi_A(t))| \to 0$ for every bounded set B in $C_c^0(S)$.
Proof. Suppose first that \(A \) is compact. Let \(B \) be an arbitrary bounded subset of \(C_c(S) \) and let \(t \in T \). By assumption \(A(B) \) is relatively compact in \(C_c(T) \). Hence \(A(B) \) is equicontinuous on \(T \), i.e., every net \(t, \to t \) in \(T \) implies that \(\sup_{f \in B} |A(f) t, - A(f) t| = \sup_{f \in B} |f(\varphi_A(t,)) - f(\varphi_A(t))| \to 0 \). Conversely, let \(B \) be an arbitrary bounded set in \(C_c(S) \). By hypothesis \(A(B) \) is equicontinuous on \(T \). Hence \(A \) is compact by Proposition 1, since \(A(B) t \) is relatively compact in \(\mathbb{R} \) for every \(t \in T \) as \(A(B) \) is trivially bounded.

Now we are ready to prove a characterization of compact homomorphisms.

Proposition 3. Assume that \(S \) and \(T \) are completely regular Hausdorff spaces and \(T \) is also a \(k_\infty \)-space. A continuous homomorphism \(A: C_c(S) \to C_c(T) \) is compact iff \(\varphi_A \) is locally constant.

Proof. Suppose first that there exists a \(t \in T \) such that \(\varphi_A \) is not constant on any open set in \(T \) containing \(t \). Let now \(I \) be any fixed open neighbourhood base at \(t \) in \(T \). Then the order relation \(U \leq V \) iff \(U \subset V \) directs \(I \). Hence there is a net \((t_U) \) converging to \(t \) in \(T \) with \(\varphi_A(t_U) \neq \varphi_A(t) \) for each \(U \in I \). Thus for each \(U \in I \) there is a continuous function \(f_U: S \to [0, 1] \) such that \(f_U(\varphi_A(t)) = 0 \) and \(f_U(\varphi_A(t_U)) = 1 \). Now let \(B := \{f_U: U \in I\} \). Then \(B \) is bounded in \(C_c(S) \). But since \(|f_U(\varphi_A(t_U)) - f_U(\varphi_A(t))| = 1 \) for each \(U \in I \), we obtain a contradiction according to Proposition 2. Conversely, suppose that \(\varphi_A \) is locally constant. Consider an arbitrary net \((t_U) \in T \) converging to \(t \) in \(T \). Then there exists an open set \(U \) in \(T \) containing \(t \) such that \(t_v \in U \) for \(v \geq v_0 \) and \(\varphi_A \) is constant on \(U \). Hence \(\varphi_A(t) = \varphi_A(t_v) \) for \(v \geq v_0 \), and we get that \(A \) is compact.

Our next aim is to find out when every weakly compact homomorphism is compact. In the proof of the following result we use an idea due to S. Warner [9, p. 274].

Proposition 4. Let \(S \) and \(T \) be completely regular Hausdorff spaces. If a continuous homomorphism \(A: C_c(S) \to C_c(T) \) is weakly compact, then for each compact subset \(K \subset T \) we have that \(\varphi_A(K) \subset S \) is finite.

Proof. Suppose there exists a compact subset \(K \subset T \) such that \(\varphi_A(K) \) is infinite. Let \((\varphi_A(x_n)) \) be a sequence of distinct points in the compact set \(\varphi_A(K) \). Then \((x_n) \) is also a countable collection of distinct points in \(K \). Since \(K \) is compact, the sequence \((x_n) \) has a cluster point \(x \). We may assume \(\varphi_A(x) \) to be different from each \(\varphi_A(x_n) \). Let \(f_n: S \to [0, 1] \) be continuous with \(f_n(\varphi_A(x)) = 0 \) and \(f_n(\varphi_A(x_k)) = 1 \) for \(k \leq n \). Then \(B := \{f_n: n \in \mathbb{N}\} \) is bounded in \(C_c(S) \). Hence \(A(B) = \{f_n \circ \varphi_A: n \in \mathbb{N}\} \) is
relatively weakly compact in $C_{\text{co}}(T)$. Let now g be a weak cluster point for $(f_n \circ \varphi_A)$ in $C_{\text{co}}(T)$. Then $g \in \{f_n \circ \varphi_A : n \geq m\}$, $m \in \mathbb{N}$, where $\sigma = \sigma(C_{\text{co}}(T), C_{\text{co}}(T)')$. Now for any $\varepsilon > 0$ there exists $n \geq m$ such that $|g(x_m) - f_n(\varphi_A(x_m))| < \varepsilon$, i.e., $|g(x_m) - 1| < \varepsilon$. Thus $g(x_m) = 1$ for each $m \in \mathbb{N}$. In the same way it can be shown that $g(x) = 0$. But $x \in \{x_m : m \in \mathbb{N}\}$, and hence $g(x) \in \{g(x_m) : m \in \mathbb{N}\}$ as $g \in C(T)$. But this is a contradiction.

Before we can formulate our main result, we need one more result.

Proposition 5. Let S and T be completely regular Hausdorff spaces and assume also that T is a k_R-space. Further let $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ be a continuous homomorphism. If for each compact subset $K \subset T$ we have that $\varphi_A(K) \subset S$ is finite, then $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ is compact.

Proof. We first show that $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ is continuous. Here $C_{\text{co}}(S)$ denotes $C(S)$ endowed with the simple topology. Let now $K \subset T$ be an arbitrary compact subset. Then $\varphi_A(K) \subset S$ is finite and

$$\sup_{t \in K} |A(f)(t)| = \sup_{t \in K} |(f \circ \varphi_A)(t)| = \sup_{s \in \varphi_A(K)} |f(s)|,$$

for every $f \in C(S)$. Because $\sigma(C_{\text{co}}(S), C_{\text{co}}(S)')$ is finer than $C_{\text{co}}(S)$, we get that A is continuous from $\sigma(C_{\text{co}}(S), C_{\text{co}}(S)')$ into $C_{\text{co}}(T)$. Since every bounded set in $\sigma(C_{\text{co}}(S), C_{\text{co}}(S)')$ is precompact, it follows that A maps bounded subsets of $C_{\text{co}}(S)$ into precompact subsets of $C_{\text{co}}(T)$. As $C_{\text{co}}(T)$ is complete, the proposition follows.

By collecting together Propositions 3, 4, and 5, we get the following:

Theorem 6. Let S and T be completely regular Hausdorff spaces and assume that T also is a k_R-space. Further let $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ be a continuous homomorphism. Then the following statements are equivalent:

(i) $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ is compact.

(ii) $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ is weakly compact.

(iii) φ_A is locally constant.

(iv) For every compact subset $K \subset T$ we have that $\varphi_A(K) \subset S$ is finite.

Corollary 7. If S is a completely regular Hausdorff space, T a connected completely regular Hausdorff k_R-space, and $A : C_{\text{co}}(S) \to C_{\text{co}}(T)$ is a weakly compact homomorphism, then $\varphi_A : T \to S$ is constant.

The strength of our theorem on k_R-spaces is indicated by observing that there exist a lot of non-discrete completely regular Hausdorff spaces with the property that every compact subset is finite. These spaces are not
Recall that a topological space T is called *extremally disconnected*, if every open set has an open closure. An equivalent condition is that every pair of disjoint open sets in T have disjoint closures (see [3, p. 22]).

Theorem 8. Let S be an extremally disconnected completely regular Hausdorff space and let T be a completely regular Hausdorff space satisfying the first axiom of countability. If $\varphi : T \to S$ is a continuous function, then φ is locally constant.

Proof. Suppose that φ is not locally constant. Then there is a $t_0 \in T$ such that for every open set U in T containing t_0 there exists a $t \in U$ with $\varphi(t) \neq \varphi(t_0)$. Now let (U_n) be a decreasing countable open neighbourhood base at t_0 in T. Then there is a sequence (t_n) in T such that $t_n \to t_0$ and $\varphi(t_n) \neq \varphi(t_0)$ for each $n \geq 1$. Because of the continuity of φ we can without loss of generality assume that $\varphi(t_n) \neq \varphi(t_m)$ for $n \neq m$. Further we have that $\{\varphi(t_n) : n \geq 1\}$ is compact in S. Hence, for every $n \geq 1$ we can choose a closed neighbourhood V_n of $\varphi(t_n)$ such that (V_n) is a pairwise disjoint sequence. Let now $U_1 := \bigcup_{n \text{ odd}} V_n$ and $U_2 := \bigcup_{n \text{ even}} V_n$. Then U_1 and U_2 are open disjoint sets in S. But since $\varphi(t_0) \in U_1 \cap U_2$, we get a contradiction to the assumption of S.

We shall now apply Theorem 8 to show that the multiplicative property of a continuous homomorphism A gives a lot more than if we only assume A to be linear and continuous. In [4, p. 168] A. Grothendieck proved the following result: *Let S be an extremally disconnected compact Hausdorff space and let F be a complete separable locally convex space. Then any continuous linear function of $C_0(S)$ into F is weakly compact.*

Note that $C_0(T)$ is separable iff there is a coarser metrisable and separable topology on the completely regular Hausdorff space T. Let \mathcal{F} be the class of all complete topological algebras which are topologically isomorphic, in the algebra sense, to a subalgebra of $C_0(T)$ for some completely regular Hausdorff space T satisfying the first axiom of countability. If we now combine Theorem 8 and Proposition 3 and observe that every completely regular Hausdorff space satisfying the first axiom of countability is a k_σ-space we obtain the following corollary.

Corollary 9. Let S be an extremally disconnected completely regular Hausdorff and let F be a topological algebra in \mathcal{F}. Then every continuous homomorphism $A : C_0(S) \to F$ is compact.

Remark. The following classes of topological algebras are included in \mathcal{F}. (See [2]).
— All separable, commutative, and semisimple Banach algebras.
— All complex, complete, separable, and semisimple LMCH algebras which are Q-algebras and square algebras.
— All complex, complete, separable, and semisimple LMCH algebras which are barreled and square algebras.
— All separable full Fréchet algebras.

EXAMPLE. Consider an arbitrary homomorphism $A: l^\infty \to F$, $F \in \mathcal{F}$. Since $l^\infty \cong C_0(\beta N)$ we get by Corollary 9 that A is always compact. In particular, every homomorphism $A: l^\infty \to c_0$ is compact.

Finally let us mention that Corollary 7 can be applied to homomorphisms between Fréchet algebras of real-valued functions on a Banach space E which are uniformly weakly continuous when restricted to any bounded subset of E [1].

REFERENCES