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In a previous publication, we have established a collinearly-improved version of the Balitsky–Kovchegov 
(BK) equation, which resums to all orders the radiative corrections enhanced by large double transverse 
logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting 
it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by 
including two classes of single-logarithmic corrections: those generated by the first non-singular terms 
in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The 
equation thus obtained includes all the next-to-leading order corrections to the BK equation which are 
enhanced by (single or double) collinear logarithms. We then use numerical solutions to this equation 
to fit the HERA data for the electron–proton reduced cross-section at small Bjorken x. We obtain good 
quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up 
to virtualities as large as Q 2 = 400 GeV2 for the exchanged photon, uses as an initial condition the 
running-coupling version of the McLerran–Venugopalan model, with the QCD coupling running according 
to the smallest dipole prescription.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The wealth of data on electron–proton deep inelastic scatter-
ing collected by the experiments at HERA over 15 years of op-
eration has allowed for stringent tests of our understanding of 
high-energy scattering from first principles. This refers in particu-
lar to the ‘small-x’ regime where perturbative QCD predicts a rapid 
growth of the gluon density with increasing energy (or decreasing 
Bjorken x), leading to non-linear phenomena like multiple scatter-
ing and gluon saturation [1,2]. The simplicity of the dipole factor-
ization for deep inelastic scattering at high energy [3,4] has favored 
the emergence of relatively simple ‘dipole models’, in which the 
high-density effects are efficiently implemented as unitarity cor-
rections to the cross-section for the scattering between a quark–
antiquark dipole and the proton. Such models allowed for rather 
successful fits to the small-x HERA data at a time where the the-
ory of the non-linear evolution in QCD was insufficiently developed 
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and the pertinence of gluon saturation for the phenomenology was 
far from being widely accepted. The first such model — the “GBW 
saturation model” [5,6] — provided a rather good description of the 
early HERA data for the inclusive and diffractive structure functions 
at x ≤ 10−2 with only 3 free parameters. This success inspired 
new ways to look at the HERA data, which in particular led to the 
identification of geometric scaling [7]. The subsequent understand-
ing [8–10] of this scaling from the non-linear evolution equations 
in QCD — the Balitsky–JIMWLK hierarchy [11–17] and its mean 
field approximation known as the Balitsky–Kovchegov (BK) equa-
tion [18] — has greatly increased our confidence in the validity of 
the pQCD approach to gluon saturation as a valuable tool for phe-
nomenology.

Over the next years, new ‘dipole models’, of increasing sophis-
tication, have emerged. On one hand, they were better rooted in 
perturbative QCD, thus reflecting the overall progress of the the-
ory [19–23]. On the other hand, they were better constrained by 
the advent of new data at HERA, of higher precision. Finally, they 
extended the scope of the ‘saturation models’ to other observ-
ables, like diffractive structure functions and particle production 
in heavy ion collisions. Such extensions required more elaborated 
versions of the dipole model, including impact parameter depen-
dence [24–27] and heavy quarks [25,28].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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For several years, the theory of high-energy scattering with 
high gluon density was known only to leading logarithmic ac-
curacy in pQCD, which is insufficient for direct applications to 
phenomenology. For instance, the essential running coupling cor-
rections enter the high energy evolution only at next-to-leading 
order (see below for details). To cope with that, the first gener-
ations of dipole models involved phenomenological parametriza-
tions for the dipole amplitude, which were rather ad hoc, albeit 
sometimes inspired by solutions to the BK–JIMWLK equations. For 
instance, the ‘IIM’ fit in [20] attempted to capture some general 
features of the non-linear evolution, like geometric scaling with an 
anomalous dimension and the BFKL diffusion, that were expected 
to hold beyond leading order [9,29]. However, the situation has 
changed in the recent years, when the next-to-leading corrections 
to the BK and JIMWLK equations have progressively become avail-
able [30–35]. This opened the possibility for new fits in which the 
evolution of the dipole amplitude with increasing energy is com-
pletely fixed by the theory and only the initial condition at low 
energy still requires some modeling involving free parameters. In 
that respect, the situation of modern ‘dipole fits’ becomes com-
parable in spirit to that of the more traditional fits based on the 
DGLAP equation.

So far, this strategy has been applied [21–23,36] only at the 
level of the “running coupling BK equation” (rcBK) — an improved 
version of the LO BK equation which resums all-order corrections 
associated with the running of coupling, with some scheme de-
pendence though [30–32]. These corrections are numerically large, 
since enhanced by a large transverse (or ‘collinear’) logarithm, and 
their resummation within the BK equation has important conse-
quences on the evolution — it significantly slows down the growth 
of the dipole amplitude with increasing energy [9,29,37]. This last 
feature was indeed essential for the success of the HERA fits based 
on rcBK [21–23,36]. The state of the art in that sense is the 
“AAMQS” fit in [22], which provides a good description of the most 
recent HERA data [38] (the combined analysis by H1 and ZEUS for 
the ep reduced cross-section, which is characterized by very small 
error bars), with a number of free parameters which varies from 
4 to 7 (depending upon whether heavy quarks are included in the 
fit, or not).

However, the running of the QCD coupling is not the only 
source of large (but formally higher-order) perturbative corrections 
to the LO BK, or JIMWLK, equations. Besides the running cou-
pling corrections, the full next-to-leading order (NLO) corrections 
to the BK equation, as computed in [33], feature other contribu-
tions which are enhanced by potentially large, single or double, 
transverse logarithms. Such terms were indeed expected, given 
our experience with the NLO version [39–44] of the BFKL equa-
tion [45–47] (the linearized version of the BK equation valid when 
the scattering is weak). The NLO BFKL corrections are numerically 
large and thus render the small-x evolution, at LO and NLO, void 
of any predictive power. There is no reason to expect this problem 
to be cured, or even alleviated, by the inclusion of the non-linear 
terms describing unitarity corrections [29,48]: the collinear loga-
rithms are generated by integrating over regions in phase-space 
where the dipole size is small and the scattering is weak. This 
has been indeed confirmed by the first numerical study of the 
NLO BK equation [49], which showed that the evolution is unsta-
ble (the scattering amplitude decreases with increasing energy and 
can even turn negative) and that the main source for such an in-
stability is the large double-logarithmic correction.

This difficulty reflects the existence of large radiative correc-
tions of higher orders in αs , which formally lie outside the scope 
of the high-energy evolution (since generated by the transverse 
phase-space), but in practice spoil the convergence of the per-
turbation theory and hence must be kept under control via ap-
propriate resummations. In a previous publication [50], we have 
devised a resummation scheme which deals with the largest such 
corrections — those where each power of αs is accompanied by 
a double transverse logarithm. Our strategy relies on explicit cal-
culations of Feynman graphs and results in an effective evolution 
equation — a collinearly improved version of LO BK equation — 
in which both the kernel and the initial condition receive double-
logarithmic corrections to all orders. This scheme differs from the 
‘collinear resummations’ previously proposed in the context of NLO 
BFKL [51–55] in that it is explicitly formulated in the transverse 
coordinate space, rather than in Mellin space, and hence it is con-
sistent with the non-linear structure of the BK equation. Besides, 
our equation is local in ‘rapidity’ (the logarithm of the energy, 
which plays the role of the evolution variable), a property which in 
this context is rather remarkable since the physics behind the dou-
ble collinear logarithms is the time-ordering of subsequent, soft, 
gluon emissions, which is genuinely non-local.1 The first numer-
ical studies of this collinearly-improved BK equation demonstrate 
the essential role played by the resummation in both stabilizing 
and slowing down the evolution [50,57].

In this paper, we shall provide the first phenomenological test 
of our resummation scheme, by using it in fits to the inclusive 
HERA data. To that aim, it will be important to first extend this 
scheme to also include the single transverse logarithms which ap-
pear in the NLO correction to the BK equation — that is, the NLO 
terms expressing the first correction to the DGLAP splitting kernel 
beyond the small-x approximation and those associated with the 
one-loop running of the coupling. Indeed, such single-log effects 
must be kept under control to ensure a good convergence of the 
perturbative expansion. Besides, the inclusion of running coupling 
effects is essential for the description of the data, as well known.

The resummation of the DGLAP logarithms to the order of inter-
est turns out to be rather straightforward: it amounts to adding an 
anomalous dimension (a piece of the leading-order DGLAP anoma-
lous dimension) to both the resummed kernel and the resummed 
initial condition. For the running coupling corrections, the situation 
turns out to be more subtle since, strictly speaking, they cannot be 
encoded into an equation which is local in rapidity. This being said, 
and following the standard strategy in the literature, we shall pro-
pose various schemes for introducing a running coupling directly 
in the local evolution equation and test these schemes via fits to 
the HERA data.

After these additional resummations, we are led to a new, more 
refined, version for the ‘collinearly improved BK equation’, namely 
Eq. (9) below, which will be our main tool for phenomenology. By 
construction, this equation resums the double-logarithmic correc-
tions completely — meaning to all orders in ᾱs ≡ αs Nc/π (αs is the 
QCD coupling and Nc is the number of colors) and with the right 
symmetry factors — whereas the single-logarithmic terms are re-
summed only partially (but in such a way to include the respective 
terms to NLO). It is rather straightforward to extend our resummed 
equation to full NLO accuracy, by adding the remaining corrections 
of O(ᾱ2

s ), as computed in [33]. But the ensuing equation would 
be very cumbersome to use in practice, due to the intricate, non-
local and non-linear, structure of the pure ᾱ2

s corrections. In this 
first analysis, we shall adopt the viewpoint that the most impor-
tant higher-order contributions (say, in view of phenomenology) 
are those enhanced by collinear logs, as explicitly resummed in 
Eq. (9), and that the pure ᾱ2

s effects are truly small and can be 
effectively taken care of via the fitting procedure. A similar view-
point has been advocated in previous fits based on rcBK, but given 

1 In fact, a non-local equation to resum the double logarithms has been proposed 
in [56].
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the importance of the collinear logarithms, this assumption was 
not so well motivated and led indeed to some tensions in the re-
spective fits, as we shall later explain.

Using numerical solutions to this collinearly improved BK equa-
tion together with suitable forms for the initial condition, we 
have performed fits to the HERA data for the ep reduced cross-
section [38] at x ≤ 10−2 and Q 2 ≤ Q 2

max, where the upper limit 
Q 2

max on the virtuality Q 2 of the exchanged photon is varied be-
tween 50 GeV2 (a common choice in small-x fits) and 400 GeV2. 
These fits show several remarkable characteristics.

(i) The fits are indeed successful: for Q 2
max = 50 GeV2 and 

two types of initial conditions — GBW-like [5] and the running-
coupling version of the McLerran–Venugopalan (rcMV) model [58]
— we obtain a χ2 per number of data points around 1.2 with only 
4 free parameters.

(ii) The fits are also very discriminatory: they clearly favor 
some initial conditions over some others, and some prescriptions 
for the running of the coupling over the others. For instance, the 
standard MV initial condition, which truly corresponds to a fixed 
coupling, appears to be disfavored, whereas a more physical ver-
sion of it, including a running coupling, works quite well. The latter 
works also better than the GBW initial condition, in the sense that 
it provides a fit which remains stable up to Q 2 = 400 GeV2.

(iii) Our fits alleviate some tensions (in terms of physical 
interpretation) which were visible in previous fits based on rcBK 
[21–23,36] and could be attributed to the choice to replace all the 
NLO corrections with the running of the coupling alone (see also 
the related discussion in [23]). Notably, our fits prefer prescrip-
tions where the QCD coupling αs(μ

2) is running according to the 
smallest dipole size, they do not require any artificial ‘anomalous 
dimension’ in the initial condition, and treat the heavy quarks on 
the same footing as the light ones, in agreement with general ex-
pectations from the dipole factorization.

2. The NLO BK equation and large transverse logarithms

To motivate the resummations that we shall later perform, let 
us first explicitly exhibit the large transverse logarithms which 
appear when computing the NLO corrections to the BK equation 
[31–33]. We recall that the BK equation describes the rapidity 
evolution of the S-matrix Sx y = 1 − Tx y for the scattering of a 
color dipole with transverse coordinates (x, y) off a hadronic tar-
get. The dipole scattering amplitude Tx y is small in the regime 
where the target is dilute, but it approaches the unitarity (or 
‘black disk’) limit Tx y = 1 when the target is dense. The separa-
tion between these two regimes is controlled by the saturation 
momentum Q s(Y ), which increases with the rapidity difference Y
between the projectile and the target.

Neglecting the terms suppressed in the limit of a large number 
of colors Nc � 1, one finds a closed equation for Sx y , whose NLO 
version reads as follows [33]

dSx y

dY
= ᾱs

2π

∫
d2z

(x− y)2

(x−z)2(y−z)2

{
1 + ᾱs

[
b̄ ln(x− y)2μ2

− b̄
(x−z)2 − (y−z)2

(x− y)2
ln

(x−z)2

(y−z)2

+ 67

36
− π2

12
− 5Nf

18Nc
− 1

2
ln

(x−z)2

(x− y)2
ln

(y−z)2

(x− y)2

]}
× (

Sxz Sz y − Sx y
)

+ ᾱ2
s

8π2

∫
d2u d2z

(u−z)4

{
−2

+ (x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x− y)2(u−z)2

2 2 2 2
(x−u) (y−z) − (x−z) (y−u)
× ln
(x−u)2(y−z)2

(x−z)2(y−u)2
+ (x− y)2(u−z)2

(x−u)2(y−z)2

×
[

1 + (x− y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

]

× ln
(x−u)2(y−z)2

(x−z)2(y−u)2

}(
Sxu Suz Sz y − Sxu Su y

)

+ ᾱ2
s

8π2

Nf

Nc

∫
d2u d2z

(u−z)4

[
2

− (x−u)2(y−z)2 + (x−z)2(y−u)2 − (x− y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

× ln
(x−u)2(y−z)2

(x−z)2(y−u)2

](
Sxz Su y − Sxu Su y

)
, (1)

where Nf is the number of flavors, b̄ = (11Nc − 2Nf)/12Nc, and 
ᾱs = αs Nc/π , with the QCD coupling αs evaluated at the renor-
malization scale μ.

There are two main changes in the structure of the evolution 
equation as we go from LO to NLO. First, the term with a single 
integration (SI) over the transverse coordinate z only receives a 
correction of order O(ᾱ2

s ) to the kernel, which in particular con-
tains the running coupling corrections proportional to b̄. Second, 
there are new terms, of order O(ᾱ2

s ), which involve a double in-
tegration (DI) over the transverse coordinates u and z and which 
refer to partonic fluctuations involving two additional partons (be-
sides the original quark and antiquark) at the time of scattering. 
The first such a term, which is independent of Nf , represents fluc-
tuations where both daughter partons are gluons. The S-matrix 
structure therein, that is, Sxu Suz Sz y − Sxu Su y , corresponds to the 
following sequence of emissions: the original dipole (x, y) emits 
a gluon at u, thus effectively splitting into two dipoles (x, u) and 
(u, y); then, the dipole (u, y) emits a gluon at z, thus giving rise 
to the dipoles (u, z) and (z, y). The ‘real’ term Sxu Suz Sz y de-
scribes the situation where both daughter gluons interact with the 
target. The ‘virtual’ term −Sxu Su y describes the case where the 
gluon at z has been emitted and reabsorbed either before, or after, 
the scattering. This negative ‘virtual’ term subtracts the equal-point 
contribution (z = u) from the ‘real’ piece, ensuring that the poten-
tial ‘ultraviolet’ singularity associated with the factor 1/(u − z)4

in the kernel is truly harmless. A similar discussion applies to the 
second DI term, proportional to Nf , except for the fact that the 
additional partons at the time of scattering are a quark and an an-
tiquark.

In principle, one should be able to undertake the task of solving 
the NLO BK equation. The hope would be that the solution would 
only add a relatively small correction to the LO result. However, 
this is not the case since there are terms in the kernels of the NLO 
equation which can become large in certain kinematic regimes and 
thus invalidate the strict ᾱs-expansion. One obvious class of such 
terms contains the corrections proportional to b̄ in the SI term in 
Eq. (1), which by themselves bring no serious difficulties: as well 
known, these corrections can be absorbed into a redefinition of the 
scale for the running of the coupling, which thus becomes a dy-
namical scale (see Section 4 below for details). Here, we would like 
to focus on the corrections enhanced by ‘collinear logarithms’, that 
is, logarithms associated with the large separation in transverse 
sizes (or momenta) between successive emissions. These correc-
tions become large only in the weak-scattering regime where all 
the dipoles are small compared to the saturation scale 1/Q s(Y )

and the equation can be linearized w.r.t. to the (small) scattering 
amplitude T . This in particular means that one can ignore the last 
term, proportional to Nf/Nc, in Eq. (1) since this term vanishes 
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after linearization, as one can easily check (by also using the sym-
metry of the kernel under the interchange u ↔ z).

To be more precise, let us consider the strongly ordered regime

1/Q s � |z − x| � |z − y| � |z − u|
� |u − x| � |u − y| � |x − y|, (2)

that is, the parent dipole is the smallest one, a gluon is emit-
ted far away at u, a second one even further at z, but with all 
possible dipole sizes remaining smaller than the inverse satura-
tion momentum. Whenever appropriate, we will denote by r, ū
and z̄ the size of the parent dipole, the size of the dipoles in-
volving u and the size of the dipoles involving z, respectively, 
with r2 � ū2 � z̄2. By inspection of the SI piece in the NLO BK 
equation, it is quite obvious that the dominant NLO term is the 
one involving a double transverse logarithm (DTL), that is, the 
last term within the square brackets. Still within this regime (2), 
we can approximate the scattering matrices in the SI term as 
follows: Sxz Sz y − Sx y � −Txz − T z y + Tx y � −2T (z̄), where the 
second approximate equality holds since the dipole amplitude for 
a small dipole is roughly proportional to the dipole size squared. 
Notice that the net result in the approximation of interest fully 
comes from the ‘real’ term, which involves the large daughter 
dipoles.

What is not immediately obvious is the presence of a single 
transverse logarithm (STL) coming from the DI term. Let us isolate 
here the relevant part of the kernel,

MSTL ≡ 1

8(u−z)4

[
−2

+ (x−u)2(y−z)2 + (x−z)2(y−u)2 − 4(x− y)2(u−z)2

(x−u)2(y−z)2 − (x−z)2(y−u)2

× ln
(x−u)2(y−z)2

(x−z)2(y−u)2

]
. (3)

To implement the limit in Eq. (2) we can successively write the 
expression in Eq. (3) as

MSTL � 1

8z̄4

[
−2 + 2ū2 − 2ūr cos φ − 3r2

r2 − 2ūr cos φ

× ln

(
1 + r2 − 2ūr cosφ

ū2

)]

� −6 − cos2 φ

12

r2

ū2 z̄4
→ −11

24

r2

ū2 z̄4
, (4)

with φ the angle between r and any of the two dipoles involv-
ing u. To obtain (4), we have first set all dipole sizes which in-
clude z equal to each other, since any subleading term would 
be suppressed by inverse powers of z̄. Then the only z̄ depen-
dence left is the one explicit in the prefactor. We have subse-
quently taken the limit r � ū (by expanding the logarithm to 
cubic order) and we have finally averaged over the angle φ be-
tween the parent dipole and those involving u. Notice that the 
would-be leading term, of order 1/z̄4, has canceled out in these 
manipulations. The first non-vanishing term, as visible in the r.h.s. 
of Eq. (4), is suppressed by r2/ū2, thus creating the conditions 
for a logarithmic integration over ū. To explicitly see this, recall 
that we consider the weak-scattering regime, where the product 
of S-matrices multiplying MSTL can be linearized. This allows us 
write Sxu Suz Sz y − Sxu Su y � −Tuz − T z y + Tu y � −2T (z̄). (Once 
again, the dominant contribution has been generated by the ‘real’ 
term.) We see that the net scattering amplitude in this approxima-
tion is independent of the intermediate dipole size ū. Accordingly, 
when integrating over ū, within the range limited by r and z̄, we 
find a STL, as anticipated. After also including the LO term and the 
NLO one enhanced by the DTL, one finds that the NLO BK equation 
in the strongly ordered region (2) reduces to

dT (r)

dY
= ᾱs

1/Q 2
s∫

r2

dz̄2 r2

z̄4

×
(

1 − 1

2
ᾱs ln2 z̄2

r2
− 11

12
ᾱs ln

z̄2

r2

)
T (z̄). (5)

It is now clear that, if the daughter dipoles are allowed to be-
come sufficiently large, the NLO contributions enhanced by large 
transverse logarithms become comparable to, or larger than, the 
LO one. In that case, the present perturbative expansion cannot be 
trusted anymore. To be more explicit, consider a single step �Y in 
the evolution with the following, simple but physically meaningful, 
initial condition

T (r) =
{

r2 Q 2
s for r2 Q 2

s � 1

1 for r2 Q 2
s � 1.

(6)

The z̄-integration in Eq. (5) becomes logarithmic and gives

�T (r) = ᾱs�Y r2 Q 2
s ln

1

r2 Q 2
s

×
(

1 − 1

6
ᾱs ln2 1

r2 Q 2
s

− 11

24
ᾱs ln

1

r2 Q 2
s

)
. (7)

This shows that, for sufficiently small r Q s , such that ᾱs ln2(1/r2 Q 2
s )

� 1, the NLO correction becomes larger than the LO term and the 
perturbation series is unreliable. In particular, the NLO correction 
is negative rendering the solution unstable, as indeed observed in 
numerical solutions [48–50].

3. Resumming the large collinear logarithms

The large NLO corrections that we have singled out in the previ-
ous section are the lowest-order examples of collinearly-enhanced 
radiative corrections, which occur to all orders and spoil the con-
vergence of the perturbation theory. When the separation be-
tween the transverse scales of the projectile and the target is large 
enough, as is actually the case in the DIS kinematics at HERA, the 
higher-order terms of this type become more important than the 
pure ᾱ2

s NLO terms (i.e. the contributions of O(ᾱ2
s ) which are not 

amplified by any transverse logarithms). From now on, we shall fo-
cus on this situation, discarding the pure ᾱ2

s NLO corrections, but 
focusing on the resummation of the large transverse logarithms to 
all orders. In this section, we consider both the single and double 
collinear logarithms, thus following and expanding our recent re-
sults in [50]. In the next section, we shall explain how the running 
coupling corrections can be included in this scheme.

In Ref. [50] we have devised a strategy for resumming double-
logarithmic corrections to the BK equation to all orders. Our main 
observation was that these corrections are generated by the di-
agrams common to the BFKL and DGLAP evolutions — i.e. the 
Feynman graphs of light-cone perturbation theory in which the 
successive gluon emissions are strongly ordered in both longi-
tudinal momenta and transverse momenta (or ‘dipole sizes’) — 
after enforcing the additional constraint that the emissions must 
also be ordered in lifetimes (or, equivalently, in light-cone energies 
[56]). Concerning the single collinear logarithms, it is intuitively 
clear that they must represent DGLAP-like corrections to BFKL, 
‘small-x’, emissions. For instance, the effect of order ᾱ2

s �Yρ2, with 
ρ ≡ ln(1/Q 2

s r2), visible in Eq. (7) is the result of a sequence of 
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two emissions: one small-x emission (in the double logarithmic 
regime) yielding a contribution ∝ ᾱs�Yρ , and a DGLAP-like emis-
sion, characterized by strong ordering in dipole sizes (see Eq. (2)) 
and which gives an effect of order ᾱsρ . This scenario is cor-
roborated by the following observation: the numerical coefficient 
A1 ≡ 11/12 in front of the STL in Eq. (5) can be recognized as the 
second-order term in the small ω expansion of the relevant linear 
combination of DGLAP anomalous dimensions:

PT(ω) =
1∫

0

dz zω

[
Pgg(z) + CF

Nc
Pqg(z)

]

= 1

ω
− A1 +O

(
ω,

Nf

N3
c

)
with A1 = 11

12
. (8)

Recalling that one needs one factor of 1/ω in order to generate 
a small-x logarithm �Y = ln(1/x), one sees that the NLO effect 
∼ ᾱ2

s �Yρ2 is indeed produced by combining the singular (1/ω) 
piece of one emission with the first non-singular piece (A1) of an-
other one. This discussion also instructs us about the strategy to 
follow in order to resum such STLs to all orders: it suffices to in-
clude this piece A1 as an anomalous dimension, i.e. as an extra 
power-law suppression, in the evolution kernel previously obtained 
in Ref. [50]. We are thus led to the following, collinearly-improved, 
version of the BK equation,

dT̃x y

dY
= ᾱs

2π

∫
d2z

(x− y)2

(x−z)2(z− y)2

×
[

(x− y)2

min{(x−z)2, (y−z)2}
]±ᾱs A1

KDLA
(√

Lxzr L yzr
)

× (
T̃xz + T̃ z y − T̃x y − T̃xz T̃ z y

)
, (9)

where the overall kernel is written as a product of three fac-
tors: the familiar dipole kernel which appears already at leading 
order, the ‘DLA kernel’, resuming the double collinear logs to all 
orders [50]

KDLA(ρ) = J1
(
2
√

ᾱsρ2
)

√
ᾱsρ2

= 1 − ᾱsρ
2

2
+ (ᾱsρ

2)2

12
+ · · · , (10)

evaluated at ρ = √
Lxzr L yzr , with Lxzr ≡ ln[(x − z)2/r2], and a new 

factor, which features the exponent ±ᾱs A1 (the positive sign in 
the exponent is taken when |x− y| < min{|x− z|, |y− z|} and the 
negative sign otherwise), which expresses the contribution of the 
single collinear logarithms.

From the above discussion, it should also be clear that the 
present resummation of STLs is only partial: it refers to the par-
ticular class of such corrections which are generated by the first 
non-singular piece in the expansion in Eq. (8). The higher terms 
in this ω-expansion will produce single collinear logarithms too, 
but only starting at higher orders in perturbation theory (NNLO or 
higher). At the level of the BFKL equation, more complete resum-
mations of the single logarithms have been devised in [52–54], but 
so far it is not clear how to extend these resummation schemes to 
a non-linear evolution equation like BK.

Returning to Eq. (9), the tilde symbol in T̃x y is intended to re-
mind that this is truly a suitable analytic continuation of the dipole 
amplitude which coincides with the physical quantity Tx y only for 
ρ < Y . For ρ > Y , the physical amplitude can be obtained by ei-
ther solving an equation non-local in Y , or by matching onto the 
solution to the DGLAP equation [50]. However, explicit numerical 
studies at DLA level have shown that the solution T̃x y to Eq. (9)
remains very close to the actual physical amplitude, including for 
ρ > Y . For this reason, we shall ignore this subtlety (and the re-
lated issue of the resummation in the initial condition) for the 
purpose of the fits to be constructed in Sect. 5. We shall return 
to a more detailed study of these issues in a forthcoming publica-
tion [59].

4. Prescriptions for the running of the coupling

The last source of potentially large NLO corrections to the BK 
equation are the running coupling corrections, i.e. the logarithmic 
terms proportional to b̄ in the SI term in Eq. (1). Such terms can 
grow large when the scales in their arguments are very disparate. 
More precisely, the first logarithm can be problematic when r is 
much smaller or much larger than 1/μ, while the second when 
the soft gluon at z is close to either the quark or the antiquark 
composing the parent dipole. We need to choose μ in such a way 
to cancel these potentially large logarithms, which could otherwise 
spoil the convergence of the perturbative expansion.2 It is clear 
that there is not a unique choice, but in QCD one usually expects 
the hardest scale to determine the running of the coupling. Indeed, 
a quick inspection shows that the smallest dipole prescription

ᾱmin = ᾱs(rmin) with rmin = min{|x− y|, |x−z|, |y−z|} (11)

cancels the large logarithms in all kinematic regions.
Another possibility is to choose μ so that all the terms with co-

efficient ᾱ2
s b̄ vanish. Given that in the current work we neglect all 

finite (i.e. not enhanced by a large logarithm) ᾱ2
s terms, this looks 

like what is called the “fastest apparent convergence” (fac) scheme
[60–62]. It is convenient in the sense that one is left with just the 
leading term in ᾱs . We find that

ᾱfac =
[

1

ᾱs(|x− y|) + (x−z)2 − (y−z)2

(x− y)2

× ᾱs(|x−z|) − ᾱs(|y−z|)
ᾱs(|x−z|)ᾱs(|y−z|)

]−1

, (12)

and it is an easy exercise to show that it reduces to the minimal 
dipole choice ᾱs(rmin) in all limits where one of the three dipoles 
is much smaller than the other two.

In this work, we shall use both above schemes. Let us add that 
the most popular prescription, widely used so far in phenomeno-
logical applications, is the one due to Balitsky [32], and reads

ᾱBal = ᾱs(|x− y|)
[

1 + ᾱs(|x−z|) − ᾱs(|y−z|)
ᾱs(|x−z|)ᾱs(|y−z|)

× ᾱs(|x−z|)(y−z)2 − ᾱs(|y−z|)(x−z)2

(x− y)2

]
, (13)

but it will not be adopted here for a number of reasons. First, it 
is based on an extrapolation to all orders of a coordinate space 
kernel which includes the ᾱ2

s b̄ terms above as well as ᾱ3
s b̄2 correc-

tions. At this order, we would also expect corrections proportional 
to the two-loop beta function. Second, even though it also reduces 
to ᾱs(rmin) in the extreme kinematical limits, it does that very 
slowly for large daughter dipoles (in certain configurations) and 
this leads to an unphysically small coupling in a large region of 
phase space, as can be seen in the respective plots in Fig. 1. Fi-
nally, and perhaps as a result of the above drawbacks, when used 
in fitting the DIS data, it gives a much worse fit than Eqs. (11)

2 It is rather important to point out here that μ should cancel only these log-
arithms and not those discussed earlier which are of different physical origin. Of 
course one can proceed to such a choice and cancel all the NLO logarithms, but the 
result will be extremely unstable w.r.t. small variations of μ.
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Fig. 1. Running coupling for various schemes and configurations. (a) As a function of the daughter dipole size |x − z|, with φ = 0 the angle between the parent dipole x − y
and the daughter one x − z. (b) The same with φ = π/6. (c) As a function of the angle φ for fixed daughter dipole size |x − z| = 1.5. Black (continuous): The minimal dipole 
scheme as defined in Eq. (11). Red (dashed): The “fac” scheme as given in Eq. (12). Blue (dotted): The Balitsky scheme [32], cf. Eq. (13). In all cases the parent dipole size is 
|x − y| = 1, the coupling is smoothly frozen at the value 0.7 and 	QCD = 0.2.
and (12) and with fit parameters which take somewhat unnatural 
values.

5. Fits to the HERA data

We now turn to the description of the HERA reduced cross-
section measurements using the resummed BK equation. To this 
aim several ingredients first have to be specified.

Initial condition We must fix the initial condition for the dipole 
amplitude at some Y0, which afterwards will be evolved towards 
higher rapidities using Eq. (9). We consider two choices: the simple 
parametrization of the Golec-Biernat and Wüsthoff (GBW) [5] type

T (Y0, r) =
{

1 − exp

[
−

(
r2 Q 2

0

4

)p]}1/p

(14)

and the running-coupling version of the McLerran–Venugopalan 
(rcMV) model [58]

T (Y0, r) =
{

1 − exp

[
−

(
r2 Q 2

0

4
ᾱs(r)

×
[

1 + ln

(
ᾱsat

ᾱs(r)

)])p]}1/p

. (15)

It is worth noticing that, as dictated by collinear physics, there is 
no anomalous dimension in the above initial conditions. The ex-
tra parameter p determines the shape of the amplitude close to 
saturation and its approach towards unitarity.

Running coupling We consider the two prescriptions given by 
Eqs. (11) and (12). For the explicit expression of the strong cou-
pling in coordinate space in terms of r we introduce a fudge factor 
as in [22], namely

αs(r) = 1

bNf ln
[
4C2

α/(r2	2
Nf

)
] , (16)

with bNf = (11Nc − 2Nf)/12π . This fudge factor is also included 
in the rcMV type initial condition in (15). The Nf-dependent Lan-
dau pole is obtained by imposing αs(M2

Z ) = 0.1185 at the scale 
of the Z mass [63] and continuity of αs at the flavor thresholds, 
using mc = 1.3 GeV and mb = 4.5 GeV. To regularize the infrared 
behavior, we have decided to freeze αs at a value αsat = 1 and we 
have checked explicitly that reducing this down to, for example, 
0.7 does not affect the fit in any significant manner.
Note that we do not include any form of resummation or 
matching for ln 1/r2 > Y , as introduced in [50], in these initial 
conditions. One of the reasons for not doing so is that the ex-
tra factor in the initial condition can always be reabsorbed in a 
re-parametrization. Furthermore, a proper matching at small dipole 
sizes, suited for phenomenological studies, would require a care-
ful treatment of the small-dipole region. In that respect, the re-
summed BK evolution is expected to perform a better job than a 
fixed matching with a fixed asymptotic behavior. We leave a better 
treatment, e.g. a genuine matching to DGLAP evolution, for future 
work.

Rapidity evolution Of course this is determined by the resummed 
BK equation given in (9). Here, we again consider two separate 
cases, one in which the evolution resums only the leading double 
logarithms and one in which it also includes the single ones.

From the dipole amplitude to observables Once we have the dipole 
amplitude for all rapidities and dipole sizes, we use the standard 
dipole formalism to obtain the physical observables:

σ
γ ∗ p
L,T (Q 2, x) = 2π R2

p

∑
f

∫
d2r

1∫
0

dz
∣∣�( f )

L,T (r, z; Q 2)
∣∣2

× T (ln 1/x̃ f , r), (17)

where the transverse and longitudinal virtual photon wavefunc-
tions read∣∣�( f )

L (r, z; Q 2)
∣∣2 = e2

q
αemNc

2π2
4Q 2z2(1 − z)2 K 2

0 (r Q̄ f ), (18)

∣∣�( f )
T (r, z; Q 2)

∣∣2 = e2
q
αemNc

2π2

{[
z2 + (1 − z)2

]
Q̄ 2

f K 2
1 (r Q̄ f )

+ m2
f K 2

0 (r Q̄ f )
}

. (19)

In the above we have introduced the customary notation Q̄ 2
f =

z(1 − z)Q 2 + m2
f , x̃ f = x(1 + 4m2

f /Q 2), and we have assumed a 
uniform distribution over a disk of radius R p in impact parameter 
space. The sum in (17) runs over all quark flavors and we will in-
clude the contributions from light quarks with mu,d,s = 100 MeV
as well as from the charm quark with mc = 1.3 GeV. From the lon-
gitudinal and transverse cross-sections, we can deduce the reduced 
cross-section and the longitudinal structure function as

σred = Q 2

4π2αem

[
σ

γ ∗ p
T + 2(1 − y)

1 + (1 − y)2
σ

γ ∗ p
L

]
, (20)

FL = Q 2

2
σ

γ ∗ p
L . (21)
4π αem
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Table 1
χ2 and values of the fitted parameters entering the description of the HERA data. The fit includes the 252 σred data points. The quoted χ2 for σ cc̄

red and F L are obtained a 
posteriori.

Init.
cdt.

RC 
schm.

Sing.
logs

χ2 per data point Parameters

σred σ cc̄
red F L R p [fm] Q 0 [GeV] Cα p

GBW small yes 1.135 0.552 0.596 0.699 0.428 2.358 2.802
GBW fac yes 1.262 0.626 0.602 0.671 0.460 0.479 1.148
rcMV small yes 1.126 0.565 0.592 0.707 0.633 2.586 0.807
rcMV fac yes 1.228 0.647 0.594 0.677 0.621 0.504 0.541
GBW small no 1.121 0.597 0.597 0.716 0.414 6.428 4.000
GBW fac no 1.164 0.609 0.594 0.697 0.429 1.195 4.000
rcMV small no 1.093 0.539 0.594 0.718 0.647 7.012 1.061
rcMV fac no 1.132 0.550 0.591 0.699 0.604 1.295 0.820
When the quark masses, the value of the strong coupling at 
the Z mass and its frozen value in the infrared have been fixed, 
we are left with 4 free parameters according to our choice of ini-
tial condition: R p the “proton radius”, Q 0 the scale separating the 
dilute and dense regimes, Cα the fudge factor in the running cou-
pling in coordinate space, and p which controls the approach to 
saturation in the initial condition.

We have fitted these parameters to the combined HERA mea-
surements of the reduced photon–proton cross-section [38]. Since 
the BK equation is applicable only at small-x, we have limited 
ourselves to the region x ≤ 0.01. We note that since Eq. (17)
probes dipoles at the rapidity ln 1/x̃ f , the exact cut we impose is 
x̃c ≤ 0.01 since the most constraining cut comes from the charm, 
the most massive quark we include in our model. Accordingly, our 
initial condition for the BK evolution corresponds to x̃ = 0.01. Fur-
thermore, since we do not expect the BK equation to capture the 
full collinear physics, we impose the upper bound Q 2 < Q 2

max. By 
default we will use Q 2

max = 50 GeV2 but we will also give results 
for extensions to larger Q 2. In the default case we have a total of 
252 points included in the fit. We have added the statistical and 
systematic uncertainties in quadrature.3

The results of our fits for the 23 = 8 cases, depending on the 
initial condition, the running coupling prescription and the in-
clusion or not of single logarithms in the kernel, are presented 
in Table 1. The table includes the parameter values obtained 
from fitting the σred data and, besides the fit χ2, it also indi-
cates the χ2 obtained a posteriori for the latest σ cc̄

red [64] and F L

[65] measurements. These results deserve a few important com-
ments.

(i) In general, the overall quality of the fit is very good, reaching 
χ2 per point around 1.1–1.2.

(ii) Apart from a few small exceptions (see below), all the pa-
rameters take acceptable values of order one. Note that we 
have manually bounded p between 0.25 and 4. Whenever it 
reached the upper limit, larger values only led to minor im-
provements in the quality of the fit.

(iii) The two initial conditions give similar results, with a slight 
advantage for the rcMV option. Note that for a standard MV-
type of initial condition T (Y0, r) = {1 − exp[−(r2 Q 2

0 /4 [c +
ln(1 + 1/r	)])p]}1/p , we have not been able to obtain a χ2

per point below 1.3 and the parameters, typically c or p, tend 
to take unnatural values.

(iv) As far as the running-coupling prescription is concerned, the 
smallest dipole prescription given in Eq. (11) tends to give 
somewhat better fits than the “fac” prescription given in 
Eq. (12). This can be seen as an estimate of subleading cor-

3 A more involved treatment of the correlated systematic uncertainties leads to 
similar results with slightly worse χ2 per points (about 0.04).
rections (including the pure ᾱ2
s NLO terms) that we neglect 

in the present fit. Note also that we have not been able to 
reach a fit of equivalent quality and robustness with the Bal-
itsky prescription.

(v) The resummation of the single logarithms tends to yield 
slightly larger values for χ2, but the difference is too small 
to be significative (at least, without performing a full NLO 
analysis). Perhaps more significantly, this resummation leads 
to more physical values for some of the parameters, espe-
cially Cα for the smallest dipole prescription and p for the 
GBW initial condition. These findings are consistent with the 
expectation that, once properly resummed, single logarithms 
should have only a modest impact. Recall however that their 
resummation is a crucial step towards a full NLO fit — failing 
to do so could lead to instabilities similar to those observed 
when double logarithms are not resummed.

(vi) The fit remains stable when varying the parameters we have 
imposed by hand. For example, using αsat = 0.7 instead 
of 1 has no significant effect on the fit. Varying the light 
quark masses within the rather wide range 0 ≤ mu,d,s ≤
140 MeV only slightly changes the quality of the fit. For in-
stance, taking one of our best fits (rcMV initial condition, the 
smallest dipole prescription for the running of the coupling, 
and resummation of the single logarithms), we have found 
χ2 = {1.180, 1.153, 1.126, 1.159} when choosing mu,d,s =
{0, 50, 100, 140} MeV, respectively. This lack of sensitivity 
to the light quark masses is likely a consequence of satura-
tion, which reduces the dependence of the DIS cross-section 
to very large dipole fluctuations. (The corresponding ampli-
tudes reach the unitarity, or ‘black disk’, limit T = 1, so they 
are independent of the size r of the dipoles fluctuations, as 
regulated at low Q 2 by the quark masses; see also the discus-
sion of Fig. 3 below.) Also, we have obtained an equally good 
fit with the slightly larger value mc = 1.4 GeV for the mass 
of the charm quark, although the quality started deteriorat-
ing for significantly larger values mc ≥ 1.6 GeV. Very similar 
findings have been reported for the saturation fits in [26].

(vii) Trying to extend the fit to larger Q 2 shows an interesting 
behavior as seen from Table 2. While the χ2 obtained using 
the GBW initial condition increase when including higher-Q 2

data, the fits using the rcMV initial condition remain stable. 
We suspect that this is due to the fact that this choice of ini-
tial condition stays closer to the expected physics at high Q 2.

In Fig. 2 one can see the quality of our fit and the extracted val-
ues of the evolution parameter λs = d ln Q 2

s /dY . In Fig. 3 we show 
the value of the saturation momentum in the (x, Q 2)-plane on top 
of the data points as well as a few selected initial conditions for 
the fit. Note that amplitudes which a priori have different func-
tional forms, cf. Eqs. (14) and (15), look nevertheless quite similar 
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Table 2
Evolution of the fit quality when including data at larger Q 2 (in GeV2).

Init.
cdt.

RC 
schm.

Sing.
logs

χ2/npts for Q 2
max

50 100 200 400

GBW small yes 1.135 1.172 1.355 1.537
GBW fac yes 1.262 1.360 1.654 1.899
rcMV small yes 1.126 1.170 1.182 1.197
rcMV fac yes 1.228 1.304 1.377 1.421
GBW small no 1.121 1.131 1.317 1.487
GBW fac no 1.164 1.203 1.421 1.622
rcMV small no 1.093 1.116 1.106 1.109
rcMV fac no 1.131 1.181 1.171 1.171

Fig. 2. Description of the HERA data obtained by the fits using the rcMV initial condition. Each box corresponds to a given value of Q 2 as indicated (in GeV2) in the top-right 
corner. For each fit we plot the ratio of the prediction to the central experimental value. The (green) band represents the experimental uncertainty.
in shape (at least in double-logarithmic scale) when plotted for the 
particular values of the parameters that are selected by the fits.

To conclude, this work can be seen as the first description of 
small-x DIS data which includes mandatory perturbative QCD in-
gredients in that region: leading-order small-x evolution, the re-
summation of large transverse logarithms, and saturation correc-
tions.4 The dipole amplitude obtained from our fits to inclusive DIS 

4 It would be an interesting exercise to see what happens if one switches off the 
non-linear corrections in Eq. (9). Given our asymmetric choice of frame, justified by 
saturation physics, this may however require extra work. See also [66].
can in principle be used to compute several other observables, like 
particle multiplicity in hadronic collisions, the diffractive structure 
functions, the elastic production of vector mesons, or the forward 
particle production in heavy-ion collisions. This is certainly not the 
end of the story: beyond what we have included here, it would be 
interesting to add the pure ᾱ2

s NLO corrections to the BK evolu-
tion kernel, thus obtaining a genuine resummed NLO–BK fit, and 
to perform a proper matching between this small-x evolution and 
a DGLAP-like evolution at large Q 2 and large x. These steps go 
beyond the scope of the present paper and are left for future stud-
ies.
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Fig. 3. Left: value of the saturation momentum, defined for each rapidity as 2/rs(Y ) with T (rs(Y ), Y ) = 1/2. For comparison, we have overlaid the experimental data points 
from the HERA dataset. Right: plot of the corresponding initial conditions for the rapidity evolution.
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