
Available online at www.sciencedirect.com

The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction 

Estimation of Cable Tension Using Measured Natural 
Frequencies 

H. NAM1a and N. T. NGHIA2b 
1Faculty of Civil Engineering, HCMC University of Technology, Vietnam 

2Faculty of Civil Engineering, University of Transport and Communications, Vietnam  

 

Abstract 

Estimating cable tension in cable-stayed bridges or in external tendons is essential for regular inspection and 
assessment of those structures.  Vibration measurements provide a solution, however, may not be accurate in cases 
parameters such as amount of sag and flexural rigidity of cable are significant.  In this study, the characteristic 
equation for vibration of the most general case of a cable, where both the sag and flexure in the cable are taken into 
account, is analytically derived.  After that by considering proper simplifying assumptions of small flexural rigidity 
parameter, asymptotic forms of that equation are obtained.  It renders a practically applicable procedure to estimate 
cable tension using measured natural frequencies.  The developed procedure is verified by realistic data of a cable 
stayed bridge in Vietnam.  
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1. INTRODUCTION

In Vietnam nowadays more and more new infrastructure projects at the national level render more and 
more bridges built.  Significant projects can be listed as suspension bridge Thu n Ph c of 450-m main 
span, and cable stayed bridges: M  Thu n (350-m main span, 24-m deck width, 116-m pylon height); C n 
Th  (550, 26, 165); R ch Mi u (270, 16, 95); Bãi Cháy (435, 16, 90); Ki n (200, 16.7, 79.5); Bính (260, 
22.5, 101.6); and very recently Phú M  in Ho Chi Minh City (380, 16, 90), shown in Figure 1.  As a 
result of the strong demand and rapid development of infrastructure system, structural health monitoring 
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(SHM) certainly becomes an important area of research within the civil engineering community.  The 
need to reduce costs, improve the reliability, and accelerate the process of inspecting these important 
structures becomes evident.  Except M  Thu n Bridge which was very first long-span bridge in Vietnam, 
the other bridges all concern on the implementation a SHM scheme.     

Estimating cable tension in cable-stayed bridges or in external tendon is essential for regular inspection 
and assessment of those structures.  Cable tension can be known from the lift-off tests using hydraulic 
jacks but it is too expensive and hazardous to do.  Vibration measurements provide a better solution, 
however, may not be accurate in cases parameters such as the amount of sag and flexural rigidity of the 
cable are significant.  In previous studies, a semi-empirical or numerical approach has been utilized to 
find the tension force in stay cables .  Notable is the work of Zui et al. (1996) who proposed practical 
formula for tension force in a slender cable considering both cable sag and flexure.  However there is 
significant difference between the values of the practical formula and experimental results for the first 
vibration mode of large sag cables.   

 

 

 

Figure 1.  Phú M  Bridge in Ho Chi Minh City 
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In a different approach, this study attempts to derive asymptotic forms of the wave number equation of a 
general cable, from which the cable tension can be estimated in a simpler and straightforward procedure 
using measured natural frequencies.  The developed procedure can be applied for a wide range of flexural 
rigidity as well as sag-to-span ratio in cable, through two dimensionless parameters consistently defined 
in Irvine and Caughey (1974), and in recent studies of the first author (Hoang and Fujino 2007, Fujino 
and Hoang 2008).  Finally it is verified by realistic data collected from sensors in the SHM scheme of Phú 
M  Bridge. 

2. GOVERNING EQUATIONS OF A GENERAL CABLE 

 

Figure 2.  A model of an inclined cable 

Consider an inclined cable under tension force T as shown in Figure 2.  A coordinate system is defined 
with the x-axis along the cable chord and the y-axis in the perpendicular direction.  The cable has a mass 
per unit length m, a chord length L, a finite flexural rigidity EI and is inclined at an angle   to the 
horizontal (0   /2).  The dynamic equation of the cable in-plane motion v(x, t) (in y-direction)is 
expressed as (Fujino and Hoang 2008, Zui et al. 1996) 
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where coshTH  is the chord tension, and Th is the horizontal component of the cable tension. 
Eq. (1) is established assuming that the cable tension T is sufficiently large so that the static profile of the 
cable can be accurately described by the parabola (Irvine 1981) 
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Here d is the sag at mid-span, )8(cos2 HmgLd , in which g denotes the gravitational constant.  
In Eq. (1), h(t) is the additional tension in the cable caused by the motion, which is obtained from the 
elastic and geometric compatibility of the cable element (Irvine and Caughey 1974) 
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in which EA is the axial rigidity of the cable and ])(81[ 2LdLLe .  Eq. (1) corresponds to the 
most general case of a cable where both the sag and flexure in the cable are taken into account.  The 
equation has been studied by the first author in investigating the damping effect of a stay cable with a 
damper (Fujino and Hoang 2008).  Two important parameters are here noted (i) the sag parameter 2 , 
defined by Irvine and Caughey (1974), 
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and (ii) the flexural rigidity parameter  (Hoang and Fujino 2007), 
2HLEI  (5) 

Considering the free vibration of the cable with (complex) natural frequency .  Denotes a 
dimensionless parameter, i.e., wave number Hm , the following characteristic equation for  
can be derived (Fujino and Hoang 2008): 
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It is noted that in case of an anti-symmetric vibration mode, the sag will generate no additional cable 
tension.  As a result there exist different solutions of Eq. (6) for symmetric and anti-symmetric modes of 
the cable.  For the anti-symmetric modes (mode index n = 2, 4,…), the wave number is determined by 
equating the first term  f1 in Eq. (6) to zero which yields 
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For symmetric modes (n = 1, 3,…), equating the remaining bracket to zero, after rearranging, gives 
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Eq. (6) and consequently Eqs. (7) and (8) are transcendental equations and can be solved for the wave 
number  using iterative numerical methods, such as Newton-Raphson, starting with an appropriate value.  
It is seen that this equation covers a broad range of traditional problems in which either the sag parameter 

2 or the flexural rigidity parameter is separately included.  For example, the wave number f a taut 
flexural cable ( 2 = 0) is determined by equating the product of f1 f2 to zero, which results in the same 
cable characteristic equation derived by Zui et al. (1996).  When 2  0, in the limit of zero flexural 
rigidity   0, after rearranging like terms in the bracket and equating it to zero, the well-known wave 
number equation for a (non-flexural) sag cable, established by Irvine and Caughey (1974), is obtained 

3. ESTIMATION OF CABLE TENSION 

The cable tension can be obtained by its relation with the wave number.  With transcendental 
equations like Eqs. (7) and (8), an expression for the wave number n0 of an individual mode n, and thus 
the cable tension, cannot be explicitly obtained.  However by considering proper simplifying assumptions 
of a small flexural rigidity parameter, the cable tension can be estimated in a simpler and straightforward 
way.  When is small so that 14 22

0 Ln , from Eq. (6d), the following approximations can be made  
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Introducing these approximations into Eqs. (7&8), and rearrange the resulting expressions, yielding 
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Eqs. (10) and (11) are logical extensions of the wave number equation for even and odd vibration 
modes of a sag cable given by Irvine and Caughey (1974), to considering the cable flexural rigidity. 

Note that in long-span cable-stayed bridges the value of 2 is normally less than 3 (Tabatabai and 
Mehrabi 2000), while a range of 2.5 10-6 – 10-4 is common for  (Hoang and Fujino 2007).  The graphs 
of variation of n0 of the first six vibration modes (n = 1 – 6) for a typical value  = 10-4 can be visualized 
in Figure 3.  In the figure the wave number of sag cable by Irvine and Caughey equation (  = 0) is plotted 
by thin lines for reference.  It is seen that the cable flexural rigidity causes a variation in the wave number 
which is rather slight for first low modes but then significant for higher modes.  The variation is quite 
steady with respect to sag parameters for both even and odd vibrations modes.  The accuracy of the 
asymptotic equations (10) and (11) can be verified by comparing its result to the exact solution of Eqs. (7) 
and (8) in Figure 3. 
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Figure 3.  Variation of wave number of the first six vibration modes for  = 10-4   

Hence using simple equations (10) and (11), the wave number or natural frequencies of a general sag 
and flexural cable can be readily calculated, given the cable tension and properties.  By this way, a curve 
relating the cable tension and its natural frequency can be built, from which cable tension can be  
estimated from measured natural frequencies.  Regarding the vibration modes n to be considered in the 
estimation, it depends on the level of sag in the cable.  For short cable with small sag parameter, the first 
mode should be the most crucial, while the higher modes would give easier and more accurate estimate 
for long cable (Zui et al. 1996).  In general, Eq. (12) should be satisfied for any value of n. 

4. CASE STUDY OF PHU MY BRIDGE 

The accuracy of the above procedure for cable tension estimation can be verified through realistic data.  
In this study, the cable properties and measurement data collected from a cable-stayed bridge in Vietnam 
are employed.  It is Phú M  Bridge which crosses SaiGon River to form part of a new ring road  around 
Ho Chi Minh City - an important transport link from the southern Mekong delta region to the Central and 
Northern parts of Vietnam.  The main span of the bridge is 380 m, with 16-m deck width, 90-m pylon 
height.  The cable system here includes 144 cables in multi-fan type. These cables are of Freyssinet 
monostrand which consists of a group of parallel individually protected type S15 strands.  The length of 
cables varies from 60 to 202 m.  The properties of typical 4 cables selected for this study, namely PM1 – 
PM4 as in Figure 1, are given in Table 1.  In evaluating the inertial moment of a parallel-strand stay cable, 
the slip occurring between the individual strands should be considered via void ratio (Gimsing 1997), 
which may be as low as 20% that of a homogeneous section.  Using the data in this table, the curves 
relating the tension and natural frequencies of cables PM1 – PM4 can be made as shown in Figure 5 for 
first four fundamental vibration modes. 
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Table 1. Cable properties 

Cable  
No. 

No. of 
strand 

Outer 
Dia. 

Cable 
weight 

Sectional 
Area 

Void 
Ratio 

Inertia Length 
Inclination 

angle 

   mm kg/m mm2   m4 m   

PM1 27 160 31.86 4050.00 0.260 8.363E-06 68.470 68.01 

PM2 35 180 41.30 5250.00 0.266 1.372E-05 101.586 46.02 

PM3 45 200 53.10 6750.00 0.277 2.178E-05 145.224 33.11 

PM4 51 200 60.18 7650.00 0.314 2.468E-05 179.361 28.37 

 
In August 2009, a field test has been conducted for stay cables of Phú M  Bridge in normal weather 

conditions (Figure 4): temperature varied from 32oC to 35oC, and wind speed varied from 2.0 to 11.20 
m/s.  The cables were excited by human power until significant motion then released, and free vibration 
decay was recorded.  The purpose of the test is to estimate the cable tension through natural vibration 
frequency.  These data are to be used as a reference state for a structural health monitoring scheme of the 
Bridge later on.  For the 4 cables considered in this study, the measured natural frequencies are presented 
in Table 2.  Marking these measured frequencies on the corresponding curves in Figure 5, the tension 
which fits all considered modes can be recognized and its value is noted in Table 2.  These estimated 
values agree well with the references load cells readings provided by the contractor, and also with the 
values calculated using formulae (35) in Zui et al. (1996), given in the last column of Table 2. 

Table 2. Measured natural frequency and measured tension force in cable 

5. CONCLUSIONS 

The combined effects of the sag and flexural rigidity of the cable on its tension have been analytically 
studied.  By introducing proper simplifying approximations, asymptotic forms for the wave number 
equation of an inclined cable considering sag and flexural rigidity have been explicitly obtained and their 
accuracy is confirmed.  It renders a practically applicable procedure to estimate cable tension using 
measured natural frequencies of the cable.  The developed procedure has been verified by realistic data of 
Phú M  Bridge in Vietnam. 
 

Cable No. f1 f2 f3 f4 Estimated H  H by Zui et al. 

 Hz Hz Hz Hz KN KN 

PM1 2.070 4.067 6.101 8.188 2480 2426 

PM2 1.297 2.694 3.972 5.251 2900 2746 

PM3 0.994 1.999 2.966 3.999 4400 4292 

PM4 0.818 1.576 2.373 3.151 4800 5057 
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